
Expert Systems With Applications 115 (2019) 1–15 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Subjective data arrangement using clustering techniques for training 

expert systems 

Isaac Martín de Diego 

a , ∗, Oscar S. Siordia 

b , Alberto Fernández-Isabel a , Cristina Conde 

a , 
Enrique Cabello 

a 

a Face Recognition and Artificial Vision Group, Data Science Laboratory, Rey Juan Carlos University, c/ Tulipán, s/n, 28933, Móstoles, Spain 
b Centro de Investigación en Ciencias de Información Geoespacial (CentroGeo), Laboratorio Nacional de Inteligencia (GeoInt), Parque Científico Tecnológico 

Yucatán (PCTY), México 

a r t i c l e i n f o 

Article history: 

Received 27 April 2018 

Revised 2 July 2018 

Accepted 29 July 2018 

Available online 31 July 2018 

Keywords: 

Subjective sequential data 

Subjective data arrangement 

Combination of similarities 

Driving risk assessment 

Driving risk prediction 

a b s t r a c t 

The evaluation of subjective data is a very demanding task. The classification of the information gath- 

ered from human evaluators and the possible high noise levels introduced are ones of the most difficult 

issues to deal with. This situation leads to adopt individuals who can be considered as experts in the 

specific application domain. Thus, the development of Expert Systems (ES) that consider the opinion of 

these individuals have been appeared to mitigate the problem. In this work an original methodology for 

the selection of subjective sequential data for the training of ES is presented. The system is based on 

the arrangement of knowledge acquired from a group of human experts. An original similarity measure 

between the subjective evaluations is proposed. Homogeneous groups of experts are produced using this 

similarity through a clustering algorithm. The methodology was applied to a practical case of the Intel- 

ligent Transportation Systems (ITS) domain for the training of ES for driving risk prediction. The results 

confirm the relevance of selecting homogeneous information (grouping similar opinions) when generating 

a ground truth (a reliable signal) for the training of ES. Further, the results show the need of consider- 

ing subjective sequential data when working with phenomena where a set of rules could not be easily 

learned from human experts, such as risk assessment. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The practice of Knowledge Engineering ( Van Do, Le Thi, &

guyen, 2018 ) has become a very useful approach to solve complex

roblems that require a high level of human expertise. This disci-

line involves integrating knowledge into computer systems which

mulates the decision-making ability of a human expert in a spe-

ific domain. The systems in charge of achieving these tasks are

he Expert Systems (ES) ( Agarwal & Goel, 2014 ). 

The building, maintaining and development of ES ( Djamal et al.,

017 ) are mainly based on the interaction between the knowledge

ngineer and the domain expert ( Yau & Sattar, 1994 ). The devel-
∗ Corresponding author. 

E-mail addresses: isaac.martin@urjc.es (I. Martín de Diego), 

scar.sanchez@centrogeo.edu.mx (O.S. Siordia), alberto.fernandez.isabel@urjc.es 

A. Fernández-Isabel), cristina.conde@urjc.es (C. Conde), enrique.cabello@urjc.es (E. 

abello). 

URL: http://www.frav.es , http://www.datasciencelab.es (I. Martín de 

iego), http://www.frav.es , http://www.datasciencelab.es (A. Fernández-Isabel), 

ttp://www.frav.es , http://www.datasciencelab.es (C. Conde), http://www.frav.es , 

ttp://www.datasciencelab.es (E. Cabello) 

 

k  

o  

f  

p  

b  

(

 

ttps://doi.org/10.1016/j.eswa.2018.07.058 

957-4174/© 2018 Elsevier Ltd. All rights reserved. 
pment of a reliable ES requires a deep understanding and a good

epresentation of the knowledge of the domain expert. 

In most of the cases, the knowledge representation is based on

 set of rules (a production system) that ease the explanation of

he decision-making made by the inference engine ( Wick & Sla-

le, 1989 ). These rules are build from the knowledge acquired from

uman experts with the application of Machine Learning tech-

iques (such as Neural Networks ( Lin & Zhang, 2012 ), Deep Learn-

ng ( Wei, He, Chen, Zhou, & Tang, 2017 ), Decision Trees ( Sriram

 Yuan, 2012 ), Fuzzy Logic ( Wang, Lee, & Ho, 2007 ), Bayesian

ethods ( WenBin, XiaoLing, YiJun, & Yu, 2010 ), Genetic Algorithms

 Daza et al., 2011 ), among others). 

Knowledge acquisition is a process which aims to extract

nowledge, experience and problem-solving procedures from one

r more domain experts. Several techniques have been proposed

or a correct knowledge acquisition (see Hua, 2008 for a com-

lete review). Nevertheless, there are several problems that must

e considered when acquiring knowledge from human experts

 Gaines, 1987 ): 

• Experts may not be able to express their knowledge in a struc-

tured way. 
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• Experts may not be aware of the significance of the knowledge

they have used. 
• The expressed knowledge may be irrelevant, incomplete or not

understandable. 

In some cases, depending on the field of application, it may

be easier to extract the knowledge from human experts through a

continuous scale. This is the case of the risk assessment, where the

knowledge could be acquired in a predefined scale (e.g. from 0, no

risk, to 100, maximum risk). Here, the knowledge of the experts

is gathered in form of subjective sequential data ( Prelec, 2004 )

and could be treated as time series for its study and integration

(see, for instance, de Diego, Crespo, Siordia, Conde, & Cabello, 2011;

de Diego, Siordia, Conde, & Cabello, 2011; Siordia, de Diego, Conde,

& Cabello, 2011a ). 

However, the integration of several opinions into a unique

ground truth (i.e. a reliable signal) is a hard-to-achieve task ( Liou

& Nunamaker, 1990 ). Two different scenarios appear. The con-

sideration of knowledge from too few experts could provide a

ground truth with insufficient information. In contrast, the con-

sideration of knowledge from too many experts could generate a

noisy ground truth due to the appearance of possible contradic-

tions between their evaluations ( Turban, 1991 ). Different statisti-

cal approaches have been proposed in the past (see, for instance,

meta-analysis methods in Brockwell & Gordon (2001) ). 

In this paper, it is presented a novel methodology for the se-

lection of subjective sequential data for the training of ES. This

methodology upgrades the previous approaches in the domain

( Siordia, de Diego, Conde, & Cabello, 2014 ) focusing on the in-

clusion of more experts. This increment of sources of informa-

tion leads to produce heterogeneous and noisy evaluations that

have to be arranged. A novel definition of similarity between ex-

perts’ evaluations will be firstly presented here. In addition, in

the previous method, the agreement between two or more eval-

uations was enough to define a unique ground truth. However,

in the present paper, all the homogeneous evaluations will be

used. 

Delving into the main idea behind, the methodology consists of

the arrangement of a set of evaluations acquired from human ex-

perts through a hierarchical clustering technique. In this way, sim-

ilarities between the evaluations of experts could be identified and

grouped together, filtering the contradictions. The resulting groups

(clusters) could be analyzed in order to select the most appro-

priate ground truth labels ( Healey, 2011 ) for the training of the

ES. 

The proposed methodology is a general purpose approach. Thus,

it can be used in several domains where different human opin-

ions should be managed. In this paper, the methodology is ap-

plied to a practical case on the Intelligent Transportation Sys-

tems (ITS) domain ( Alam, Ferreira, & Fonseca, 2016 ). It is focused

on the characterization of risky or safe situations for the driving

task. 

Regarding the experiments, three different have been consid-

ered to illustrate the performance of the approach. First, an exper-

iment has been developed using synthetic data for demonstrative

purposes. The other experiments are based on the practical case

presented above. Thus, they have been achieved using real driving

risk evaluations made by experts from urban and interurban sce-

narios respectively. 

The paper is organized as follows: Section 2 situates the ap-

proach in the domain. Section 3 introduces the proposed method-

ology, explaining in detail the similarity measures to evaluate sub-

jective sequential data. Section 4 describes the practical case where

the approach has been applied. Section 5 presents the achieved ex-

periments and their most relevant results. Finally, Section 6 con-

cludes and provides future lines of work. 
. Related work 

The ES have been widely used for multiple purposes

 Wagner, 2017 ). They are systems that are able to exhibit features

ssociated with human intelligence (e.g. problem solving or rea-

oning) ( Hodson, 2018 ). They have a common architecture based

n two main modules: a domain dependent knowledge database

nd the inference mechanism. Examples of them are Attwell, Leask,

eyer, Rokkas, and Ward (2017) or Meza-Palacios et al. (2017) . 

The architecture of the ES presented here comprehends both

odules. The knowledge base is acquired from traffic experts that

valuate the behavior of drivers, while the inference mechanism

s built applying similarity measures and unsupervised learning

echniques. 

Delving into these unsupervised learning techniques, clustering

see, for instance, Aggarwal, 2015 ) is an initial and fundamental

tep in data analysis. It has as a main goal to reveal a natural par-

ition of data into a number of meaningful subclasses or clusters.

lustering of sequential data differs from clustering of static fea-

ure data mainly in how to compute the similarity between two

ata objects. 

In the presented approach, Agnes clustering algorithm has

een selected. It is an agglomerative hierarchical clustering

echnique that provides real-time updating (see Kaufman &

ousseeuw, 2009 for a complete description). 

Regarding the characteristics of subjective sequential data

where sudden changes occur and where the key information is

iven by its trend), it is appropriated a piecewise representation

f the data. Thus, a variety of algorithms to obtain a proper linear

epresentation of sequential data have been proposed in the litera-

ure (see, for instance, Keogh, Chu, Hart, & Pazzani, 2004; Lachaud,

ialard, & De Vieilleville, 2005; Zhu, Wu, & Li, 2007 ) 

Focusing on driving risk situations, there are multiple exam-

les of their characterization through the analysis of data collected

n driving sessions. These approaches are usually focused on the

tudy of the drivers behavior and how their acts affect to the driv-

ng task. For instance, Cheng, Park, and Trivedi (2007) introduces

n approach based on multi-perspective (several cameras record-

ng the driver) in order to analyze the different body movements

mainly head and hands). In the case of Malta, Miyajima, Kitaoka,

nd Takeda (2011) , it is oriented to identify the frustration and the

ifferent emotions of the driver and how these emotions affect to

he driving task. These systems are related to the approach pre-

ented in this paper. Both examples use cameras to identify the

ovements of the driver, though in our case the face expressions

re not considered. 

Other studies have their key topic in learning from specific

isk situations identifying patterns. For example, Wang, Zhu, and

ong (2010) has as a main purpose to infer the safe or danger-

us actions achieved by drivers using time series and unsupervised

earning. In this case, the presented approach could be considered

s one of this type of systems. 

There are similar approaches that evaluate specific tasks of

he driver and not only the hands or the facial expressions.

he pressures exerted on the break and throttle pedals are

lso interesting parameters to evaluate. Examples of these are

athyanarayana, Boyraz, and Hansen (2008) , that is oriented to

oute paths recognition and Rakha, El-Shawarby, and Setti (2007) ,

hich addresses the behavior of driver in intersections. 

Delving into the behavior of drivers, multiple theoretical mod-

ls have been developed. They can be classified into: taxonomic

odels and functional models. The firsts usually produce descrip-

ive classifications of certain elements of traffic based on a con-

ext. They can be decomposed into features-based models ( Bone

 Mowen, 2006 ) and task-analysis models ( Fastenmeier & Gstal-

er, 2007 ). The second ones can be organized into mechanical
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Fig. 1. Comparison among schemes of the basic methodology and the methodology 

proposed in this work. 
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odels, adaptive control models and cognitive models. Mechani-

al models (see, for instance ( Greenberg, 1959 )) are based on the

epresentation of the mutual influences among individuals. Cogni-

ive models (see, for example MacAdam, 1981 ) collect information

rom the external environment (e.g. traffic signals or the presence

f a vehicle), and produce the outputs that determine the behavior

f the element according to it. Cognitive models (see, for instance

ia, 2002 ) use cognitive entities (usually intelligent agents) in or-

er to emulate the complex behaviors of drivers. 

These theoretical models have provided support to the practical

ase presented (see Section 4 ). Nevertheless, they are not included

n the development of the approach due to the subjectivity of the

raffic domain. Instead, traffic experts were selected to evaluate the

rivers’ behavior. 

. Methodology 

The rules of the production system of an ES are usually

chieved with an experimental ground truth generated at the ex-

eriment design step (see Fig. 1 (a)). This experimental ground

ruth (i.e. a reliable signal) is usually build through interviews, pro-

ess or concept mapping, commentating, card sorting, tables, or

ranscriptions ( Hua, 2008 ). 

However, depending on the requirements of the field of appli-

ation, it may be mandatory the inclusion of subjective sequential

ata acquired from human experts’ opinions. And as it was already

entioned, when working with subjective sequential data, it is

ossible to obtain noisy information due to contradictions among

he acquired evaluations. 

This leads to develop a methodology for the arrangement and

election of subjective sequential data acquired from a group of

uman experts (see Fig. 1 (b)). First, the knowledge from human

xperts is acquired through an analog evaluation. Next, the experts’

nowledge is represented in a proper set of features as subjective

equential data. Once the feature from each expert are defined, a

lustering technique is applied in order to group the experts into

omogeneous groups. Thus, a set of k clusters is obtained, each of

hem representing different experts evaluations. Finally, different

rediction models are trained and tested in each cluster. 

Therefore, the main idea behind the proposed methodology is

he arrangement of subjective sequential data into groups in accor-

ance to the opinions provided by the experts through a hierarchi-

al clustering technique. For that purpose, a linear representation

f the main trend of the sequential data is used. 

However, special considerations must be taken into account

hen selecting the cut points where a linear model will be fit-

ed. In this case, it has been used a linear segmentation algorithm

ased on the search of feature points where extreme changes on

he data trend are produced. This method has been called Trend

egmentation Algorithm (TSA). 

Summed up briefly, the TSA algorithm is as follows. The input

f the algorithm is the evaluations made by the experts. A num-

er of feature points are selected and linear regressions for each

air of consecutive points (a segment) are fitted. For each segment,

f the regression error is high, the segment is divided. Otherwise,

he points are stored as final points. The output of TSA is the op-

imal linear representation of the input evaluation achieved as a

rade-off between the global error and the complexity of the repre- 

entation (number of generated segments). A complete description

f TSA can be seen in Siordia et al. (2011a) and Siordia, de Diego,

onde, and Cabello (2011b) . 

Regarding the hierarchical clustering algorithm applied, Agnes ,

n agglomerative nesting technique is selected ( Guerraz et al.,

010 ). It uses a bottom-up approach. Thus, it is useful for the ap-

roach presented, as it provides real-time updating. Each obser-

ation starts in its own cluster. Then, clusters are merged until
nly one large cluster remains which contains all the observations.

t each stage the two nearest clusters are combined to form one

arger cluster. 

A similarity measure between the linear representation of the

ata is calculated. In order to achieve it, two different and comple-

entary similarity measures are used ( Siordia et al., 2011b ) and an

riginal method to combine then based on clustering is proposed.

ext sections explain them in detail. 

.1. Similarity definitions 

Given a pair of aligned linearized evaluations ( f i , f j ), it is possi-

le to define a set of similarity measures taking advantage of the

haracteristics of the linear representation proposed by the TSA. In

his work, two similarity measures have been proposed. They are
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Fig. 2. Similarities between two sections of two segmented sequential series, where 

t (1) < t (2) < t (3) are three consecutive points (instants of time) selected by the TSA 

algorithm. 
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based on the difference of levels (i.e. Level Similarity ) and angles

between the linear regression lines obtained from the linearized

evaluations (i.e. Angle Similarity ). In addition, a new similarity mea-

sure from the combination of them is also proposed. 

Section 3.1.1 introduces the Level Similarity . Section

3.1.2 presents the Angle Similarity . Finally, Section 3.1.3 describes

the new proposed similarity measure based on the combination of

the two previous similarities and the clustering results. 

3.1.1. Level similarity 

Let k = [ t (initial) , t ( f inal) ] be a common section defined for the

linearized sequential data f i and f j . The width of the section is de-

fined by w (k ) = t ( f inal) − t (initial) . Let ˆ Y i = β0 i + xβ1 i and 

ˆ Y j = β0 j +
xβ1 j be the regression lines fitted in the section k of f i and f j , re-

spectively. The Level Similarity is based on the mean levels of the

regression lines ˆ Y i and 

ˆ Y j over the section k (see Fig. 2 (a)). 

Let d the distance of the mean levels of the regression lines ˆ Y i 
and 

ˆ Y j calculated as: 

d = 

∣∣∣∣(β0 i + 

w (k ) 

2 

β1 i ) − (β0 j + 

w (k ) 

2 

β1 j ) 

∣∣∣∣
= 

∣∣∣∣(β0 i − β0 j ) + 

w (k ) 

2 

(β1 i − β1 j ) 

∣∣∣∣ . (1)

The Level Similarity calculated in section k is obtained as

ollows: 

 L (k ) = 1 − d 

max (d) 
, (2)

here max ( d ) is the maximum possible distance between the

ean levels. Notice that for a set of evaluations ranging in [0, 100],

he maximum possible distance is 100. Thus, s L ( k ) is in [0,1]. 

The overall Level Similarity for f i and f j is calculated as the

eighted sum of all the sectional similarities as follows: 

 L ( f i , f j ) = 

∑ K 
k =1 w (k ) s L (k ) ∑ K 

k =1 w (k ) 
. (3)

.1.2. Angle similarity 

The Angle Similarity considers the angle between the regression

ines defined in sections k = 1 , . . . , K. Let β1 i and β1 j be the slopes

f the regression lines ˆ Y i and 

ˆ Y j , respectively (see Fig. 2 (b)). The

ngle between the regression lines is calculated as: 

= atan (| β1 i − β1 j | ) . (4)

The Angle Similarity in section k , denoted by s A ( k ), is obtained

s: 

 A (k ) = 1 − θ

θ̆k 

, (5)

here the worst angle θ̆k is calculated as the maximum possible

hange in section k : 

k̆ = atan 

∣∣∣∣
2 max (d) 

w (k ) 

∣∣∣∣ . (6)

Notice that s A ( k ) is in [0,1]. 

The overall Angle Similarity for the linearized sequential data f i 
nd f j is calculated as the weighted sum of all the sectional simi-

arities as follows: 

 A ( f i , f j ) = 

∑ K 
k =1 w (k ) s A (k ) ∑ K 

k =1 w (k ) 
. (7)

.1.3. Clustering similarity 

In de Diego, Muñoz, and Moguerza (2010) , the Pick-out method

s used to fuse information from several feature representations

mploying label information for classification task. The input of the

ethod are two similarity measures between two different points

n a training data set. When the two points belong to the same

lass (they have the same label), the final similarity is defined as

he maximum of the two original ones. When the two points be-

ong to different classes (they have different labels), the final sim-

larity is defined as the minimum of the two original ones. The

ame idea is here proposed to combine the Level Similarity and the

ngle Similarity for clustering. 

First, the Level Similarity and the Angle Similarity are used in two

ifferent and independent cluster analysis. Let C L ( f i , f j ) = 1 if the

inearized sequential data f i and f j are grouped in the same cluster

hen the Level Similarity S L is used, and C L ( f i , f j ) = 0 otherwise. In

he same way, let C A ( f i , f j ) = 1 if the linearized sequential data f i
nd f j are grouped in the same cluster when the Angle Similarity S A 
s used, and C A ( f i , f j ) = 0 otherwise. 

As the Level Similarity and the Angle Similarity have been devel-

ped to collect different characteristics of the data, we propose to
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Fig. 3. Synthetic data: sines and cosines with random bias and amplitude. 
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Fig. 4. Clusters of the synthetic data (Dendrograms). 
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max (S L ( f i , f j ) , S A ( f i , f j )) , if C L ( f i , f j ) = C A ( f i , f j ) = 1 , 

S L ( f i , f j ) + S A ( f i , f j ) 

2 

, if C L ( f i , f j ) � = C A ( f i , f j ) , 

min (S L ( f i , f j ) , S A ( f i , f j )) , if C L ( f i , f j ) = C A ( f i , f j ) = 0 . 

(8) 

Thus, if f i and f j are grouped in the same class when both sim-

larities are used, it is guaranteed that S C ( f i , f j ) will be the largest

ossible according to the available information. 

In addition, if f i and f j are grouped in different classes when

oth similarities are used, it is guaranteed that S C ( f i , f j ) will be the

owest possible according to the available information. 

Further, if f i and f j are grouped in the same or in different

lasses according to the similarity used, the average of the two

imilarities is considered. Hence, as the original Pick-out method

for classification tasks), the proposed similarity tends to move

loser those sequential data belonging to the same group, and

ends to separate points belonging to different groups. 

.2. Synthetic example 

In order to illustrate the proposed methodology, an experiment

ith synthetic data is presented. A set of 30 random series of a

umerical variable x were generated from 0 to 180 seconds: 

• 10 sines with bias from 50 to 90 and amplitude from 5 to 10

(top-sines). 
• 10 cosines with bias from 50 to 90 and amplitude from 5 to 10

(cosines). 
• 10 sines with bias from 10 to 50 and amplitude from 5 to 10

(bottom-sines). 

Thus, the most difficult cases when working with subjective

ata have been considered: conflictive opinions (sines and cosines)

nd conflictive level (top-sines and bottom-sines). Fig. 3 shows

he 30 series generated for this example. Following the proposed

ethodology, the TSA algorithm has been applied to all the data in

rder to transform the original information into proper linear rep-

esentations. Then, both the Level Similarity and the Angle Similarity

re calculated. Fig. 4 shows a dendrogram of the arrangement pro-

uced by the Agnes clustering technique using the Level Similarity ,

he Angle Similarity , and the Clustering Similarity . 

For the Level Similarity , two main groups have been clearly

dentified by its level. In the first one, the series generated with

 bias from 50 to 90 (top-sines and cosines) are grouped together.

he mean of the series belonging to this group is shown in a black
ine in Fig. 5 (a). The standard deviation of this group is shown as

 black shadow behind the mean line. In the second group, the se-

ies generated with a bias from 10 to 50 formed a second group

bottom-sines). The mean and standard deviation of the series be-

onging to this second group are shown in red in the same figure

see Fig. 5 (a)). 

In the same way, two main groups have been clearly identified

y the Angle Similarity . The first group, formed by all the generated

osines, is shown in black in Fig. 5 (b). The second group, formed
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Fig. 5. Clusters of the synthetic data (Series). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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by all the generated sines (top-sines and bottom-sines) is shown in

red in the same figure. In this case the series have been grouped

by its behavior (sines and cosines). 

Finally, for the Clustering Similarity three main groups were

identified. The mean and standard deviation of each group are

shown on Fig. 5 (c). In this case, the top-sines (shown in red),

bottom-sines (shown in green), and cosines (shown in black) were

pooled in individual groups. 

In all the cases, the arrangements produced by the cluster anal-

ysis shows the properties of each of the proposed similarities. The

Level Similarity was able to separate the data by its level. Also,

the Angle Similarity was able to separate the data by its behav-

ior. Further, the Clustering Similarity (as a proper combination of

both similarities) was able to separate the synthetic data in each of

the three simulated groups, separating data with conflictive angles

(sines and cosines) and conflictive levels (top-sines and bottom-

sines). 

4. Practical case 

The study of driver’s behavior has become a topic of interest in

the last years for the ITS domain ( Kircher & Ahlström, 2009 ). It has

been estimated that 25 − 50% of all vehicle crashes are caused by

human factors ( Ranney, Mazzae, Garrott, & Goodman, 20 0 0; Wang,

Knipling, Goodman et al., 1996 ). 

CABINTEC (Intelligent cabin truck for road transport) is a

project focused on the study of human factors for the improve-

ment of traffic safety ( Brazalez, Ares, & Matey, 2006 ). The key idea

of this project is the development of an ES to provide assistance

to drivers (see de Diego, Crespo et al., 2011 for a complete de-

scription). Thus, the main task of the system consists of the timely

notification of imminent risky situations. It uses a buffered risk

model to penalize inappropriate driver’s behavior (activators) and

to praise correct driver’s behavior (inhibitors) with a set of rules. 

However, the characterization of risky or safe situations for the

driving task is hard to achieve due to its subjective entity and

the great number of factors involved ( Schneider & Kiesler, 2005;

Siordia, de Diego, Conde, Reyes, & Cabello, 2010; Zhang, Schreiner,

Zhang, & Torkkola, 2007 ). One of the most common problems re-

lated to the development of driving risk detection systems is the

absence of a reliable risk signal (i.e. a driving risk ground truth)

against which they could be compared and evaluated ( Kircher &

Ahlström, 2009 ). 

The proposed methodology fits properly in this context. It al-

lows to analyze and select subjective sequential data acquired from

human experts in order to generate a reliable driving risk ground

truth for the training of automatic risk detection systems. 

Section 4.1 describes the data gathering step focusing on the

tools and techniques used. Section 4.2 introduces the knowledge
cquisition step where the human experts evaluate the data previ-

usly collected. Finally, Section 4.3 presents the cluster analysis. 

.1. Database acquisition 

The database used in this practical case has been collected from

 set of driving sessions executed by a professional driver using a

ruck simulator. This simulator is located at the Centre of Stud-

es and Technical Research of Gipuzkoa (Centro de Estudios e In-

estigaciones Técnicas de Gipuzkoa (CEIT)). It presents a real truck

ockpit mounted over a Gough–Stewart platform ( Zakaria, Abdel-

oneim, Abdin, Hafez, & Darwish, 2017 ) to provide a natural driv-

ng sensation (see Fig. 6 (a)). Furthermore, the driver’s visual field

s covered by a detailed simulated 3D scene using rear projection

nto three independent screens (left, center and right). 

The data acquisition process was performed during four driving

essions using two different scenarios: urban and interurban. Each

riving session had a length between 3 and 5 minutes. The first

riving session recorded in each scenario will be used for training

urposes in the experiments. The second driving session of each

cenario will be used for testing purposes in the experiments. 

The three basic elements of traffic safety: driver, road and ve-

icle have been covered on the recording of the driving sessions.

ata registers of the vehicle dynamics and road characteristics

ave been obtained from the simulator. Table 1 shows a brief de-

cription of the vehicle and road variables. 

Visual information has been obtained from two video sources:

equences of the driver’s top view (see Fig. 6 (b)) and sequences of

he simulator central screen, which presents the main view of the

oad to the driver (see Fig. 6 (c)). Both scenarios involved real traffic

nd interactions with other vehicles. 

Further, in order to induce risky situations, a set of tasks have

een designed on the laboratory to be executed by the driver at

pecific time periods (i.e. the driver follows a set of predefined

uidelines). Fig. 7 shows the time periods where the risky situa-

ions were induced along the driving sessions. 

In this kind of experiments, the driver behavior is usually la-

eled through a binary signal in accordance to these planned time

eriods. Thus, a binary label is defined: risk behavior vs. safe be-

avior. Instances of the first one are impaired driving, non use

f seat belts, speeding, following too closely or traffic violations

 Simons-Morton, Lerner, & Singer, 2005 ). Instances of the second

ould be the opposite ones (e.g. drivers respect the traffic norma-

ive and their aggressiveness levels are low). 

However, as shown in Siordia et al. (2011a) and de Diego, Sior-

ia, Conde, and Cabello (2012) , this binary experimental risk signal

oes not provide enough information about the quantitative real

isk that the driver is taking at each moment. Risk perception is

ubjective ( Sjöberg, Moen, & Rundmo, 2004 ) and it is also related

o the skills of the driver. Thus, these skills could lead into a good
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Fig. 6. Simulator used on the acquisition process and samples of visual information acquired. 

Table 1 

Variables acquired during the driving sessions recorded on the truck simulator. 

Variable Description 

HANDS POSITION Number of hands on the steering wheel (a) and on the gear stick (b) coded as “a-b”

ELAPSED TIME Time elapsed from the start of the simulation and the current instant. 

LANE INVASION Establishes whether the vehicle is invading the opposite lane. 

SPEED LIMIT Establishes whether the vehicle speed is higher than the speed limit of the road. 

BRAKE PEDAL Percentage of pressure applied to the brake pedal. 

BRAKING First derivative of the pressure in the brake pedal. 

ACCELERATOR PEDAL Percentage of pressure applied to the accelerator pedal. 

ACCELERATION First derivative of the pressure in the accelerator pedal. 

SECURITY DISTANCE Distance between the desired vehicle and the next vehicle in the simulation. 

SPEED Instantaneous speed of the desired vehicle. 

STEERING WHEEL Instantaneous angle of the steering wheel. 

LINEARITY First derivative of the steering wheel angle. 

HEADING ERROR Difference between the actual heading and the desired road heading. 

LATERAL POSITION Distance between the desired vehicle center and the road center. 

ROAD SLOPE Slope of the road. 

Fig. 7. Time periods were the risky situations were induced along the four driving sessions. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 8. Graphical User Interface of the Virtual Co driver tool. 
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driving task during the induced risky situations. On the other side,

the driver could generate unexpected risky situations related to the

decision making. Therefore, the risk level must depend on the per-

formance of the driving task. Also, the driving risk should not be

assessed with only a binary value but the assessment of human

experts is needed to produce a driving risk ground truth. 

4.2. Knowledge acquisition 

In order to generate a proper ground truth for the development

of a driving risk detection system, a group of traffic safety experts

have evaluated the driving risk in each driving session. All the traf-

fic safety experts are participants of the Master of Urban Mobility,

or the Master in Data Science, at the Rey Juan Carlos University

( CETINIA, 2018 ) with driving license and at least ten years of ex-

perience in driving tasks. 

An effective knowledge acquisition tool called Virtual Co driver

( Siordia, de Diego, Conde, & Cabello, 2012 ) (see Fig. 8 ) has been

used to collect the experts knowledge. This tool is able to repro-

duce the simulated exercises with a high fidelity using all the data

acquired in each driving session. 

The Virtual Co driver system allows the evaluation of the driv-

ing risk through a Visual Analog Scale (VAS) ( Couper, Tourangeau,

Conrad, & Singer, 2006 ) in a range from 0 to 100, where 100 refers

to the highest driving risk level. This method has been considered

the best for subjective measurements (see, for instance, Cork et al.,

2004 ). 

Regarding the individuals in charge of the assessments, a group

of 46 experts have evaluated the risk of the driving sessions

recorded on the urban scenario. In the case of the interurban sce-

nario, a group of 17 experts have evaluated the risk presented in

the different driving sessions. Fig. 9 illustrates the VAS evaluations

generated by the traffic safety experts. 

The evaluations of the experts present a high heterogeneity.

This leads to generate difficulties to identify agreement zones be-

tween the series. Thus, it is not clear whether the experts were

able to detect the induced risky situations, or the specific risk level

assigned to each risky situation. 
This is a typical situation when working with subjective data.

oing deeper, it can be identified two specific problems. The first

ne is related to the conflictive levels where the data differ signif-

cantly in the level assigned at a specific time. The second one is

elated to the conflictive evaluations (i.e. opinions) where the data

how contradictions (e.g. two segments with different slopes but

ith the same risk level). 

.3. Clustering 

In order to facilitate the analysis of the evaluations made by the

xperts, it is necessary to arrange the subjective data into groups.

hese latter must be organized in order to filter and classify the

omogeneous evaluations (i.e. grouping similar evaluations) of the

xperts. For this purpose, the characteristics of each generated

roup should be analyzed separately. 

The proposed methodology is used to extract homogeneous

lusters from a set of subjective data collected from a group of

riving experts. First, the VAS evaluations generated by the experts

ere characterized using the TSA algorithm. Then, the Clustering

imilarity proposed in Section 3.1.3 is calculated following formula

8) . After that, the Agnes hierarchical clustering algorithm is ap-

lied using the former similarity. Thus, the experts are grouped

nto several clusters. 

. Experiments 

The proposed methodology has been applied to the practical

ase presented in the previous section in two different experi-

ents. Section 5.1 describes the first experiment where the dataset

as collected from an urban scenario while Section 5.2 illustrates

he second experiment where the dataset was obtained from an

nterurban scenario. 

As explained in Section 4.1 , two sessions were collected in each

cenario. The first session in each scenario is used in the training

tep, and the second session in each scenario is used for testing

urposes. 
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Fig. 9. VAS evaluations (Risk Index) of the four recorded driving sessions acquired from the human experts. 
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In the training step, the clustering technique groups homoge-

eous evaluations. In each cluster, a specific risk model has been

rained. The average of all the evaluations in each cluster and the

tandard deviation of these evaluations have been employed as a

riving risk ground truth for the generation of rules for the ES. The

im of this step is to discover the main variables that each group

f traffic safety experts were observing while evaluating the risk in

he driving session. In order to generate a buffered risk signal as

imilar as possible to the driving risk ground truth (mean evalua-

ion of each cluster), the parameters (rules) of the risk model have

een tunned with the application of a Genetic Algorithm follow-

ng the work presented in de Diego, Siordia, Crespo, Conde, and

abello (2013) . Thus, it will be possible to detect those relevant

ariables for each group of experts. Then, each risk model (one per

luster) generated in the training step will be used to generate a

isk signal in the testing step. Thus, given a new evaluation related

o a new driving session, it is assigned to the nearest cluster. Next,

he trained model in the cluster is used to predict a risk signal for

he driving session. 

For comparison reasons, three alternative models have

een considered: a General Model, Logistic Regression

LR) ( Menard, 2018 ) and Support Vector Machine (SVM)

 Tsochantaridis et al., 2004 ). The General Model is a risk model

hat uses the evaluations of all the traffic safety experts involved

n the experiment. That is, no cluster analysis is considered. In

he case of LR and SVM, no evaluations from experts are used.

nstead, to train these models, the induced risky situations define

he response variable. The response is 1 during the risky situations

g  
nd 0 out of those periods of time (see Fig. 7 ). The LR model uses

he binary induced experimental risk signal for training purposes.

he SVM model also uses the binary induced experimental risk

ignal for training, considering only the most significant variables

n Table 1 . The LR and SVM models will predict binary risks in the

esting step. 

.1. Urban experiment 

In this experiment, the 46 risk evaluations from an urban sce-

ario have been considered (see Section 4 and Fig. 9 for a complete

escription). Fig. 10 shows the mean and standard deviation of the

isk evaluations that belong to each produced cluster. 

For the Level Similarity (see Fig. 10 (a)), two different groups

ave been identified. Although both groups present similar opin-

ons, the range used for the risk assessment of each group is dif-

erent. The first one is a group of 24 traffic safety experts that per-

ormed their risk evaluations with a level in a range from 0 to 95

black line). The second one is group of 22 traffic safety experts

ith risks evaluations with a mean level in a range from 0 to 76

red line). 

For the Angle Similarity (see Fig. 10 (b)), three different groups

ave been found. These groups, of 17, 26, and 6 traffic safety ex-

erts, respectively, present similar risk levels with different behav-

ors. The first group (black line) presents a mean level risk eval-

ation in a smaller range. In general, the risk level descends in

ower runs when it is compared with the other two groups. That is,

he risk assessment of the traffic safety experts who belong to this

roup presents a long-term memory effect. The second group (red
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Fig. 10. Obtained clusters in the Urban experiment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 11. Risk buffers generated for each cluster in the training step for the Urban experiment. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Risk model generated with the evaluations of the 

Cluster 1 in the Urban experiment. 

Hands Code Slope L. Time 

2-0 −7 . 9 7.4 

1-1 12 0.21 

1-0 5 1.7 

0-1 13.9 1.6 

0-0 26 4 

Actuators (Inhibitors and Activators) 

Variable Slope Condition L. Time 

Heading Error −8 . 7 < > 0.98 4.5 

Table 3 

Risk model generated with the evaluations of the 

Cluster 2 in the Urban experiment. 

Hands Code Slope L. Time 

2-0 −0 . 87 6.3 

1-1 8.6 9.5 

1-0 9.4 5.1 

0-1 10.2 8.7 

0-0 2.2 4.7 

Actuators (Inhibitors and Activators) 

Variable Slope Condition L. Time 

Heading Error −20 < > 0.86 5.2 

Vehicle Speed 29.31 > 89 4.5 
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line) presents a set of risk evaluations with the highest ascending

and descending runs. The risk assessment presents a short-term

memory effect. The third group (green line) contains characteris-

tics of the other groups. Further, the mean risk evaluation presents

a higher variability. Thus, they show an irregular roughness in the

evaluations made by the traffic safety experts who belong to this

group. 

For the Clustering Similarity (see Fig. 10 (c)), three groups

have been obtained. As in the synthetic example presented in

Section 3.2 , two groups with pretty similar evaluations have been

identified (red and green lines). Both groups present a long-term

memory effect at different levels (high and low, respectively). The

other group (black line), presents a mean level evaluation with a

higher range. In this case, the risk assessment shares the mini-

mum and maximum values of the other two clusters. This group

presents a short-term memory effect allowing a wider range for

the risk assessment. This provides richer information about the

driving risk along the driving sessions. 

Fig. 11 shows the risk signals generated by the buffered risk

models learned for each cluster in the training step. In all the

cases, the values of the buffered risk signals (red lines) have been

pretty similar to the mean risk signals used as the driving risk

ground truth (black lines). 

For the first group (i.e. Cluster 1), the three main generated risk

peaks have been correctly detected (see Fig. 7 (a)). The maximum

values reached by the buffered risk signal (red line) are similar to

the ones reached by the driving risk ground truth (black line). 

For the second group (i.e. Cluster 2), the maximum levels mis-

matched at different time lapses along the driving session. These

results show that the traffic safety experts grouped in this cluster

were not consistent with the criteria used for the risk assessment.

In this case, the three main risk peaks were evaluated by the traffic

safety experts applying different approaches and it was not possi-

ble to adjust a buffered risk model properly. 

c  
For the third group (i.e. Cluster 3), as the risk assessment (black

ine) has been made at high risk levels at most of the time, the

uffered risk signal (red line) follows a similar behavior providing

oor information about the three main risky situations. 

As explained before, a Genetic Algorithm is used to learn the

ost relevant variables to generate the risk signal in each clus-

er. The variables of the buffered risk models learned for the three

lusters are shown in Tables 2 , 3 , and 4 , respectively. Two param-
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Fig. 12. Risk buffers generated for each cluster in the testing step for the Urban experiment. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Table 4 

Risk model generated with the evaluations of the 

Cluster 3 in the Urban experiment. 

Hands Code Slope L. Time 

2-0 −0 . 96 8.9 

1-1 18 2.6 

1-0 11 2.8 

0-1 22 3.7 

0-0 28 2.6 

Actuators (Inhibitors and Activators) 

Variable Slope Condition L. Time 

Heading Error −15 < > 0.88 9.9 
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ters have been considered for each variable: the slope, that rep-

esents the change per second in the risk buffer, and the latency

ime, that represents the delay before that change. 

The first cluster obtained the lowest latency times allowing a

aster response when detecting risky situations. It leads to a short-

erm memory effect. Thus, the most significant positive slope (pe-

alizing slope) has been given by the situation of driving with no

ands on the steering wheel (26). In this situation, after a latency

ime of 4 seconds the risk buffer would reach its maximum value

n less than 4 seconds (0 to 100 in 8 seconds). Moreover, when

he vehicle is almost parallel to the road (Heading Error < 0.98 °)
nd the driver has two hands on the steering wheel, the risk buffer

ould reach its minimum value in less than 12 seconds (100 to 0

n 12 seconds). 

The second and third clusters have been obtained the high-

st latency times (see Tables 3 and 4 ). This is a consequence of

he long-term memory effect shown by the traffic safety experts

unched in these two groups. In both cases, the action of driving

ith two hands on the steering wheel reduces the risk level in less

han one risk level per second after a long latency time. Further,

he most significant prizing slope was given by the heading error

n both cases. For these groups of traffic safety experts, the vehicle

osition has been the most relevant factor for a safe driving. 

Once the training step is completed, the buffered risk models

earned during this step has been applied to the testing sessions

ecorded in the urban scenario. In order to evaluate the perfor-

ance of the learned risk models, the evaluations of the traffic

afety experts bunched on the three groups have been considered

see Fig. 9 ). Fig. 12 shows the buffered risk signals generated by

he buffered risk models (red lines) and the mean risk evaluations

cquired from the traffic safety experts (black lines). 

For the first group (i.e. Cluster 1), significant changes on the

evel of the buffered risk signal have been found at the three main

isky situations (see Fig. 7 (b)). Thus, the level assigned to each sit-
ation by the buffered risk signal is pretty similar to the one as-

igned by the traffic safety experts. 

For the second group (i.e. Cluster 2), the risk signal generated

y the buffered risk model differs significantly at the second half

f the driving session (second 100 to 200). This is a consequence of

he inconsistency presented by this group of traffic safety experts

hen evaluating the driving risk. 

For the third group (i.e. Cluster 3), the risk signal generated by

he buffered risk model shows a similar behavior to the risk eval-

ation made by the traffic safety experts. Nevertheless, as in the

raining session, the high levels given by both risk signals provide

oor information about the three main risky situations. 

For this experiment, it can be concluded that the buffered risk

odel generated with the knowledge of the 17 traffic safety clus-

ered in the first group shows the best performance in both train-

ng and testing steps. 

Fig. 13 shows the risk signals generated by the alternative mod-

ls (General Model, LR and SVM models, respectively) on the test-

ng sessions of the urban scenario. 

The General Model uses the risk evaluations of all the 46 traf-

c safety experts involved. In this case, the buffered risk signal

resents only significant changes on the first risky situation and

t has not been able to detect the second and third risky situa-

ions. Therefore, the use of traffic safety experts’ evaluations with

ifferent criteria on the generation of a risk model leads to a loss

f information. 

For the LR model the most significant variables acquired from

he driver, the vehicle and the road have been used as predictors.

ere, the generated risk signal could produce a lot of false alarms.

urther, as the risk signal is built with binary values (0 or 100),

he predicted risk provides poor information about the real risky

ituations, failing to assess each risky situation with a specific risk

evel as the traffic safety experts do. 

Regarding the SVM model, it detects the three main risky sit-

ations of the testing driving session with few false alarms. How-

ver, as in the previous case (i.e. LR model), the predicted risk pro-

ides poor information about the detected risky situations as all

he risky situations are assessed with the same risk level. 

In conclusion, in all the cases the buffered risk models trained

onsidering homogeneous information (clusters 1, 2, and 3) have

erformed better than the buffered risk model trained with all

he evaluations (i.e. General Model). The results show that the risk

evel assigned by the traffic safety experts to each of the main risky

ituations is very important for the risk assessment. It is clear that

he risk involved in each risky situation must be evaluated depend-

ng on the performance of the driving task. Thus, the binary exper-

mental risk signal would not provide enough information to be

sed as a driving risk ground truth. 
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Fig. 13. Risk buffers generated in the testing step for the Urban experiment. 

Fig. 14. Obtained clusters in the Interurban experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Risk model generated with the evaluations of the Cluster 

1 in the Interurban experiment. 

Hands Code Slope L. Time 

2-0 −26 7.3 

1-1 12 6.4 

1-0 20 1.5 

0-1 22 5.3 

0-0 15 6.2 

Actuators (Inhibitors and Activators) 

Variable Slope Condition L. Time 

Lane Invasion −3 = 0 7.1 

Speed −5 . 9 < 18 2.1 

Heading Error −13 < > 0.22 7.7 

Security Distance 18.5 < 25 7.1 
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5.2. Interurban experiment 

In this experiment, the 17 risk evaluations from the interurban

scenario have been considered (see Section 4 and Fig. 9 for a com-

plete description). Fig. 14 shows the mean and standard deviation

of the risk evaluations that belong to each cluster. 

For the Level Similarity , two main groups with similar evalua-

tions have been identified. In both cases, after the second risky

situation, the driving risk mean level remains constant showing a

long-term memory effect. The first group (black line), presents a

stable risk evaluation in a high risk level (mean over 50). The sec-

ond group (red line), presents a risk evaluation in a medium range

(mean under 50). In this case, the variability of the risk evalua-

tions made by the traffic experts bunched in this group show an

irregular roughness. 

For the Angle Similarity , two main groups have been obtained.

A group of traffic safety experts that performed a stable risk eval-

uation along the whole driving session (black line). Another group

of traffic safety experts that show a strong irregular roughness in

their evaluations (red line). Both groups show a long-term effect. 

For the Clustering Similarity , three groups have been identified.

The first two groups (red and green lines) show a long-term mem-

ory effect at different levels (high and low, respectively). The third

group (green line) presents a long-term memory effect with high

variability. 

Following the same process described in the previous Urban ex-

periment, the usefulness of each cluster produced with the com-

bination of both the Level Similarity and the Angle Similarity has

been evaluated. Each mean evaluation and its standard deviation

have been used as a driving risk ground truth for the generation

of a set of buffered driving risk models. Fig. 15 shows the buffered

risk signals generated by the buffered risk models learned at the

training step. 

In all the cases, the buffered risk signals (red lines) show sim-

ilar values to the mean evaluations used as driving risk ground

truth (black lines). 
t  
As in the Urban experiment, a Genetic Algorithm is used to

earn the significant variables and parameters for each detected

roup of experts. For the first group (i.e. Cluster 1), the high risk

evels used by the traffic safety experts, produced a buffered risk

odel with very high slope values and latency times (see Table 5 ).

he buffered risk signal shows a very long-term memory effect,

roviding poor information about some induced risky situations. 

For the rest of groups (i.e. Cluster 2 and Cluster 3), the opti-

al parameters present a set of low slope values and latency times

see Tables 6 , and 7 , respectively). In both cases, the buffered risk

odels generate smoothed signals (red lines). This properly fits the

nes used as driving risk ground truth (black lines). In the third

roup, the strong irregular roughness, presented by the variability

f the mean risk evaluation, has been smoothed keeping its main

rend. 

In general, the traffic safety experts bunched in the first group

i.e. Cluster 1) have penalized harder the action of driving with

nly one hand over the steering wheel regardless of the perfor-

ance of the driving task (0 to 100 in less than 7 seconds). Also,

he traffic safety experts bunched in the other groups (i.e. Cluster 2
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Fig. 15. Risk buffers generated for each cluster in the training step for the Interurban experiment. 

Fig. 16. Risk buffers generated for each cluster in the testing step for the Interurban experiment. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Table 6 

Risk model generated with the evaluations of the Clus- 

ter 2 in the Interurban experiment. 

Hands Code Slope L. Time 

2-0 −1 . 1 0.12 

1-1 1.2 1.3 

1-0 0.16 0.41 

0-1 1.1 1.2 

0-0 1.5 0.28 

Actuators (Inhibitors and Activators) 

Variable Slope Condition L. Time 

Lane Invasion −0 . 22 = 0 2.5 

Lateral Position −3 . 1 < 0.88 1.9 

Table 7 

Risk model generated with the evaluations of the 

Cluster 3 in the Interurban experiment. 

Hands Code Slope L. Time 

2-0 −4 . 6 0.32 

1-1 1.8 0.18 

1-0 0.14 0.17 

0-1 1.7 0.20 

0-0 2.6 0.12 

Actuators (Inhibitors and Activators) 

Variable Slope Condition L. Time 

Lane Invasion −0 . 31 = 0 2.3 
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nd Cluster 3) get used to the one hand driving performed by the

river and penalized harder the action of driving with no hands on

he steering wheel. 

Next, the buffered risk models learned have been applied to the

esting sessions recorded in the interurban scenario. Fig. 16 shows

he buffered risk signals generated by the buffered risk models
red lines) and the mean risk evaluations acquired from the traf-

c safety experts (black lines). 

In all the cases, significant changes on the level of the buffered

isk signal have been found on the main risky situations induced

long the driving session (see Fig. 7 (d)). The best results have been

btained by the buffered risk models of the first two groups (i.e.

luster 1 and Cluster 2). In both cases, the buffered risk signals

red lines) fit properly the mean risk signals acquired from the

raffic safety experts (black lines). 

Regarding the three alternative models (General Model, LR and

VM), they have been considered in order to compare the perfor-

ance of the generated buffered risk models. Fig. 17 shows the risk

ignals generated by these three models on the testing sessions of

he interurban scenario. In all the cases several false alarms were

roduced out of the time lapses were the risky situations were in-

uced. 

In the General Model, the buffered risk signal provides poor in-

ormation about the risky situations. In this case, the risk signal

enerated by the buffered model shows almost a binary behav-

or. These results show that the consideration of non-homogeneous

nformation on the training of a risk model leads to a bad per-

ormance. Thus, the mean evaluation used as driving risk ground

ruth was very noisy and uninformative. 

Regarding the LR and SVM models, they do not provide specific

nformation about each of the four induced risky situations. Here,

ll the risky situations have been assessed with the same risk level

egardless of the driving performance and of the driver workload. 

Summed up briefly, in the context of the interurban scenario,

he proposed methodology has been able to detect and to char-

cterize different homogeneous groups of experts when generat-

ng a ground truth. Alternative methods have provided poor infor-

ation about the detected risk situations generating several false

larms. 
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Fig. 17. Risk buffers generated in the testing step for the Interurban experiment. 
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6. Conclusions 

This paper has introduced a novel methodology for the se-

lection of subjective sequential data for the training of ES. The

methodology is based on the arrangement of homogeneous in-

formation acquired from a group of human experts. It has been

proposed two different similarity measures between linearized se-

quential data, and a novel similarity measure that uses their com-

bination using cluster information. 

Several experiments have been achieved in order to illustrate

the performance of the methodology. Three of the most represen-

tative ones have been included. The first example uses synthetic

data to present the methodology. The methodology has been ap-

plied to a practical case of the ITS domain where an ES for driving

risk prediction has been trained and evaluated through risk evalua-

tions acquired from a group of traffic safety experts. An experiment

has been focused on an urban scenario, and another experiment

makes use of data collected from an interurban scenario. 

The obtained results from these experiments have shown the

relevance of selecting homogeneous information for the genera-

tion of a reliable ground truth. Also, it could be concluded that the

ES trained with homogeneous evaluations performed better when

predicting the driving risk. Moreover, these results show the rele-

vance of the use of subjective sequential data when dealing with

phenomena where a set of rules could not be easily acquired from

human experts, such as risk assessment. In this case, the rules

have been properly learned from a set of homogeneous evaluations

arranged with the presented methodology obtaining outstanding

results. 

Notice that this work will be extended with future enhance-

ments. In order to automatize the clustering process, the optimal

number of clusters could be calculated using a combination of val-

idation indices ( Charrad, Ghazzali, Boiteau, & Niknafs, 2014 ). Alter-

native similarity measures could be defined regarding the specific

domain. ITS and specifically driving risk prediction have shown

an adequate environments for the proposed methodology. Never-

theless, other domains will be considered in order to illustrate

the general viability of the approach. For instance, the proposed

methodology could be used in Quality of Experience domain. In

this case, the quality of a network service is evaluated from a set

of users. The opinion of the users is used to train a Machine Learn-

ing model. Thus, a previous arrangement of users is mandatory in

order to build proper models. 
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