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Abstract 

The associations between higher intelligence test scores from early life and later good health, 

fewer illnesses, and longer life are recent discoveries. Researchers are mapping the extent of 

these associations and trying to understanding them. Part of the intelligence-health 

association has genetic origins. Recent advances in molecular genetic technology and 

statistical analyses have revealed that: intelligence and many health outcomes are highly 

polygenic; and that modest but widespread genetic correlations exist between intelligence 

and health, illness and mortality. Causal accounts of intelligence-health associations are still 

poorly understood. The contribution of education and socio-economic status—both of which 

are partly genetic in origin—to the intelligence-health associations are being explored. 
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Until recently, an article on DNA-variant commonalities between intelligence and health 

would have been science fiction. Thirty years ago, we did not know that intelligence test 

scores were a predictor of mortality. Fifteen years ago, there were no genome-wide 

association studies. It was less than five years ago that the first molecular genetic correlations 

were performed between intelligence and health outcomes. These former blanks have been 

filled in; however, the fast progress and accumulation of findings in the field of genetic 

cognitive epidemiology have raised more questions. 

 

Intelligence, and health and death 

Individual differences in intelligence, as tested by psychometric tests, are quite stable from 

later childhood through adulthood to older age [1,2]. The diverse cognitive test scores that 

are used to test mental capabilities form a multi-level hierarchy [1-3]; about 40% or more of 

the overall variance is captured by a general cognitive factor with which all tests are 

correlated, and smaller amounts of variance are found in more specific cognitive domains 

(reasoning, memory, speed, verbal, and so forth). Twin, family and adoption studies indicated 

that there was moderate to high heritability of general cognitive ability in adulthood (from 

about 50% to 70%), with a lower heritability in childhood [4]. It has long been known that 

intelligence is a predictor of educational attainments and occupational position and success 

[1]. 

 

Relatively recently, the “ultimate validity” of intelligence test scores was discovered, i.e. that 

higher intelligence significantly predicts later death. First, an Australian Vietnam Veterans 

study found that higher young-adult intelligence predicted lower risk of accidental deaths up 

to early middle age [5]. Then, a population-representative Scottish study found that 
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intelligence test scores at age 11 years predicted deaths from all causes up to older age (the 

mid-70s) [6]. The association between intelligence test scores from early life and mortality 

from all causes has been widely replicated [7-9]. Intelligence from childhood and adulthood 

is associated with most of the major causes of death with the exception of non-smoking-

related cancers [10,11]. Broadly speaking, a one-standard-deviation advantage in intelligence 

in youth lowers the risk of mortality by 20% to 25% or more up to older age; the effect sizes 

are hardly attenuated at all by adjusting for childhood socio-economic status, though are 

partly attenuated after adjusting for education and adult socio-economic status, which are 

possible mediators of the association [6-11]. 

 

In addition to mortality, intelligence test scores are associated with lower risk of many 

morbidities, such as cardiovascular disease, cerebrovascular disease, hypertension, cancers 

such as lung cancer, stroke, and many others, as obtained by self-report and objective 

assessment [12-14]. Higher intelligence in youth is associated at age 24 with fewer hospital 

admissions, lower general medical practitioner costs, lower hospital costs, and less use of 

medical services, and intelligence appeared to account for the associations between 

education and such health outcomes [15,16]. Higher intelligence is related to a higher 

likelihood of engaging in healthier behaviours, such as not smoking, quitting smoking, not 

binge drinking, having a more normal body mass index and avoiding obesity, taking more 

exercise, and eating a healthier diet [16-18].  

 

The flood of intelligence versus mortality/illness/health-behaviours findings was captured by 

the term ‘cognitive epidemiology’ [19]. From early on until now, there have been speculations 

about the possible causes of these associations [6,10,14,20]. Briefly, there is 
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acknowledgement that the causes of the associations are probably multiple, such as there 

being a constitutional (perhaps partly genetic) association between intelligence and health, 

and/or that intelligence’s influence might act via more education, higher health literacy, and 

more affluent social class. Here, we examine evidence for possible genetic links between 

intelligence and health. 

 

Genetic contributions to health, and to intelligence 

There are at least three reasons to conduct genetic studies of phenotypes. First one wants to 

understand the genetic architecture of a phenotype, i.e. what is the nature of the genetic 

variants that contribute to variation in the phenotype. For example, a single mutation might 

have a large effect, as is the case in Mendelian diseases. By contrast, continuous traits might 

be more likely to be polygenic; that is, to have some of their variance caused by small 

contributions from many genetic variants. Second, having discovered the genetic 

architecture, one is interested in the specific genes in which variants have causal effects, i.e. 

one wants to understand the molecular genetic mechanisms of variation. Third, knowing that 

there is some genetic contribution to a phenotype, one can ask how good a predictor the 

genotypic information is; that is, how well can one predict some variation in a phenotype 

from only genotypic information? Much recent progress has been made along these lines for 

illnesses and for intelligence. 

 

Before the mid-2000s, genetic studies were done by three main methods. First, pedigree-

based (twins, adoptees, and families) studies of relatives’ phenotypic associations were used 

to estimate the heritability of phenotypes, and genetic correlations among them. Limitations 

of pedigree methods include the fact that several assumptions must be made in doing the 
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modelling, and that one does not learn about the specific genes involved. Second, candidate 

gene studies tested hypotheses concerning whether certain genetic variants were associated 

with phenotypic differences. For example, the possession of the e4 allele of the gene for 

Apolipoprotein E (APOE) is associated with an increased risk of developing Alzheimer’s 

disease. Limitations of the candidate gene method include the fact that most candidate gene 

findings are not replicated (APOE e4 possession is an exception to this), and that it is difficult 

to choose a candidate genetic variant from the millions that are known. Third, genetic linkage 

analysis was used to track genetic markers in families where specific phenotypes were 

common, to identify regions of the genome that segregate with the phenotype. The main 

limitations of this method are that large families are required and it identifies relatively large 

regions of the genome, rather than specific genetic variants or genes. 

 

This changed with the advent and rise of genome-wide association studies (GWASs) [21] (See 

Box). Sample sizes for GWASs often began with a few thousand, but, as the polygenic 

architecture of many traits became clear—i.e. the associations between individual genetic 

variants and phenotypes typically had very small effect sizes—it was necessary to form 

consortia so that the Ns of studies rose to the tens and then hundreds of thousands. Some 

GWAS consortia are now approaching and passing one million participants. 

 

The typical finding—there are exceptions—in health and cognitive GWASs is that many 

genetic variants of small effect contribute to phenotypic variation. In 2017, a survey of the 

first ten years of GWASs’ discoveries enumerated the SNPs that were associated with, for 

example, Crohn’s disease, diabetes, blood lipid levels, heart function, height, bone density, 

red blood cell traits, metabolic traits, blood platelets, breast cancer, rheumatoid arthritis, 
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blood metabolites, menarche, Alzheimer disease, kidney function, lung function, and 

education [21]. Often, the numbers of genetic loci in which significant SNP associations are 

found runs to dozens or even hundreds for a single phenotype. 

 

In 2011 the first apparently-decently-sized GWAS of intelligence appeared (N approximately 

3,500), and found no significant SNPs [22]. By the time the sample size was about 100 times 

greater, the number of independent genomic regions that were associated with intelligence 

was about or greater than 150 [23-25]. The Figure shows results from a recent GWAS of 

intelligence. Many of these SNPs are located in regions of the genome that have previously 

been associated with physical and mental illnesses. Therefore, we now know many actual 

DNA variants that have significant associations with intelligence tests’ scores; there are 

probably thousands in total. Although it found no significant SNPs, the 2011 paper [22] did 

make a difference; it was the first study to estimate the heritability of intelligence from DNA 

data alone and in unrelated subjects. This used a then-new method—called GREML, and run 

in the GCTA framework [26]—which examined people’s overall genetic similarity—based on 

common SNPs—with their phenotypic similarity (See Box). The common-SNP-based 

heritability of intelligence is estimated to be about 25% [24]. It is typical for this common-

SNP-based heritability to be about half of that estimated from twin studies [27]. It is thought 

that this ‘missing heritability’ is because there are types of genetic variants other than causal 

variants that are in linkage disequilibrium with common SNPs that contribute to heritability. 

Some new techniques are helping to find these and close the gap between twin-based and 

SNP-based heritability [28]. 

 

Genetics and the intelligence-health relationship 
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Three things are clear. First, higher intelligence in early life is a significant predictor of better 

health behaviours, fewer and later illnesses, and longer life. Second, many of the relevant 

health and illness outcomes, as well as health behaviours, have many SNPs associated with 

them, and have a detectable level of common-SNP-based heritability. Third: the same goes, 

genetically, for intelligence. Relatively new methods—bivariate extension of GREML run on 

GCTA [29], and LD regression [30,31] (see Box)—have allowed estimates of the genetic 

correlations between phenotypes. That is, we can test the extent to which the polygenic 

signature obtained by using the summary results from GWAS contributes to any two 

phenotypes, including between intelligence and health. Polygenic signatures for many 

diseases were soon shown to be associated with intelligence [32]. Twin studies had suggested 

that part of the intelligence-mortality association might be genetic in origin, though there was 

disagreement about how much genetics contributed [33,34]. However, more recent studies 

have used genomic data.  

 

The list of significant molecular genetic correlations between intelligence and physical health 

variables is now long [23-25,32]. The Table gives some examples. With regard to mortality, 

longevity has been used; parental age at death has also been used, as a proxy, because most 

relevant studies have not carried on long enough for many participants to have died. There is 

a positive correlation of 0.36 between intelligence and parental age at death. There are 

inverse genetic correlations between intelligence and both heart disease and hypertension, 

with effect sizes between -0.1 and -0.2. There is a small (<0.1) association with cholesterol, 

with higher ‘good’ cholesterol going with higher intelligence and the reverse for the ‘bad’ 

cholesterol. There is a moderate-sized inverse genetic association between intelligence and 

Alzheimer’s disease. There is a positive genetic association, of 0.27, with intracranial volume, 
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which is an indication of maximal brain volume in the life course. There are significant positive 

genetic correlations between intelligence and birth weight, lung function, happiness, and 

short-sightedness. There are significant negative genetic correlations between intelligence 

and body mass index, poor self-rated health, lung cancer, osteoarthritis, insomnia, smoking, 

waist-hip ratio, and long-sightedness. It must be stressed that these correlations are based 

on GWASs conducted on different samples; i.e. the people on whom intelligence was 

measured were not the people on whom the health-based phenotype was assessed. 

Associations are interesting, but they do not explain why the correlations exist, or the 

direction of causation, which require further study and more new GWAS-based methods. 

 

Understanding the intelligence versus physical health association, including the part played 

by genetics 

As described above, genetic correlations have been identified between intelligence and many 

diseases, and physical health traits; moreover, polygenic scores for diseases and health traits 

predict intelligence. However, it is not clear if these findings are due to: (1) genetic variants 

influencing health traits/diseases, and then those health traits/diseases influencing 

intelligence; (2) genetic variants influencing intelligence, and then intelligence influencing 

health traits/diseases; or (3) genetic variants influencing general bodily system integrity [20] 

that influences both intelligence and health traits/diseases. (1) and (2) may be due to 

mediated pleiotropy which can be tested for using a relatively new technique called 

Mendelian Randomization (MR) (see Box). 

 

Using a bi-directional two-sample MR approach we identified no causal association between 

intelligence or educational attainment (a proxy measure of intelligence), and the physical 
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health traits of body mass index (BMI), systolic blood pressure, height, coronary artery disease 

and type 2 diabetes [35], using data from the UK Biobank (N approximately 110,000) and large 

GWAS consortia. However, a larger, more-recent study found MR-based evidence for 

potentially causal genetic effects of intelligence on larger intracranial volume, lower risk of 

Alzheimer’s disease, lower body mass index, and greater likelihood of quitting smoking [25]. 

A MR study investigating the effect of education on obesity in about 2000 Finns concluded 

that education could be a protective factor against obesity, as measured using BMI [36]. 

Another study using education data from the SSGAC consortium and coronary heart disease 

data from CARDIoGRAMplusC4D (total sample size = 543,733) found that higher education 

was causally associated with reduced risk of coronary heart disease, lower likelihood of 

smoking, lower BMI and a more favourable blood lipid profile [37]. Sensitivity tests indicated 

that the results were unlikely to be driven by biological pleiotropy. A two-step MR study 

investigated the influence of vitamin B12 intake during pregnancy on cord blood DNA 

methylation and whether there is a causal influence on offspring’s cognition in the Avon 

Longitudinal Study of Parents and Children (ALSPAC) [38]. A small causal effect of vitamin B12-

responsive DNA methylation changes on children’s cognition was identified. MR analysis has 

suggested that genetically-predicted intelligence and education both had associations with 

Alzheimer’s disease [39]. 

 

Another part of understanding the genetic contribution to intelligence-health correlations 

concerns other predictors of health inequalities, and intelligence’s correlations with them. 

Intelligence, we saw earlier, is related to education and socio-economic status (SES), and 

those were known to be related to health inequalities before intelligence was known to have 

health associations. Although education and SES are principally thought of as social-
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environmental variables, both have been found to be partly heritable, by both twin-based 

and molecular genetic studies, both have high genetic correlations with intelligence, 

Mendelian Randomisation results show bidirectional genetic effects between intelligence and 

education, and both have genetic correlations with health outcomes [25, 40-45]. 

 

Conclusion 

Intelligence has predictive power for many health outcomes. Part of that association is 

genetic. The genes involved, and the causal pathways of the associations are being explored. 
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Box 

Methods for investigating shared genetic aetiology between intelligence and physical 

health, illness and mortality 

1. Genome-wide association study (GWAS) 

GWAS is used to identify genetic variants associated with phenotypes. For diseases, large 

numbers of cases and controls are genotyped using testing arrays, most commonly from the 

companies Illumina or Affymetrix. The arrays contain up to 1 million genetic variants spread 

throughout the genome. For quantitative traits, large numbers of individuals on whom the 

trait is measured are genotyped. Using reference datasets, e.g. Hap Map, 1000 Genomes and 

the haplotype reference consortium (HRC), several million genetic variants are then imputed 

to give greater genomic coverage and to harmonize datasets genotyped using different 

genetic testing arrays, containing different variants. Logistic (for case control) or linear (for 

quantitative traits) regressions are then performed between each genetic variant and the 

phenotype. As millions of regressions are performed for each phenotype a p-value of <5x10-

8 is usually considered genome-wide significant. As GWASs do not analyse every variant in the 

genome they do not usually identify causative variants, but rather indicate regions of the 

genome that are implicated in a particular phenotype. If the same regions of the genome are 

identified in GWASs of multiple phenotypes this may indicate that the phenotypes share 

genetic aetiology. 

2. Genome-wide complex trait analysis (GCTA)-genomic-relatedness-based restricted 

maximum-likelihood single component (GREML) 
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GREML [26] is used to estimate the proportion of variance in a phenotype that is due to the 

linkage disequilibrium between genotyped variants and unknown causal variants. It gives a 

lower-boundary estimate of the heritability of a phenotype as it does not include variance 

accounted for by genetic variants that are not well tagged by variants on the array, e.g. rare 

variants.  

3. Bivariate GCTA 

Bivariate GCTA [46] is an extension of GCTA-GREML that allows the genetic correlation 

between two phenotypes to be determined. Genetic correlation describes the proportion of 

the variance that two phenotypes share that is due to genetic causes. High genetic correlation 

between two phenotypes indicates that the phenotypes share genetic aetiology. This method 

requires the actual genotyping data from the sample and for the sample to have been 

measured on the two phenotypes in question. 

4. Linkage Disequilibrium (LD) regression 

LD regression [30,31] is a method that can be used to determine the genetic correlation 

between two phenotypes, using only summary statistics from GWASs. LD regression 

estimates the genetic effect on a trait by measuring the extent to which the observed effect 

sizes from a GWAS can be explained by LD. The covariance between the genetic effects in two 

phenotypes can be indexed in a similar way, normalizing this genetic covariance by the 

heritability of the trait will estimate the genetic correlation between the two traits. This 

method does not require genotyping data, and can produce genetic correlations for two 

phenotypes that were GWAS-ed on different samples. For example LD regression is used to 

compute the genetic correlation between intelligence and longevity by using summary 
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statistics from a GWAS of mortality and a GWAS of intelligence, both conducted on 

independent samples. 

5. Polygenic scores (PGS) 

PGS analysis uses summary GWAS data for a given phenotype to test whether polygenic 

liability to that phenotype is associated with the same or different phenotype measured in an 

independent sample. It allows the amount of variance in one phenotype attributed to the 

polygenic score for the same or a second phenotype to be calculated. A PGS for a particular 

phenotype can be calculated for each individual in a sample, by summing the known effect 

size of each individual SNP (obtained from a GWAS of that phenotype) multiplied by the 

number of reference alleles present for that SNP in a particular individual. PGSs can be 

calculated using PRSice [47]. For example, the polygenic score for risk of coronary artery 

disease is associated with cognitive ability in older adults [48]. 

6. Mendelian Randomization (MR) 

The methods described above will indicate whether or not two phenotypes share genetic 

aetiology, but do not reveal the direction of causation. Once shared genetic aetiology 

between two phenotypes is established, MR methods can be used to investigate whether one 

phenotype directly influences the other phenotype, or whether genetic variants 

independently effect both phenotypes. Bi-directional MR allows each phenotype to be used 

as the exposure or the outcome in turn, potentially providing support for the direction of 

effect. In MR, genetic variants (often variants that are genome-wide significantly associated 

with the relevant phenotype) are used as instrumental variables (IV) for the exposure. Unlike 

the exposure itself, these genetic variants should be largely independent of confounding 

factors and reverse causation. The IV is used to estimate if the exposure causally influences 
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the outcome. There are three basic assumptions of MR: (1) the genetic variants are associated 

with the exposure; (2) the genetic variants are only associated with the outcome of interest 

via their effect on the exposure; and (3) the genetic variants are independent of confounders 

of both the exposure and the outcome. Biological pleiotropy, whereby a genetic variant 

independently influences multiple traits, may violate the second assumption. The more SNPs 

that make up the IV the more likely that biological pleiotropy will be present. Methods have 

now been developed that test and correct for biological pleiotropy [49]. Two-sample MR 

allows the exposure and the outcome to be measured in different samples and therefore the 

effect of the IV on the exposure and outcome can be obtained from GWAS summary data 

[50].  
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Figure 

 

This is a ‘Manhattan plot’, taken from Davies et al.’s genome-wide association study of 

300,486 participants on general cognitive function [24]. Chromosome number is shown on 

the X-axis, with each dot representing one of the more than 12 million imputed single 

nucleotide polymorphisms. The red line represents genome-wide significance, i.e. p < 5 x 10-

8. 
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Table 

Genetic correlations (rg, with p values) between intelligence and health outcomes from Hill 

2018 [23], Davies 2018 [24], and Savage in press [25]. 

  Hill, 2018 [23] Davies, 2018 [24] Savage, in press [25] 

Phenotype 
category 

Phenotype rg P rg P rg P 

Vascular-
metabolic 

Angina   -0.18 7.58 × 10-9   

 Coronary artery 
disease 

-0.17 1.03x10-6 -0.11 0.0024 -0.19 1.23x10-7 

 HDL cholesterol   0.092 8.10 × 10-6   

 Heart attack   -0.17 4.74 × 10-7   

 Hypertension   -0.15 2.44 × 10-14   

 LDL cholesterol   -0.055 0.019   

 Triglycerides   -0.052 0.027   

 Type 2 diabetes -0.09 0.0077 -0.073 0.043 -0.042 0.33 

Brain measures Infant head 
circumference 

    0.28 7.18x10-5 

 Intracranial 
volume 

  0.27 1.56 × 10-5 0.25 6.56x10-9 

Physical and 
physiological 

Age at 
Menopause 

  0.13 1.10 × 10-5   

 Alzheimer's 
disease 

-0.38 0.00010 -0.37 2.78 × 10-5 -0.26 3.95x10-5 

 Birth length     0.16 3.88x10-3 

 Birth weight   0.11 2.09 × 10-6 0.10 0.12 

 BMI -0.16 1.38x10-16 -0.13 8.38 × 10-12 -0.12 1.64x10-6 

 Chronotype -0.15 1.45x10-8     

 Fathers age at 
death 

  0.37 4.75 × 10-33   

 FEV1 0.10 0.00037 0.19 1.33 × 10-19   

 Hand grip 
strength (right) 

  0.086 4.08 × 10-5   

 Happiness   0.086 9.2 × 10-3   

 Head 
circumference 

0.31 1.33x10-8     

 Health 
satisfaction 

  -0.26 3.43 × 10-21   

 Height 0.12 1.13x10-14   0.082 4.96x10-4 

 Longevity   0.17 0.0036 0.43 4.91x10-8 

 Lung cancer   -0.26 4.73 × 10-9   

 Mothers age at 
death 

  0.48 5.82 × 10-30   

 Obesity -0.18 9.3x10-14     

 Osteoarthritis   -0.24 3.78 × 10-11   

 Overall poor 
health rating 

  -0.39 7.69 × 10-105   

 Parents age at 
death 

0.37 0.0094 0.36 3.5 × 10-10   

 Self-rated 
health 

0.46 1.37X10-83     

 Sleeplessness/in
somnia 

  -0.12 7.27 × 10-8   
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 Smoking status -0.27 2.9x10-14 -0.20 5.61 × 10-8 -0.15 2.61x10-3 

 Tiredness -0.18 8.28x10-9     

 Waist 
circumference 

    -0.10 9.69x10-5 

 Waist-hip ratio   -0.17 4.02 × 10-14 -0.17 8.6x10-10 

 Wears glasses or 
contact lenses 

  0.28 2.12 × 10-13   

 Longsighted-
ness 

  -0.21 2.04 × 10-5   

 Shortsighted-
ness 

  0.32 1.92 × 10-24   

 

Note: Samples contributing to the three papers are not independent. Variables with no 

significant genetic correlation with intelligence in any of the three studies were not included. 

P values shown are nominal; some do not survive Bonferroni correction or correction for false 

discovery rate, as indicated in the three papers. 
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