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Abstract

Metagenomic studies are becoming increasingly widespread, yielding impor-
tant insights into microbial communities covering diverse environments from
terrestrial to aquatic ecosystems. This also because genome sequencing is
likely to become a routinely and ubiquitous analysis in a near future thanks
to a new generation of portable devices, such as the Oxford Nanopore Min-
ION. The main issue is however represented by the huge amount of data
produced by these devices, whose management is actually challenging con-
sidering the resources required for an efficient data transfer and processing.
In this paper we discuss these aspects, and in particular how it is possible
to couple Edge and Cloud computing in order to manage the full analysis
pipeline. In general, a proper scheduling of the computational services be-
tween the data center and smart devices equipped with low-power processors
represents an effective solution.

Keywords: Metagenomics; Environmental genomics; Edge computing;
Cloud computing; Internet of Things; Internet of Living Things

1. Introduction

Genome sequencing is one of the most effective analysis technique to
monitor both the human body, in physiological settings and pathological
conditions, as well as the bacterial communities of different environments.
Developed in the 1970s with a cost of hundred million dollars, its impressive
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progress [1] reduced the cost down to about $1000 dollars, and the perspective
is a further reduction to about $100 for genome!.

In particular, the MinlON by Oxford Nanopore [2], a miniaturized se-
quencing instrument device with a weight under 100g powered by its USB
port, represents one of the most promising tool belonging to the third-
generation DNA sequencing technology [3]. Coupled with a laptop, MinION
can be used on the field [4] to obtain genomic sequences, thus providing
essential information for tracing back the organisms present in the environ-
ment [5]. These devices have been widely used for microbiology studies 2, for
water monitoring® and in agriculture *. Portable sequencer can also be used
to monitor bacteria in air-filters of hospitals, food industries, and pharma-
ceutical companies in order to give alarms in case pathogens are identified
[6, 7]. More extreme usages of Oxford Nanopore devices have also been
experimented [8, 9, 10].

This new trend is sometimes referred as Internet of Living Things (IoLT')
[11]. The combination of the MinION sequencers with remote platform for
data integration is still in its infancy, although some attempts have been
reported in conference talks and blogs [12, 13]. Moreover, some prototypes
of IoT platforms for monitoring clean water [14, 15], precision farming [16, 17,
18], livestock [19, 20] and more generally to improve agricultural productivity
[21, 22, 23] have been presented.

The two major obstacles affecting the utility of this kind of devices are
the access to suitable computational capabilities and bandwidth, since in
principle it is possible to stream a couple of gigabytes of raw data per day.
Even if the raw data analysis software works reliably on most of the current
laptops, it is a very resource-intensive task. The adoption of a Cloud-based
approach can mitigate such issue, though it comes at the expense of broad-
band connections.

In a previous work [24] we discussed the performance of a prototype
system equipped with low-power System-on-Chip devices (SoCs). The idea is
to process raw data before, and then send only the interesting information to
a Cloud-based analysis platform able to trigger notifications and to perform

Thttps://www.illumina.com/company /news-center /press-releases/press-release-
details.html?newsid=2236383

2https:/ /nanoporetech.com /publications/tags/bacteria-pathogens

3https: / /nanoporetech.com /applications#modal=water

4https://nanoporetech.com/applications#modal=agriculture-plant




machine learning on the time series. On the basis of the experimental results,
we concluded that the pairing of a SoC and a MinION instrument (hereafter
the device) allows to reduce the data streaming of 95%, thus representing a
suitable solution for metagenomic analysis in remote regions.

However, this result is cost-effective for a fixed number of analyses per
device per day. Nevertheless, in a real-world scenario the sampling frequency
should not be fixed: whenever a critical situation is identified, the sampling is
likely to be increased to monitor in more detail the evolution of the pathogens
or pollution, for example to determine the effectiveness of the adopted coun-
termeasures or the propagation in the environment. In this (realistic) case,
it is important to balance the allocation of the computational services of the
analysis workflow between the center and the edge of the Cloud infrastruc-
ture, in order to get timing results in a cost-effective way.

The analysis of these aspects represents the goal of the present paper,
which is structured as follows. Section 2 describes the hardware components;
Section 3 gives an overview of the workflow for data processing; Section
4 describes the achieved experimental results, followed by conclusions and
future directions.

At the best of our knowledge, no previous works have been published
about Edge computing applications in Bioinformatics. On the contrary the
use of Cloud computing is a well established technology. The Cloud in fact
represents a suitable solution for the storage and analysis of the present large
amount of experimental data, as discussed in [25, 26]. In particular, the use
of general purpose low-level solutions has been customized for the Bioinfor-
matics research field [27, 28], as we present in this paper for the metagenomic
analysis and the IoT technology. Also the price of the deployment and use
of Cloud-based solutions has been discussed in several works, as [29, 30, 31].
As regards the use of SoC devices for Fog and Edge Computing applications,
this approach has received increasing attention in the last years [32, 33]. This
is also demonstrate by the recent (February 2018) Intel’s announcement of
the Xeon D-2100 line, which “brings advanced intelligence to a lower-power

system-on-a-chip (SoC) for edge environments”®.

Shttps://itpeernetwork.intel.com /xeon-taking-edge-new-heights/




2. The Hardware of the Device

A device able to operate on the field in an independent way has to be com-
posed by MinION and a laptop/minicomputer able to manage the sampling
process and its results.

The Minion device by the Oxford Nanopore is a third generation [34]
approach used for sequencing DNA or RNA. Using nanopore sequencing, a
single molecule of DNA or RNA can be sequenced, without the need for
amplification or chemical labeling of the sample, since the molecular is able
to change a ionic current passing through a nanopore. The details of this
approach are described in a landmark publication [36]. Basically, they used
graphene to separate two chambers containing ionic solutions and created
a protein nanopore in this thin layer. The idea is that nanopore can be
used as a trans-electrode, measuring a current flowing through the nanopore
between two chambers. The trans electrode was used to measure variations
in the current as a single molecule of DNA was passed through the nanopore.
This resulted in a characteristic electrical signal that reflected the size and
conformation of the DNA molecule.

A key advantage of such technology is that it makes the device portable,
since it reduces the work for sample preparation. Presently this task can be
accomplished in a semi-automatic way, although the company is working to
make it fully automatic [35]. Moreover, MinION produces a real-time data
streaming during the experiment. Indeed, this sequencing method has a ca-
pacity of 50-250 base pairs (bp) per second per pore [37]. Advantages of this
method are based on the clear sequencing readout using a camera instead of
noisy current methods. However, the method does require sample prepara-
tion to convert each base into an expanded binary code before sequencing.
Instead of one base being identified as it translocates through the pore, 12
bases are required to find the sequence of one base [37].

These “proprietary” raw data have to be processed before their analysis
with common Bioinformatics tools. In particular, there is the need to per-
form the base calling operation, which means interpreting the signals from
the sequencer in order to identify the genomic sequences. The device has a
declared peak throughput of 5-10 Giga base pairs (Gbp) in 48 hours, result-
ing in about the same amount of GB (1 base - 1 byte), even if the normal
throughput is of about 0.5-2.5 Gbp in the same time interval [38]. Note-
worthy, this amount of sequences can be suitable for a full metagenomic
experiment, in which we want to identify bacteria that are present also in




very small amounts and with a very good precision (i.e. to identify not only
their family and genus, but also their species and subspecies). On the other
hand, for monitoring purpose, this accuracy is usually not necessary, since
we want only to identify the presence of few specific strains. Therefore, the
dataset resulting from a monitoring experiment usually has a size of about
100 Mbp, corresponding to about 30 minutes of Minion sequencing. In both
cases it is clear that a broadband Internet connection is a key requirement
whenever this operation is not performed locally, otherwise the portability
of the device is partially impaired.

This is the reason why we investigated in [24] the use of low-power, SoC
hardware platforms to equip a device including both a MinION and a ded-
icated minicomputer. SoCs are integrated circuits, designed for the mobile
and embedded markets, composed of low power multicore processors com-
bined with all the electronic components needed for several I/O devices. In
particular, we exploited the resources of the data center of the Italian Insti-
tute for Nuclear Physics (INFN-CNAF) involved in the COSA project (COm-
puting On SoC Architecture®), an INFN initiative which aims at exploring
the possibility of a greener, cost-effective and less power hungry scientific
computing [39, 40]. We considered only x86-based hardware for metagenomic
operations, because porting applications to these platforms is straightforward
compared to other ones, i.e. ARM based, being all the dependencies already
compiled and available [41, 42, 43].

In details, we investigated the use of four Intel mini-ITX boards powered
by the C-2750 Avoton, the Xeon D-1540, the Pentium N3700 and the Pen-
tium J4205 SoC CPUs. The remarkably low Thermal Design Power (TDP) of
the boards, when declared, ranges from 6W of Intel Pentium N3700 to 45W
of the 8-cores Intel Xeon-D processor. In an “energy-aware perspective”, as
shown in Figure 1 the COSA laboratory is equipped with a DC power sup-
ply, a high-precision Tektronix DMM4050 digital multimeter connected to a
National Instruments data logging software, and a high-precision AC power
meter, which allow to measure current and further, by integration over time,
power consumptions. Table 1 provides more details about the platforms used
in the present work.

All SoCs are equipped with standard 1 Gigabit Ethernet, whereas the
Avoton and the XeonD are connected with both 1 and 10 Gigabit Ethernet

Swww.cosa-project.it




| Platform | Cores | Max GHz | TDP (W) | RAM (GB) | BOM (€) |

Avoton C2750 8 2.4 20 16 800

XeonD 1540 8 2.6 45 16 1100
Pentium N3700 4 2.4 6 16 300
Pentium J4205 4 2.6 10 16 300

Table 1: Hardware specifications of the Intel platforms of the COSA 64bit x86 cluster
hosted at INFN-CNAF in Bologna. The Bill Of Material - BOM corresponds to the
money spent to acquire each platform.

Figure 1: Pictures from the COSA laboratory, including the digital multimeter used to
measure current and power consumption, and two SoCs, respectively the Avoton C2750
and the Pentium J4205.

connections. Wireless and cellular connections are also available as pluggable
components.

3. The Metagenomic Analysis Workflow

A metagenomic analysis workflow relying on MinlON devices consists of a
variable number of operations, but the first step is in any case represented by
the aforementioned base calling. In particular MinION has been designed to
work with Metrichor, a Cloud-based software provided by Oxford Nanopore
for performing this operation [44]. This means that the raw data have to be
sent over an Internet connection for every sampling. This is the reason why
many different alternative open source base callers have been developed. In
particular, we identified Deepnano as one of the best solution [45]. In fact,
in the last release, i.e. the R9 version, Deepnano achieves results comparable
to Metrichor [46].




Most of the times, after base calling, a further operation is needed: the
bacteria identification operation, which means classifying the type of bacte-
ria, relying on the genomic sequences, and their relative abundance in the
samples. Among the available tools we selected Kraken [47]. At the core
of Kraken relies a database that contains records consisting of a k-mer an-
notated with the lowest common ancestor of all organisms whose genomes
contain that k-mer. This database, built using a user-specified library of
genomes, allows a quick lookup of the most specific node in the taxonomic
tree that can be associated with a given k-mer. Each read is classified by
querying the database for each k-mer in the sequence and then using the
resulting set of lowest common ancestor taxa to determine an appropriate
label for the read.

The results can be then managed in a domain-specific way. As stated in
the Introduction, we considered two kinds of applications:

e the triggering of alarms in case specific and dangerous bacteria are
found in the air-filter (e.g. of hospitals, food industries, and pharma-
ceutical companies) or if pollution signals reach a given threshold (e.g
of rivers, lakes, aqueducts);

e the identification and analysis of set points, through data integration
and machine learning, of the bacterial communities in soil (e.g. for
cultivations, greenhouses and animal farms), providing feedback in case
of deviations.

These two analysis services can be executed in the Cloud using one of
the IoT and data analytic platforms available. The results of the bacteria
identification operation in fact have a size of a few MB, therefore their upload
does not represent an issue.

Presently, there is an increasing number of commercial platforms (e.g.
AWS IoT, Microsoft Azure IoT, Google Cloud Platform, IBM Watson, Intel
[0T) and research projects (e.g., OpenloT, Waziup, Kaa) that can be effec-
tively exploited. They differ on many aspects as easiness of use, supported
languages, security management, available integrated solutions, performance
and cost efficiency [48]. In general, it is not possible to identify a single so-
lution that perfectly addresses the needs of applications and developers [49].
Therefore, we selected the AWS [oT platform since it is straightforward to
use and it provides a rich, integrated environment, e.g. the machine learning
platform services, that suits our requirements.
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AWS IoT is a cloud managed platform providing a publish /subscribe bro-
kering service. It offers out of the box a number of features as security and
the seamless integration with the AWS service ecosystems, like Lambda func-
tions, DynamoDB, S3 and many more. The platform basically enables the bi-
directional communication between Internet-connected things (e.g. sensors
and applications) through logical channels. The communication is based on
JSON messages addressing topics like minion/location_xy. A message broker
sends the message to all clients that have registered to receive messages for a
topic. The act of sending the message is referred to as publishing. The act of
registering to receive messages for a topic filter is referred to as subscribing.

The simplest architecture that can be implemented with AWS IoT is
composed only by things and the device gateway. In fact, an external Web
service can register to the device gateway, subscribe to all the topics defined
in the applicative scenario and manage them in an independent way, i.e. for
storing them on a proprietary repository or for taking actions as sending
alerts. Otherwise the Rules Engine has to be activated. The difference of
having a Web service subscribing a topic or the use of an action relies on the
scalability AWS can provide. Our prototype exploits the Rules Engine to
filter the messages, while the actual alarm triggering is managed through a
dedicated Web services. Also the storing of results was performed with local
resources.

This architecture is shown in Figure 2. The most demanding analysis
services in terms of compute capabilities sit on the Edge of the Cloud, while
the collection of the results of all the devices and the following application-
specific processing is performed on the Cloud. The advantage is represented
by having a scalable system in terms of the number of devices, but not in
the number of sampling performed by each single device.

In a real-world scenario, the sampling frequency in fact is likely to be
dynamically determined, e.g. whenever a critical situation arises. With
MinION we can consider to perform up to 20 sampling per day per device.
In this case the use of only one local SoC is not sufficient. Therefore three
alternative strategies are possible to perform the base calling and bacteria
identification services, namely:

e to equip the device with more compute capabilities;
e to move them on the Cloud infrastructure;

e to rely on a Fog-based solution.




These scenarios arise from the consideration that devices are likely to
have heterogeneous conditions in terms of connectivity. For example, Figure
2 shows the monitoring network for surface water in Lombardy, composed by
more than 400 stations”. Lombardy is the richest Italian department in lakes
- about 50, representing 40% of the national surface total. Moreover the over-
all length of rivers and irrigation channels reaches about 200,000 km, which
support the agricultural activities. Due to the vast urbanization of the ter-
ritory, the industrialization and the diffusion of agro-zootechnical activities,
the water resources need constant monitoring and protection measures®. The
present distribution is the result of many considerations but also constraints,
among them the access to suitable connectivity and energy supply facilities.
Therefore the adoption of an architecture and technological solutions like
those discussed here can overcome such constraints and permit to evaluate a
different positioning and an increase in the number of the monitoring station.

In the following Section we discuss some quantitative tests to evaluate
the different strategies for designing a possibly ubiquitous system for envi-
ronmental metagenomic analysis. The focus is to assess how many resources
(mainly the computational capabilities and the network bandwidth) are re-
quired to support the different scenarios, their feasibility and cost-efficiency.

4. Experimental Results

As discussed before, the sensitivity of an experiment heavily depends on
the depth of sequencing [50]. While MinION can produce in theory for a full
discovery metagenomic experiment up to 2 Gbp in 20 hours, 100 - 150 Mbp
in about 1 hour are sufficient for monitoring purpose [51]. Moreover MinION
streams the sequences as a set of files that can be processed as soon as they
are available.

The monitoring analysis represents the test case we consider hereafter.
Therefore we can figure to increase the sampling frequency up to 20 sampling
per day. This behavior can be implemented in a straightforward way by
deploying a Web service on the devices that periodically receives this value
by the Cloud-based monitoring system.

As dataset for our tests we considered a set of files, with a global size
of 100 MB, derived from the sequencing of a metagenomic experiment [52].

"http://www.arpalombardia.it/sites/arpalombardia2013/RSA /Pagine/tematismo.aspx?p1=2145
8http://www.lambrovivo.eu/?page_id=17
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Figure 2: The architecture of the system for metagenomic analysis based on MinION +
SoC devices and possible applicative scenarios.

10




They are processed by Deepnano, that produces the same amount of files,
with a global size of 4.6 MB in the FASTA format, to be processed by Kraken.
The final result is represented by 790 tuples, with a global size of 3.2 MB.

Table 2 shows the amount of bases per second that the considered SoCs
can process for Deepnano and Kraken, in case a single core or all the avail-
able cores are used. In this respect, it is to note that, given multithreading
is currently not supported, Deepnano has been executed in a data-parallel
way by splitting the dataset and running independent instances of the ap-
plication, one for each core available in the SoC. Moreover, the analysis of
which bacteria are present and in which amount has been performed with
the MiniKraken version, supplied specifically for low-memory computing en-
vironments. Kraken in fact requires at least 75 GB to hold its database in
RAM. MiniKraken instead uses a reduced version of the database because it
considers only the relevant k-mers in a sequence to get the correct classifica-
tion, a procedure which does not invalidate the analysis.

DEEPNANO [bps] KRAKEN [bps]
1 core ‘ All cores 1 core ‘ All cores

| XeonD | 367.9 | 1801.9 | 2.4 *10%|9.9 * 10° |
| Avoton | 152.85 | 12253 | 1.1 *10% | 4.0 * 10° |
| N3700 | 2165 |  609.9 | 0.9 * 10° | 1.9 * 10° |
| J4205 | 1111|2375 | 1.4%10° |29 * 10° |

Table 2: Bases processed per second by Deepnano and Kraken for the different low-power
architectures considered in this work, using one or all the available cores.

If interested in one sampling per day for monitoring purposes, i.e. in
processing 100 - 150 Mbp, the results in Table 2 show that only the XeonD
and Avoton are able to process it, whereas for the other tested platforms
there is the need to consider 2-5 boards in order to get results in time. To
provide a comparison figure, the Xeon E5-2683 v3 CPU (14 Cores, 3.0 GHz
Max, TDP 120W, BOM 3000 €), used in a High Performance Computing
(HPC) cluster representing the reference for the COSA project, is able to
process about 86 Mbp per day with a single core and up to 1.2 Gigabases
using all its 14 physical cores. Considering the energy consumption, a single
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analysis requires 1.9 MJoule with the XeonD, 2 MJ with the Avoton and
18.8 MJ with the Xeon E5.
When more than a sampling per day is performed, the use of only the

local, single SoC CPU is not sufficient. Therefore we can either equip the
device with more SoC CPUs or equip the device with HPC CPUs.

Using more SoC' CPUs

We have to equip the device with 14 XeonD or 20 Avoton CPUs in order
to be able to support the highest rate of 20 sampling per day. This solution
is however the worst because:

1. the cost: considering the price of each SoC platform, each device will
cost more than 14,000 €;

2. the usage of resources: most of the time, only one SoC CPU will be
active because a single analysis will be performed;

3. the power consumption: about 27 MJ per day are necessary to operate
all the SoCs;

4. the size of the resulting device: a box containing 14 mini-ITX mother-
boards (15 cm size each) resembles about the size of four shoeboxes.

Using HPC CPUs

In this scenario, we have to equip the device with 2 Xeon E5-2683, able
to process the 2 Gbases resulting from the highest sampling frequency. This
solution is suitable only for not battery-powered devices, because a single
day of analysis requires about 380 MJ. However this solution has a lower
cost with respect to the previous one, i.e. 6,000 €, even if also in this case
the CPUs are underutilized for most of the time.

In general, both these solutions are not sufficiently cost-effective, thus
we can conclude that when more than one analysis per day is required it is
better to move the analysis services closer to the center of the Cloud.

Using Cloud computing services

The key issue of moving all the computational services on the Cloud when
the sampling frequency is more than one is represented by the size of the data
to be sent over a wired or wireless connection. The main advantage of the
SoC-equipped device is in fact represented by the reduction of the data to
be transferred from 100 down to 5 MB. We experimented the use of several

12




Avoton XeonD Resulting

Tool | Exec. time (s) | Exec. time (s) | Size (MB)

| gzip | 6.9 | 44 | 92.9 |
| bzip2 | 33.7 | 17.6 | 92.6 |
| oxz | 62.2 | 37.2 | 91.6 |
| pigz | 0.9 | 0.7 | 93.1 |
| phzip2 | 5.9 | 2.5 | 92.6 |
| pxz | 15.1 | 9.7 | 91.7 |
| Tz | 9.3 | 4.9 | 92.4 |

Table 3: Execution times, in seconds, and resulting size of compressed data, considering
a set of files of 100 MB. While gzip, bzip and xz are sequential programs, the others can
be run as multithreaded applications.

compression algorithms, both sequential and parallel. However they are not
able to reduce considerably the size, as shown in Table 3.

This means that the device should be able to use a wired or wireless
connection providing at least 215 Kbps in uplink of actual user data in order
to be able to send the best result, 91.7 MB, in about one hour, i.e. when
the next sampling result is available. In fact, the possibility to send 91.7 MB
implies a bandwidth of at least 26 Kilo Byte per second, i.e. 208 Kilo bit
per second. While this number is not an issue with wired and broadband
wireless connections, the availability of only 2.5/3G technologies (i.e. GPRS)
represents a major limit. GPRS connections can offer in fact as little as 20
Kbps. The theoretical limit of 171 Kbps is never realized on modern networks
- 50 Kbps download and 25Kbps upload is the typical data transfer rate
available. Also the 3G-UMTS networks do not offer a sufficient bandwidth,
i.e. 384 Kbps download and 64 Kbps upload. In the latter case, however, it
is possible to implement multiple data streams using multiple SIM cards and
antennas, as it is a common solution for video streaming.

The power consumption of sending the data is rather negligible: most
of the wired/wireless cards requires in fact 1 J. Hence, about 3.6 kJ are
necessary to send a single analysis, and 72 kJ for a single day. In case of
mains powered devices is also possible to use the powerline networking, thus
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reducing the consumption to a negligible value.
Therefore this solution is the best one for devices under the coverage of
high-speed networks.

Using Fog computing services

This last solution represents a middle ground among the previous ones,
and it consists of providing a computational node on the LAN represented
by a set of N devices following the Fog computing paradigm [53, 54]. For
example it is possible to exploit portable datacenters? when critical situations
occur.

An important aspect for the cost-effectiveness is a careful evaluation of
the compute capability of the node, by considering the probability that M <
N devices are running analysis at a time at the full speed. The advantages
of such solution can be summarized as follows:

1. the cost and the usage: only 2M Xeon CPUs are necessary with respect
to the 2N required by local solutions, with a cost of 6,000*M instead
of 6,000 * N;

2. the possibility to deploy the node only when and where it is necessary.

Furthermore, the transmission time does not represent an issue any more
because an ad-hoc network can be provided [55, 56, 57, 58] for the heavy
communication among the devices and the node, keeping low the size of the
final results to be sent from the node over the Internet connection. Other
solutions relying on long-range wifi infrastructures [59, 60, 61] are possible.

This last strategy therefore represents the best one for battery-powered
devices under the coverage of low-bandwidth networks.

5. Conclusion and Future Development

Metagenomic studies are becoming increasingly widespread, yielding im-
portant insights into microbial communities covering diverse environments
from terrestrial to aquatic ecosystems. With the advent of high-throughput
sequencing platforms, the use of large scale shotgun sequencing approaches
is now commonplace.

9https://www.ibm.com/us-en/marketplace/prefabricated-modular-data-center
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In a previous work we discussed an architecture and the performance of
a prototype based on low-power Systems-On-Chip for metagenomic analysis
able to support a fixed number of routinely analysis per day. In this paper we
presented an evolution of such architecture, which supports the possibility to
dynamically increase or decrease the sampling rate when critical situations
occur.

We analyzed four different strategies and we concluded that, while the
previous architecture is an effective solution when a single analysis per device
is performed every day, the best solution when the frequency increases -
considering both cost and performance - is to “move” computational services
from the Edge to the Fog or Cloud infrastructures, depending on the available
Internet connection.

We plan to extend this work in two ways. First, we will analyse the use
of ad-hoc/long-range wifi networks for deploying wider distributed system
relying on the Fog computing paradigm.

Second, we will design more complex data integration systems, to aggre-
gate results from different devices, and machine-learning approaches, in order
to identify some set points in the microbial composition providing optimal
results in the farm/industrial production, for example in milk productions
or smart agriculture. Our prototype in fact represents a solution addressing
the problem of managing networks of IoT devices producing large datasets
before sending data on a Cloud environment using possibly low-bandwidth
networks. Once the data have been transferred, it is possible to develop a
specific solution, calibrated ad hoc for each considered scenario, with the aim
to provide feedback information to maintain the identified set points on the
long period.
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Portable sequencing machines can be used for monitoring the microbioma in different
environments

Low-power devices can be used to analyze sequencing data in real-time on the field

Cloud loT platforms can be used to trigger alarms (rules) or to identify set points (data
analytics)

A proper coupling of Edge and Cloud computing is necessary in real-world scenario, where the
sampling frequency is dynamically determined
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