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Abstract 

Over 98% of our genome is non-coding and is now recognised to have a major role in 

orchestrating the tissue specific and stimulus inducible gene expression pattern which 

underpins our wellbeing and mental health. The non-coding genome responds functionally 

to our environment at all levels, encompassing the span from psychological to physiological 

challenge. The gene expression pattern, termed the transcriptome, ultimately gives us our 

neurochemistry. Therefore a major modulator of mental wellbeing is how our genes are 

regulated in response to life experiences. Superimposed on the aforementioned non-coding 
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DNA framework is a vast body of genetic variation in the elements that control response to 

challenges. These differences, termed polymorphisms, allow for a differential response from 

a specific DNA element to the same challenge thus potentially allowing ‘individuality’ in the 

modulation of our transcriptome. This review will focus on a fundamental mechanism 

defining our psychological and psychiatric wellbeing, namely how genetic variation can be 

correlated with differential gene expression in response to specific challenges, thus resulting 

in altered neurochemistry which consequently may shape behaviour.  
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Introduction  

The human genome has evolved to include a combination of both highly conserved 

regions of regulatory non-coding DNA (ncDNA) found across many species and human-

specific regulatory DNA elements which together act to regulate expression of mRNA. This 

combination of DNA elements allows determination of where, when, how much and for 

how long, genes are expressed in the human brain in response to normal developmental, 

psychological and physiological cues, Figure 1. Many of these elements exhibit genetic 

variation which is not only associated with risk for a specific condition, but has also been 

demonstrated to alter the regulatory properties of the gene. The functional interpretation 

and analysis of ncDNA variation can be initially addressed in silico by overlaying its position 

on databases containing characterised and predicted functional elements within the 

genome, Box 1. The most easily accessible free database is the Encyclopaedia of DNA 

Elements (ENCODE; https://www.encodeproject.org/) which is a collaboration of research 

groups funded by the National Human Genome Research Institute [1,2], this can be used in 

combination with a plethora of other database browsers [3] such as the University of 

California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/ )[4]. This review 

will begin with an introduction to the most conserved regulatory regions in the genome and 

how these may be functionally modified by the simplest and most extensively studied class 

of genetic variation, single nucleotide polymorphisms (SNPs). The review will then focus on 

human regulatory elements that are associated with neuropsychiatric conditions which are 

larger blocks of DNA variation such as variable number tandem repeats (VNTRs) and non-

long terminal repeat (non-LTR) retrotransposons, Box 2. 

Evolutionary Conserved Regions. 

Evolutionary conserved regions (ECRs) in the genome can be easily found using the ECR 

browser (https://ecrbrowser.dcode.org/) [5]. ECRs in this browser are typically defined as 

regions of sequence within the human genome that retain 70% or more sequence identity 

over a window of 100 bases when compared to the corresponding region of sequence in 

other species, this will frequently include exons in coding DNA. However, Pennacchio et al., 

were amongst the first to demonstrate that ECRs in the non-coding DNA (ncECRs) could be 

important, particularly in directing gene expression in the CNS. They determined by use of  

a transgenic mouse model that whilst ncECRs could direct expression in a broad range of 
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anatomical structures in the embryo, the majority of the ncECRs tested directed expression 

to various regions of the developing nervous system [6]. Subsequently, consistent with this, a 

third of paralogous ncECRs examined were predicted to have regulatory activity 

in the brain [7], for example, deletion of ncECRs in the neuronal transcription factor Arx 

resulted in substantial alterations of neuron populations and structural brain defects in a 

trangenic model [8]. Furthermore, the combinatorial complexity of gene expression was 

exquistely demonstrated in a transgenic model of craniofacial morphology in which the 

action of multiple ncECRs driving expression of many genes resulted in a vast array of facial 

differences [9]**. These studies demonstrated that ncECRs can have important 

transcripitonal regulatory properties, therefore the expectation is that polymorphism in 

such domains has the potential to modify interactions with transcription factors and thus 

affect regulatory function. 

Single nucleotide polymorphisms 

Early studies of genetic variation correlated with mental health focused on DNA variation 

in exons encoding proteins. Most of these studies addressed SNPs; thus a SNP that changed 

an amino acid (non-synonymous change) or resulted in a truncation of the protein could be 

mechanistically relevant as it could alter protein function. However, with technological 

advances the ability to address SNPs in genome wide association studies (GWAS) rather 

than solely exons, demonstrated that the vast bulk of SNP variation associated with 

behavioural and psychiatric conditions was in ncDNA [10,11]. GWAS has led to significant 

discoveries in defining some of the genes involved in neuropsychiatric disorders and 

demonstrated there is genetic overlap between many of the major psychiatric disorders 

[12,13]. In several examples the proteins identified can work together to alter a key 

pathway underpinning wellbeing and mental health, such as those modifying calcium 

signalling [14].  

Understanding the mechanistic significance of SNPs in ncDNA for a specific condition has 

been a much more difficult task than for SNPs found in exons. A SNP in ncDNA could be 

tagging a regulatory domain 10K+ bases from itself (a tagging SNP is representative of a 

large section of DNA that is inherited as one, thus the SNP is not the causative agent but 

rather highlights a region of DNA). Analysis of SNP variation within ENCODE and associated 

data sets can determine if it is present in a genomic region defined as a regulatory domain. 
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In this scenario, the SNP could affect the efficiency or specificity with which a transcription 

factor, proteins which modulate the process of transcription, would bind to this regulatory 

DNA sequence, Figure 2. 

We and others demonstrated that SNP polymorphisms in ncECRs which correlated with 

known behavioural problems could modify the regulatory properties of the ECR including 

those associated with depression located in BDNF, BICC1 and galanin genes [15-19]. 

Furthermore multiple ncECRs may be required for appropriate gene expression, for 

example eight conserved ncECRs were identified at the schizophrenia-associated 

MIR137/DPYD locus of these, six were shown to be positive transcriptional regulators, and 

two negative transcriptional regulators in a human cell line model [18,19]. Bioinformatic 

analysis of this locus using the Psychiatric Genomics Consortium GWAS dataset for 

schizophrenia highlighted five of the ncECRs had genome-wide significant SNPs in, or 

adjacent to their sequence [11].  

Epigenetic marks which are indicative of active or inactive chromatin, are often found at 

regulatory DNA. Genetic variation such as GWAS risk SNPs, can effect such epigenetic 

parameters impacting on long term regulatory changes in response to challenge [20]. Both 

local (gene specific) and global (multigene) epigenetic changes have been implicated in 

neuropsychiatric disorders [21,22] and the NIH Roadmap Epigenomics Consortium 

(http://www.roadmapepigenomics.org/) data can be utilised to analyse such data. For 

example, local methylation variation at the glucocorticoid receptor gene has been 

associated with prenatal and postnatal depression [23]* and global differences in 

methylation in astrocytes have been associated with depression [24]. Simplistically, 

methylation of regulatory regions is considered a repressor of transcription as it interferes 

with transcription factor binding by limiting the accessibility of specific DNA recognition 

sequences. The ability to rapidly address genetic variation on a ‘road map’ of regulatory 

domains has allowed the development of a significantly better understanding of how the 

ncDNA GWAS SNPs can be mechanistically involved in mental health issues [25]. This can be 

further updated within the UCSC browser which permits new, novel data to be overlaid on 

the existing data from ENCODE.  

Variable Number Tandem Repeats  
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SNP variation is not the only example of ncDNA variation that can affect the regulation of 

gene expression. Many of the best characterised genetic polymorphisms correlating with 

mental health issues are found in repetitive DNA, Figure 2. These include the VNTRs [26], 

examples of which have been identified in key behavioural and mental health-related 

genes. VNTRs have been demonstrated to be both biomarkers and transcriptional regulators 

in genes such as the serotonin transporter, the dopamine transporter and monoamine 

oxidase A [21,22,27-32]. In these three examples, the primary DNA sequences of the VNTRs 

are rapidly evolving such that humans have their own specific VNTR sequences. All three of 

these monoaminergic genes contain a minimum of two VNTRs that have been 

demonstrated to act both independently and synergistically as transcriptional regulators 

whose function is further modulated by the repeat copy number within the VNTR 

[21,29,31]. The copy number of the repeat itself is also a biomarker for good mental health 

and wellbeing thus correlating function with phenotype [27,28,31,33,34]. Perhaps not 

unexpectedly VNTRs and GWAS SNPs in the same promoter may act additively or 

synergistically to regulate gene expression. This is exemplified by one of the promoters of 

the schizophrenia candidate risk gene, MIR137 [35,36]*, where experimentally in vitro, the 

VNTR in the promoter can support differential reporter gene expression based on the copy 

number of the repeat within the VNTR, and inclusion of the promoter region encompassing 

the GWAS SNP can further modulate expression depending on the allele of the SNP present. 

This illustrates a route to identifying the potential functional significance of non-coding 

variants in transcriptional or post transcriptional regulatory mechanisms in areas distinct 

from the region of the DNA in which the GWAS SNP is found.   

The rapid evolution of VNTRs has been noted more globally for contributing to primate 

evolution; analysis in humans and non-human great apes identified that genes with VNTRs have 

higher expression divergence than those without [37]. The association of VNTRs with 

gene expression is reflected in the finding that VNTRs are enriched in promoter regions 

and locations close to transcriptional start sites for mRNA expression [26,38,39]. 

Generally, VNTRs have not been analysed as extensively as SNPs which may be attributed 

to the requirement to perform PCR to genotype each VNTR target and the inability to 

accurately identify such regions in the initial short read whole genome sequencing 

protocols. Improved depth and coverage in whole genome sequence combined with the 
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development of bioinformatic programmes such as ExpansionHunter may improve the 

association of VNTRs and other repeat variants with neuropsychiatric conditions [40]. 

Non-LTR Retrotransposons 

Non-long terminal repeat (non-LTR) retrotransposons are mobile DNA elements that can 

copy and paste themselves into new genomic loci and are therefore polymorphic for their 

presence or absence at specific loci in the genome. These retrotransposable elements 

(RTEs), also known as ‘jumping genes’, can range in size from a few hundred to 6000 base 

pairs and have been shown to be major modulators of gene expression at several levels. 

Non-LTR retrotransposons comprise three classes, long interspersed nuclear element 1 

(LINE-1), Alu and ‘SINE-VNTR-Alu’ (SVA), Figure 2. LINE-1 expression has been implicated in 

many neuropsychiatric conditions such as depression [41], addiction [42], schizophrenia [43-

45] and autism [46]. The other two classes have also been implicated in CNS function, for 

example variation in the Alu sequence within an intron of the TOMM40 gene is associated 

with non-pathogenic cognitive decline [47] and X-Linked Dystonia-Parkinsonism is 

associated with the presence or absence of a SVA in the TAF1 gene [48]**. SVAs contain 

several distinct VNTR elements and have properties consistent with transcriptional 

regulation [49-51]*.    

There has been tremendous interest in RTEs, due to their ability to make a copy of 

themselves which then can reinsert at a different locus in the genome of that cell. 

Depending on when this occurs, it results in either novel heritable germline variation or 

somatic mutation that can alter cellular function in only the individual affected. The former 

generates a large reservoir of de novo genomic variation in the population which, to date, is 

poorly characterised as it is very seldom annotated properly in the DNA sequence 

databases. The mobilisation or ‘jumping’ of RTEs is proposed to increase both with age 

within the adult CNS and to comprise one of the key mechanisms underpinning age-related 

CNS problems [52-54]**; several instances where this variation has been addressed, have 

associated it with disease [48,55]*. More recently bioinformatic analysis has improved to 

allow robust identification of RTEs using programmes such as TEBreak 

(https://github.com/adamewing/tebreak) and MELT [56]. 

Development 
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The basic transcriptional mechanisms outlined in this review will also operate during 

development. Conditions such as schizophrenia and autism are often referred to as having a 

neurodevelopmental origin [57,58]. Modulation of the transcriptome during development 

could have a significant effect on the wiring of the brain and therefore how information is 

processed in the future. Early in vivo work using a mouse transgenic model indicated how a 

human serotonin transporter VNTR could differentially affect gene expression in key areas 

of serotonergic lineage based on the copy number of the repeat unit [32,59]. The regulation 

of regulatory domains during development will be determined by the co-expression of 

transcription factors as exemplified by the schizophrenia associated gene CACNA1C whose 

expression in development mirrors that of the transcription factor EZH2 an important 

regulator of the CACNA1C gene promoter [14]. An argument can be made that alterations in 

the transcriptome at specific times in foetal development could result in a physical change 

in neuronal connections that would be more difficult to correct than transcriptome changes 

in the adult [60]. 

Summary  

The identification of variation in the non-coding part of the genome which affects the 

regulation of gene expression in part explains the often episodic nature of mental health 

conditions. In addition, it offers the potential for resolution of these conditions by a variety 

of interventions ranging from pharmaceutical to cognitive behavioural therapy which 

modify the signalling pathways targeting specific gene regulatory domains, modulation of 

the ‘stress’ driving such pathways would alter the transcriptome and hence brain chemistry, 

Figure 1. A prior exposure to trauma or stress could leave a molecular scar of that event, 

represented by  an epigenetic change which alters parameters of transcriptional or post 

transcriptional regulation in the medium to long term [61]. It is often considered that the 

environmental challenge needed to affect mental health should be severe, which is not 

necessarily correct. For example ‘normal’ child development could also have an effect on 

mental health and wellbeing [23,27,33,62]. Similarly a more general approach to 

maintaining good mental health via diet and exercise could play a role as they could affect 

the cellular signalling pathways that affect mental health [63,64]. However these issues only 

illustrate the complexity of defining ‘life style/environment’ and its effect on our wellbeing 

given the complex nature of life-long experiences in defining our transcriptome, which in 

ACCEPTED M
ANUSCRIP

T



turn affects the neurochemistry that ultimately shapes CNS function. It’s often said that the 

genome is the roadmap through which ‘life style’ shapes the individual, however one can 

argue that the roadmap is unique for each one of us and we all have our own route to travel 

[65].   
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Figures and Boxes for Current Opinions in Psychology  

Box1:  Genome Browsers to interrogate DNA function 

Encyclopaedia of DNA Elements (https://www.encodeproject.org/) 

Evolutionary conserved regions browser (https://ecrbrowser.dcode.org/ 

NIH Roadmap Epigenomics Consortium (http://www.roadmapepigenomics.org/) 

University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/ ) 

Box 2:  Genetic variation commonly found in the genome  

SNP: single nucleotide polymorphism 

The most common form of genetic variation in the genome. When located in a coding exon 

it may change the amino acid encoded thus altering the protein.  In non-coding DNA it may 

have a variety of functions, however since transcription factors are sequence specific DNA 

binding proteins it could change the affinity or specificity of that interaction thus altering 

the function of a specific DNA element. 
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VNTR: variable number tandem repeats 

These are adjacent repeats of single or more nucleotides and are a large component of the 

non-coding DNA. Often used in forensic DNA analysis as a genetic fingerprint given their 

variation in the genome. They are routinely separated into microsatellites (ranging in repeat 

length from 1–9 base pairs) and minisatellites (ranging in length from 10–60 base pairs), 

both classes are generally repeated 3-50 times. They are also found in exons such as in the 

Huntington gene. 

RTE: retrotransposon 

RTEs constitute approximately 42% of the human genome. Retrotransposons can be 

subdivided in long terminal repeat (LTR) retrotransposons (also termed ‘endogenous 

retroviruses’) and non-LTR retrotransposons lacking LTRs. Non-LTR retrotransposons 

propagate via a copy-and-paste mechanism, meaning that retrotransposon transcripts are 

reverse transcribed into a cDNA intermediate which is integrated into a new site of the host 

genome. Non-LTR retrotransposons can be sub-divided into LINE-1, Alu and SINE-VNTR-Alu 

(SVA) families which have the capacity to modify gene expression at transcriptional and post 

transcriptional levels.  They constitute 21%, 13% and 0.2% respectively of the human 

genome. 
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