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ARTICLE INFO ABSTRACT

As human development and urbanization expand across the landscape, increasing numbers of streams are
threatened with impairment from disturbance and stresses associated with land use changes. In this investiga-
tion, a Bayesian Network (BN) with an expert-informed model structure was developed to predict stream vul-
nerability to urbanization across a range of biophysical conditions. Primary factors affecting vulnerability were
stream buffers, colonization connectivity, agriculture, watershed area, and sand/gravel aquifers. On a scale from
0 to 100 (lowest to highest probability), BN model vulnerability scores ranged from a minimum of 20 to a
maximum of 87.5 across the 23,554 stream catchments in our statewide study area. Catchment vulnerability
scores were linked with predictions of land development suitability from a second BN model in order to map the
locations of streams at risk of impairment from projected future urbanization in two large watersheds in Maine,
USA. Our BN synthesis identified 5% of the streams that are at risk based on two assessment criteria: (1) their
catchments have projected future impervious cover (IC) levels greater than 6% and (2) the stream catchments
have predicted vulnerability scores in the highest quartile of the BN model probability distribution. These at-risk
streams represent priority targets for proactive monitoring, management, and conservation efforts to avoid fu-
ture degradation and expensive restoration costs. This study laid the conceptual groundwork for using BN spatial
models to identify streams that are not only vulnerable to urbanization, but are also located in catchments
classified with a high probability of development suitability and future urbanization.
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maintain structure and function despite increased exposure to stressors
(Pearsons and Li 1992; Vieira, Clements, Guevara, & Jacobs, 2004).

1. Introduction

An undeveloped forested watershed can tolerate only a limited
amount of urbanization and human development activity before
symptoms of stress and degradation begin to appear in downstream
aquatic ecosystems. However, the response of streams to anthropogenic
land use changes can vary as a function of watershed biophysical
conditions that influence resistance or resilience properties of the
coupled catchment and stream system (Alberti and Marzluff 2004;
McCluney et al., 2014; Utz et al., 2016). In general, one would expect
the streams at highest risk of impairment from development to be those
with watershed characteristics that confer low resistance or high vul-
nerability to changing land use conditions or urbanization. Here, re-
sistance refers to the ability of an ecosystem to resist change and to

* Corresponding author.
E-mail address: cronan@maine.edu (C.S. Cronan).

Conversely, vulnerability describes the sensitivity of a system to a stress
and the degree to which the system will experience harm due to ex-
posure to a stressor or perturbation (Besaw et al., 2009; Turner et al.,
2003). Resilience describes the ability of a system to recover from dis-
turbance or stress.

Under authority of the federal Clean Water Act (CWA) and state
water quality standards, the U.S. Environmental Protection Agency (US
EPA) and state regulatory agencies endeavor to sustain healthy aquatic
resources and to restore the chemical, physical, and biological integrity
of waters that have been impaired by urbanization, non-point pollution,
or other stressors. In Maine, the Department of Environmental
Protection (Maine DEP) monitors the health of streams and determines
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if they attain water quality standards and criteria associated with four
state-defined statutory classes (Courtemanch, Davies, & Laverty, 1989;
Danielson et al., 2012; Davies, Drummond, Courtemanch, Tsomides, &
Danielson, 2016). If a stream does not attain water quality standards or
criteria associated with its designated class, then it may be listed as
impaired in the CWA 303(d) inventory of impaired waters (Maine DEP,
2012a). Unfortunately, the economic cost of restoring impaired streams
can be substantial — as one example, ongoing restoration of the im-
paired Long Creek ecosystem in Portland, Maine is projected to cost $14
million (FB Environmental Associates 2009). With 2300 miles of
streams and rivers currently classified in 303(d) impaired status by US
EPA, Maine faces a daunting and expensive mitigation and restoration
challenge. Given this set of circumstances, we argue that a proactive
policy focused on avoiding stream impairment is a more cost-effective
and sustainable approach to resource management than a reactive
strategy that necessitates large expenditures to restore streams and
rivers after they become degraded. The question then becomes: how
can we identify streams that are at risk of future impairment, so that
they can be protected by appropriate smart growth strategies or wa-
tershed conservation actions?

Any answer to that question will necessarily involve a focus on
impervious cover. As urbanization expands in the landscape, stream
quality generally decreases when impervious cover (IC) — any surface
such as a road, parking lot, or roof that impedes water infiltration into
the soil — approaches or exceeds 10% of the area in a watershed
(Schueler, Fraley-McNeal, & Cappiella, 2009). In fact, Maine water-
sheds with IC values above 6% have been shown to exhibit marked
declines in aquatic insect diversity that are indicative of ecological
degradation (Morse, Huryn, & Cronan, 2003). More recently, Danielson
et al. (2016) reported that there is a rapid loss of sensitive species be-
tween 1 and 3% IC and the risk of not attaining Class AA and A bio-
logical criteria is high after 3% IC. There is an additional loss of sen-
sitive species between 3 and 6% IC and the risk of not attaining Class B
biological criteria is high after 6%. Although it is widely accepted that
stream integrity declines when urban area or IC increases beyond a
certain threshold, the rate of degradation and the IC threshold can be
variable. This implies that differences in watershed or environmental
characteristics may mitigate or exacerbate patterns of stream vulner-
ability to urbanization.

Unfortunately, few studies have examined explicit ways in which
watershed biophysical factors influence stream sensitivity to develop-
ment and land use changes. There is, however, an extensive literature
focused on landscape attributes that contribute to stream impairment
and the degradation of downstream water quality. Investigators in
several studies have demonstrated that agricultural cover in a wa-
tershed contributes to declines in stream water quality and a loss of
biotic integrity (Allan, Erickson, & Fay, 1997; Carpenter et al., 1998). In
Wisconsin watersheds, urbanization consistently contributed to de-
graded streams, whereas the influence of agriculture on streams was
more variable (Wang, Lyons, & Kanehl., 2001). Strayer et al. (2003)
found that cultivated and urban lands in the Mid-Atlantic region were
associated with symptoms of stream degradation (e.g., high N, low fish
species richness, high proportion of exotic fish, and low macro-
invertebrate species richness), but wetlands, forests, and pastures were
correlated with desirable stream quality traits. A number of models
have been created using landscape variables to predict physical, bio-
logical, or chemical conditions in streams. In one example, investigators
used a geologic classification system based on acid neutralizing capa-
city (ANC) and other landscape variables to predict the locations of
acid-sensitive and acid-impacted streams in the southern Appalachian
Mountains (Sullivan, Webb, Snyder, Herlihy, & Cosby, 2007). A model
developed by Carlisle et al. (2009) used riparian land cover, road-
stream intersections, elevation, soil permeability, depth-to-water table,
and percent agricultural land cover to predict biological condition in
streams in the Eastern U.S. Esselman et al. (2011) calculated a cumu-
lative disturbance index for each U.S. watershed using a model relating
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fish IBI (index of biotic integrity) to anthropogenic disturbance vari-
ables such as percent urban or agricultural area in the watershed, po-
pulation density, road density, dams, and mines. In a similar study,
Bedoya et al. (2011) developed a model to predict IBI scores for streams
in Ohio, and identified hay/pasture lands, deciduous forest, low in-
tensity development, open urban land, woody wetlands, and deciduous
forest within a stream buffer zone as key model variables. Taken as a
whole, previous studies have indicated that impacts from anthro-
pogenic stressors are widely manifested either directly through urban
and agricultural runoff or indirectly through the removal of forests and
wetlands.

Despite the growing number of analyses of correlations between
landscape features and water quality, there has been only a limited
effort to predict the relationships between modeled future land use
conditions and stream water quality. The few studies that have ex-
amined future conditions have tended to use buildout analyses (Conway
and Lathrop, 2005), which consider the implications of full construction
in accordance with current zoning. In one novel exception to the
buildout approach, Van Sickle et al. (2004) applied four alternative
land use futures scenarios to predict the biological condition of streams
in the Willamette River Basin, Oregon for the year 2050. They reported
that agricultural lands and development within a 120 m stream buffer
were two primary determinants of stream condition. Although alter-
native futures models have not yet been widely applied to stream
quality issues, such models provide a way to develop and to target
preventive water quality protection strategies that are likely to be less
expensive and disruptive than reactive strategies initiated after water
quality impairment sets in.

In this research, we built on these previous efforts by integrating a
model of landscape-water quality interactions with a second model of
future land use development. We used a Bayesian Network (BN) to
explore the causal web of interacting factors that account for stream
vulnerability to urbanization stressors. Bayesian Networks (BNs) pro-
vide a novel model framework for addressing ecological research pro-
blems (Chen and Pollino, 2012; Marcot, Holthausen, Raphael, Rowland,
& Wisdom, 2001; Uusitalo, 2007), and have been used in recent years to
assess population viability for at-risk fish and wildlife (Marcot et al.,
2001), for land suitability analyses (Chow and Sadler 2010; Meyer,
Johnson, Lilieholm, & Cronan, 2014), for adaptive management deci-
sion-making (Nyberg, Marcot, & Sulyma, 2006), for water quality pre-
dictions (Reckhow 1999), and for examining relationships linking
urban development to physical, chemical, and biological conditions in a
stream (Kashuba et al., 2012). These prior studies have identified sev-
eral potential advantages of Bayesian modeling, including the ability to
incorporate expert knowledge into a deductive framework for making
predictions. For our purposes, the BN modeling approach provided a
tool for combining expert knowledge and GIS spatial information to
predict the statewide distribution of streams that have an elevated risk
of degradation from watershed urbanization.

This investigation focused on identifying resistance and resilience
factors that influence the vulnerability of streams and watersheds to
urbanization, and integrating that knowledge into a predictive BN
modeling framework for application to the sustainable management of
aquatic resources. The major objectives of this study were to: (1) de-
velop a spatially-explicit Bayesian Network (BN) model based on en-
vironmental data, stream biotic metrics, and expert knowledge in order
to identify landscape characteristics that contribute to an increase or
decrease in stream vulnerability to urbanization; (2) predict the po-
tential vulnerability of individual streams in the Maine landscape to
future urbanization stress; and (3) assess the spatial distribution of at-
risk or vulnerable streams in relation to areas that are most likely to
experience future development and urbanization based on alternative
futures modeling projections. Our results demonstrate how BN models
can provide a conceptual framework and a valuable predictive tool for
resource managers and planners to use in (1) envisioning alternative
future scenarios of watershed development; (2) prioritizing specific
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vulnerable streams for conservation protection, (3) developing proac-
tive sustainable management strategies to prevent stream degradation,
and (4) avoiding costly watershed restoration efforts.

2. Study sites

This investigation focused at two scales in Maine, USA: (1) a sta-
tewide analysis of small watersheds with areas < 125km? and (2) a
more detailed analysis of two large drainage systems — the Casco Bay
and Lower Androscoggin River Watershed (CBLA) and the Lower
Penobscot River Watershed (LPRW). Although Maine has a relatively
low current population size of 1.33 million persons, development has
been increasing and is predicted to continue expanding. In fact, LPRW
and CBLA are two of the four watersheds in Maine that were identified
by the US Forest Service Forests on the Edge study as locations where
substantial development growth on private forest lands is expected in
the coming decades (Mockrin, Lilja, Weidner, Stein, & Carr, 2014 ; Stein
et al., 2006, 2009).

Maine is characterized by cold winters, mild summers, moderate
annual precipitation (100 cm * ), and is dominated by forested land
cover (80%), wetlands (10%), agriculture (5%), and human develop-
ment (5%). The state encompasses roughly 8.6 million ha, most of
which is privately owned (> 90%), and 19.4% of the land area is
permanently protected from development (Meyer, Cronan, Lilieholm,
Johnson, & Foster, 2014). There is an east-to-west and south-to-north
human population gradient, with a large proportion of development
focused along the coast and in the warmer southern region of the state.
Most agricultural activity is concentrated in the northeastern part of the
state, while private working forests dominate the western mountains
and northwestern Maine.

3. Methods

The overall process of model development and implementation in-
volved the following general steps: identify the major parameters af-
fecting stream vulnerability; construct an influence diagram for the BN
model; assemble state-wide GIS spatial layers and determine the range
of variability for each factor in the BN model; develop conditional
probability tables (CPT’s) based on discretized spatial data and expert
opinion; run the BN model to assign vulnerability scores for each wa-
tershed in the state; test the model against Maine DEP stream attain-
ment results for a subset of Maine streams; and determine which
streams in the CBLA and LPRW are located in catchments with both
high vulnerability scores and a high probability of future development.
Further methodological details and approaches are described below.

3.1. Development of the Bayesian Network Model

3.1.1. Expert recruitment

The Bayesian Network (BN) model was created with the guidance
and participation of nine Maine professionals with technical expertise
in watershed management, stream ecosystem monitoring, environ-
mental engineering, and aquatic ecology. A primary goal was to recruit
participants with a wide range of experience and perspectives in order
to develop a holistic understanding of the processes driving stream
impairment (Krueger, Page, Hubacek, Smith, & Hiscock, 2012). In BN
model development, experts are defined as individuals who have de-
tailed or specialized knowledge gained through experience, education,
or training regarding the system in question (Kuhnert, Martin, &
Griffiths, 2010). Beyond these requirements, our recruitment was not
influenced by any factor such as age or gender. Recruitment of our
experts from the private and public sectors was accomplished using an
initial email and follow-up phone calls.

3.1.2. Initial expert elicitation, variable identification, and model structure
There is a large body of research describing techniques for eliciting
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expert judgments effectively and with minimal bias. Expert elicitation
can be done directly, by asking experts about values or criteria to use in
a model, or indirectly, by compiling information from broad survey
questions answered by experts (Martin et al., 2011). A variety of
complications can arise in expert elicitation (Low Choy, O’Leary, &
Mengersen, 2009; Martin et al., 2011), including motivational bias,
overconfidence, dominance by one or more members of the group,
polarization within the group, and group think (i.e., agreeing on an
answer in the interest of finishing the task or not wanting to raise a
contrary view). To avoid these pitfalls, experts can be made aware of
the potential for bias (Low Choy et al., 2009) and can work together,
but report their answers individually (Martin et al., 2011). Throughout
the course of BN development, it is important that the process and goals
are clear to the experts, so the elicitation can be as accurate as possible
(Low Choy et al., 2009). When necessary, experts can be asked to ex-
plain their answers when they voice counter-intuitive views or outlying
opinions (Low Choy et al., 2009).

In this study, expert elicitation began with a four-hour focus group
during which participants learned our research goals, the motivation
for creating an expert-derived BN, our definition of stream vulner-
ability, and basic principles regarding the BN modeling process.
Participants then worked as a group to list their choices of the im-
portant factors that influence or govern stream vulnerability to urba-
nization. Based on that list, spatial data layers were acquired that either
directly represented the factor or served as a proxy variable when no
direct data were available (Appendix A in Supplementary file). This set
the stage for construction of an alpha level BN model (Marcot,
Steventon, Sutherland, & McCann, 2006).

The next step in BN model development was the creation of an in-
fluence diagram representing the “causal web” of interacting watershed
environmental variables and different combinations of those variables
that lead to the probability of a final ecological response outcome
(Marcot et al., 2006). BNs consist of nodes describing categorical or
discretized continuous variables, and links connecting the interacting
variables. Nodes with incoming links (child nodes) have conditional
probability tables (CPTs) that describe the probability of different
outcomes occurring given all possible combinations of the various input
nodes (parent nodes). Parent nodes have prior distributions based on
data or expert opinion; in our case, distributions were based on GIS
spatial data. In an effort to achieve model parsimony, we limited the
number of parent nodes linked to any child node to 3 or less, and the
number of levels in the model to 4 or less (Marcot et al., 2006; Marcot,
2012).

3.1.3. Processing catchment data for the BN model

The National Hydrography Dataset (NHD) Version 2 (USGS, 2012)
was used as the state-wide watershed layer in the BN analysis. This
1:100,000 scale dataset represents watersheds and sub-watersheds,
beginning with headwater streams and spanning the whole stream
length by reach-scale sub-catchments. The catchments are generally
smaller than 12-digit hydrological units (HUC-12). Because the NHD
watersheds are nested and overlap each other down the stream net-
work, preprocessing of the catchments was a necessary step. ArcHydro
Tools in ESRI ArcMap 10.0 was used to perform an incremental map-
ping process for combining headwater and reach-scale catchments into
linked downstream drainage units using adjoint catchments that span
the entire upstream area of the reach-scale catchment (Fig. 1). GIS
raster layers representing each variable in the model (Appendix A in
Supplementary file) were projected into UTM 19N using ArcMap 10.0
and were transformed to 30 m pixels. Using the Zonal Statistics tool in
the Raster Package version 3.1.2 of the R Statistical Computing Soft-
ware (R Core Team 2013), all raster layers were summarized for the
reach-scale catchments, the headwater catchments, and the adjoint
catchments. Post-processing combined the area-weighted values for the
reach-scale catchments and their corresponding adjoint catchment to
get the final value of each spatial parameter for the reach-scale
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Stream

Fig. 1. The incremental mapping process for combining reach-scale watersheds into linked downstream drainage units using adjoint catchments. This iterative process is continued down
the network until the size of the reach-scale catchment plus the adjoint catchment reaches 125 km? (A) Headwater catchments and reach-scale catchments, with no adjoint catchments.
(B) The adjoint catchment (dark gray area) for the reach-scale catchment 1; the adjoint catchment represents the upstream area contributing runoff to catchment 1. (C) The adjoint
catchment (dark gray area) for reach-scale catchment 2. This adjoint catchment includes reach-scale catchment 1, as well as all of the headwater catchments contributing runoff to

catchment 2. (D) The shaded portion represents areas contributing to catchment 3.

catchments. It was necessary to use 30 m pixels in this work, because
5 m pixels required an inordinate amount of computing power and time
for this type of large-scale spatial model.

3.1.4. Discretization and conditional probability tables

All continuous data in the BN were separated into two or more
classes through the process of “discretization” (Chen and Pollino 2012).
Choosing the number of states and the discretization values for a CPT is
challenging, and differences in these values can affect model outputs.
Thus, it is preferable to base discretization on the numerical distribu-
tion of input data in order to minimize errors (Uusitalo 2007). In dis-
cretizing our continuous variables, summaries for each spatial variable
across all watersheds were presented to the panel of experts, along with
suggestions for cutoff values. Through iterative emails and phone calls,
experts registered their opinions for optimal cutoff values, and variables
were ultimately classified into no more than three states as per Marcot
et al. (2006).

Surveys containing the BN influence diagram and all conditional
probability tables were given to the experts to complete. The CPT
surveys (Appendix B in Supplementary file) were administered in small
group meetings or one-on-one with the principal investigator (PI).
During meetings, the PI reiterated the model objectives and helped to
guide the experts through the process of completing the complex sur-
veys. The CPTs depicted each possible unique combination of input
variables and provided a 1-5 point Likert-type scale for ranking sepa-
rate combinations based on their potential contribution to stream vul-
nerability to urbanization stressors. Within the small groups, discussion
was encouraged, but experts were asked to write their answers sepa-
rately in order to minimize group bias (Low Choy et al., 2009; Martin
et al., 2011). Methods described by Meyer, Johnson et al. (2014) were
followed in order to convert the 1-5 point scales into probability dis-
tributions (Appendix B in Supplementary file). Below each CPT, a
comment section was provided to allow experts to indicate the as-
sumptions they made regarding interactions among the BN variables in
affecting vulnerability to the stressor.

Model structure and conditional probability values were entered
into the modeling software Netica version 5.12 (Norsys Software
Corporation 2013), which allowed each watershed to be processed in-
dividually. The BN model computed a value for the probability of
vulnerability to urbanization for each watershed based on biophysical
spatial data compiled for Maine watersheds, expert-derived CPTs, and
the discretized data distributions.

3.2. Model evaluation

3.2.1. Sensitivity analysis

In their discussion of recommended practices in Bayesian network
modeling, Chen and Pollino (2012) noted that model evaluation in its
various forms helps to confirm that interactions and model outcomes
are feasible and defensible. Evaluation techniques can include a sensi-
tivity analysis (Chen and Pollino 2012), testing a model with in-
dependent empirical data (Allan et al., 2011), consulting with an expert
panel (Meyer, Johnson et al., 2014), or testing the ability of the model
to perform under a range of conditions or scenarios (Chen and Pollino
2012).

We performed a sensitivity analysis based on the variance reduction
method in an effort to rank the variables from most to least influential
in the final model output; the process also indicated the direction of
influence for each variable. For this procedure, each node was set to its
highest state while all others remained unchanged; then, the direction
of change in probability was recorded. If the probability of being vul-
nerable decreased when a variable was set to its highest state, that
factor was considered to decrease vulnerability to degradation and was
termed a “positive” variable. Model variables that increased the prob-
ability of vulnerability were termed “negative” variables.

3.2.2. Stream monitoring data and attainment criteria used in model
validation

Maine has four statutory classes of streams with different aquatic
life criteria (a.k.a., biological standards) (Table 1). Biological, physical,
and chemical measurements are routinely collected by Maine DEP’s
Stream Biomonitoring (BIOMON) program at fixed stream locations
throughout the state in order to track the status of these aquatic re-
sources (Danielson, Tsomides, Suitor, DiFranco, & Connors, 2016).
Stream sites are normally sampled between July and September on a 5-
year rotation, with a primary focus on macroinvertebrate and algal
community composition (Danielson 2006; Danielson, Loftin, Tsomides,
DiFranco, & Connors, 2011; Davies and Tsomides 2002). Maine DEP
evaluates the macroinvertebrate and algal metrics to determine if
streams attain aquatic life criteria consistent with the State’s water
quality standards. Streams that fail to attain the aquatic life criteria
assigned to them by the State Legislature are identified as impaired.
Streams that fail even to attain Class C aquatic life criteria are cate-
gorized as non-attainment (NA) streams. The attainment class of each
stream (i.e., AA/A, B, C, or NA) is determined by Maine DEP using
linear discriminant models based on variables describing macro-
invertebrate and algal communities (Danielson et al., 2012; Davies and
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Table 1
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Statutory classes and corresponding aquatic-life and habitat standards for rivers and streams in Maine.

Source: Maine Revised Statutes: Title 38, Chapter Three, Sections 464-465.

Class Biological Standard

AA Habitat shall be characterized as natural and free flowing. Aquatic life shall be as naturally occurs.

A Habitat shall be characterized as natural. Aquatic life shall be as naturally occurs.

B Habitat shall be characterized as unimpaired. Discharges shall not cause adverse impacts to aquatic life. Receiving water shall be of sufficient quality to support all aquatic
species indigenous to the receiving water without detrimental changes in the resident biological community.

C Habitat for fish and other aquatic life. Discharges may cause some changes to aquatic life, provided that the receiving waters shall be of sufficient quality to support all

species of fish indigenous to the receiving water and maintain the structure and function of the resident biological community.

Tsomides 2002; Davies et al., 2016). We used these Maine DEP statu-
tory class attainment data for our validation test of the BN model.

Stream sites were excluded from this investigation if (1) the wa-
tershed area exceeded 125 km?; (2) evidence suggested that sample
data were compromised during collection; or (3) a stressor other than
urbanization (e.g., agriculture or a significant point source) was sus-
pected to be the primary driver of stream degradation. The upper size
limit of 125 km? was intended to restrict the analysis to first through
third order streams, which are generally more vulnerable due to their
small dilution capacity. From an initial dataset containing 388 streams,
our screening process yielded a total of 108 sample sites with macro-
invertebrate community data and 88 sites with algal community data.
Only one sample date was used for each site, and the selected date was
always the most recent. Sample sites were located in catchments ran-
ging from minimally disturbed to highly urbanized, and varied in size
from 0.35 km? to 118 km?.

3.2.3. Model validation

Although validation is an important part of model evaluation, BNs
are often difficult to validate in a thorough or rigorous way (Marcot
2012). In fact, Aguilera et al. (2011) reported that model validations
were absent from over a third of the BN models they reviewed. For this
study, model validation was based on comparing the correspondence
between BN model vulnerability predictions, stream attainment of
statutory class, and impervious cover risk thresholds. Although every
stream in Maine is expected to attain a statutory class of either AA/A, B,
or C (38 M.R.S.A Section 464), many streams do not attain the standard
assigned to them. We tested the prediction that non-attaining streams
draining catchments with% IC values below Maine DEP impervious
cover risk thresholds (Fig. 2) are intrinsically more sensitive to urba-
nization and exhibit BN model scores in the two highest quartiles of the
BN vulnerability range. These high vulnerability sites are those that do
not attain Class AA/A at 3% IC or lower, do not attain B at 6% IC or
lower, or do not attain C at 15% IC or lower. Similarly, we expected that

streams which attain their statutory class at % IC values above the
Maine DEP risk thresholds (Fig. 2) would be relatively more resilient,
with BN vulnerability scores in the lower quartiles 1 and 2. As such, the
sites with low vulnerability are those that attain Class AA/A at greater
than 1% IC, attain at least B at greater than 3% IC, or attain at least C at
an IC value greater than 10%.

3.3. Integrating predictions of stream vulnerability with future development
scenarios

For the final stage of our investigation, we performed a digital
overlay analysis to examine which streams with high BN vulnerability
scores are more likely to experience increased future land development
activity that may contribute to impairment of sensitive streams. In a
previous study, we used a BN model to incorporate stakeholder
knowledge and over 100 geospatial data layers in order to predict the
probability of suitability for four land use categories across two major
watersheds in Maine — the 1 million hectare Lower Penobscot River
Watershed and the 0.8 million hectare Casco Bay and Lower
Androscoggin Watershed (Meyer, Johnson et al., 2014). We determined
land use suitability for development, conservation, agriculture, and
forestry in each watershed at 30 m pixel resolution using expert
knowledge and CPT inputs from stakeholders and experts in all four
land use categories. Estimates for development suitability from that
model were used in this investigation to determine which streams with
high BN vulnerability scores are located in catchments with a high
probability of suitability for future development and urbanization.

Fig. 2. Threshold levels of watershed impervious cover (dark
shading) at which a stream is at risk of not attaining biological

criteria associated with Classes AA/A, B, or C. The thresholds
correspond to 1-3% IC for Class AA/A, 3-6% for Class B, and
10-15% for Class C.

Class
AA/A High Risk of Not Attaining Statutory Class
B High Risk
C ’ High Risk
I T T T 1
0 5 10 15

Impervious Cover (%)

20
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Fig. 3. Influence diagram for a Bayesian network model that predicts the probability of stream vulnerability to urbanization stress as a function of physical, chemical, and resilience
factors. The numbers in parenthesis indicate the number of discrete states for a given variable.

4. Results

4.1. Using a Bayesian network and expert knowledge to predict stream

vulnerability

4.1.1. Model structure

The structure of our BN model was organized around an influence
diagram (Fig. 3) that incorporated the biophysical spatial variables
listed in Table 2 and contained nine stress categories that exert direct or
indirect effects on stream vulnerability. The categories included

Table 2

flashiness, low base flow, sedimentation, heat, DO, nutrients, salt
(chloride), acidity, and toxics. Within the influence diagram, some of
the more complex individual stressors were separated into two inter-
mediate nodes containing spatial variables that either act as con-
tributors or mitigators of a particular stressor. For example, the five
variables associated with heat stress were divided into two mitigators
(groundwater input and percent forested riparian area) and three
contributors (air temperature, small drainage area, and retained water).

The nine stress categories were aggregated into one of two major
stress regimes based on whether their contribution to vulnerability was

Variables used in the Bayesian network model, including the minimum, median, mean, and maximum values for all 23,554 catchments. Soil depth has no maximum value, because if the
soil is deeper than 201 cm, the depth is unknown. See Appendix A for variable descriptions.

Variable Scale Min Median Mean Max
Dams (count) Watershed 0 0 0.14 15
Stream/road intersections (density) Watershed 0 0.08 0.27 12.4
Percent resistant substrate 30 m stream buffer — reach scale 0 82.46 60.3 100
Sand/gravel aquifers (presence/absence) 60 m stream buffer “ a a “
Area (km?) Watershed 0.5 6.2 16 125
Drains to ocean (yes/no) Watershed 4 N 4 4
Nearest healthy stream (km) Watershed 0 1.2 1.3 7
Percent agricultural area Watershed 0 0 2 88
Percent non-point sources Watershed 0 1.3 4.2 88
Upstream riparian buffer area (km?) 60 m stream buffer 0 0.6 1.9 70
Percent natural area 60 m stream buffer 0 94 84 100
Percent forested area 60 m stream buffer 0 80.2 74 100
Percent lake area Watershed 0 0 2.4 100
Percent retained water area (lakes + wetlands) Watershed 0 9.5 11.5 100
Percent acidic wetlands Watershed 0 0 0.8 95
Percent wetlands area Watershed 0 6.9 9.1 100
Average July maximum air temperature (°C) Watershed 11.9 25.7 25.5 28.25
Average summer precipitation (inches) Watershed 14 28.2 28.4 43
Buffering capacity (buffered/not buffered) Stream reach N “ N N
Percent soil drainage class A or B Watershed 0 5.6 14.3 100
K factor 30 m stream buffer 0.7 5.2 5.7 13.3
Percent soil drainage class D Watershed 0 43 45 100
Soil depth (cm) Watershed 0 87.6 98.7 > 201
Percent soil drainage class A, B, A/D, or B/D Watershed 0 6 15 100
Slope (percent) Watershed 0 6 7.2 53.2
Stream gradient 30 m stream buffer 0 3.9 4.7 64.9

@ Data do not fit into these categories.
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Fig. 4. Vulnerability scores for 23,554 reach-scale catchments in Maine displayed by
quartile (from lowest = 1 to highest = 4), with county boundaries shown in black (upper
figure). For reference, the easternmost point on the map, Eastport, ME, is at 44.90° N,
66.99° W. The lower graph illustrates the distribution of vulnerability scores, including
values for minimum, median, mean, maximum, and quartile boundaries.

likely to be exerted through chemical or physical stress (Fig. 3). A third
section of the influence diagram represented the variables that influ-
ence resilience, which is the capacity of a watershed to recover from
stress or a stress event. Variables assigned to this category included
those that contribute to potential recolonization of a stream after a
disturbance event. The output of these three collective nodes — vul-
nerability to physical stress, vulnerability to chemical stress, and resi-
lience — were combined in a final node predicting the overall prob-
ability of vulnerability to urbanization stress.

4.1.2. Model outputs — vulnerability scores

The BN model was used to generate probabilities of vulnerability for
each of the 23,554 stream catchments with areas less than 125 km? in
our statewide study area. On a scale of 0-100 (lowest to highest
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probability), the distribution of BN vulnerability scores ranged from a
minimum of 20.2 to a maximum of 87.5, with a median value of 57.2
(Fig. 4). The highest quartile of vulnerability included watersheds with
vulnerability scores ranging from 63.7 to 87.5. Catchments re-
presenting the four quartiles of the BN vulnerability distribution were
present in all 16 state counties, but the two upper quartiles of higher
vulnerability were relatively more abundant along the coastal plain
from Portland to Calais, in the central portion of the state south of Mt.
Katahdin, and in the northeastern portion of the state (Fig. 4).

4.1.3. Sensitivity analysis

A sensitivity analysis was performed to examine the order of im-
portance of variables in determining the final probability of high vul-
nerability (Marcot 2012). Based on results shown in Fig. 5, the most
influential variables in the model were upstream buffer, the drains-to-
ocean parameter (which affects colonization from downstream
reaches), percent crops, forested buffer, watershed area, and presence
of a sand/gravel aquifer. Least important variables were percent re-
tained water, summer precipitation, percent of soils in drainage class D,
and resistant substrate.

Upstream buffer, forested buffer, watershed area, and presence of
sand/gravel aquifers acted as positive variables to decrease the prob-
ability of vulnerability, while drains-to-ocean and percent agricultural
area caused an increase in probability of vulnerability (negative influ-
ence). Upstream buffer combines two factors that can influence biotic
communities: the degree to which a riparian zone is intact, and the
length of upstream network from which organisms can drift down-
stream to re-colonize a stream reach after a disturbance event.

4.1.4. Validation of the Bayesian Network model

In evaluating the BN model, we applied a validation step that was
based on determining the correspondence between stream attainment
of its statutory class, watershed urbanization based on % IC, and the
predicted BN model vulnerability score for that stream. Our data set
included 32 non-attaining streams and 76 streams that attain their
statutory class (Table 3a). Because most non-attaining streams have
watershed % IC values above the Maine DEP impairment threshold, this
severely limited the streams available for validation of the BN model.
Out of three streams that do not attain their statutory class at an IC
value below the impairment threshold, one of these was classified by
the BN model into the correct quartile of elevated vulnerability - i.e.,
quartile 3 or 4 (Table 3b). For the 9 streams that attain their statutory
class at an IC value above the impairment threshold, 5 of them were
classified by the BN model into the correct quartiles of lower vulner-
ability — i.e., quartile 1 or 2.

It is important to note that the data in Table 3 provide another
valuable perspective on model validation, if we look more closely at the
27 out of 32 non-attaining streams that are above the IC threshold for
their statutory class. Twenty-five of these high IC streams are in the 3rd
or 4th quartile of BN model vulnerability scores, which means that high
vulnerability and high IC are convergent rather than divergent for these
streams. One or both factors may contribute to the lack of attainment,
given that (1) the IC is high enough to be a stress; and (2) the stream is
in the most vulnerable category for responding adversely to the IC
stress.

4.2. Predicting streams at risk of future impairment based on BN models

Our third objective was to integrate stream BN vulnerability scores
with independent predictions of watershed-level development suit-
ability in order to map the distribution of streams at risk of impairment
from projected future urbanization. This analysis focused on the Lower
Penobscot River Watershed (LPRW) and Casco Bay and Lower
Androscoggin River Watershed (CBLA), where development suitability
was previously assessed by Meyer, Johnson et al. (2014) using a cou-
pled BN-GIS spatial model of land use suitability (Fig. 6).
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Fig. 5. Sensitivity analysis based on variance reduction; bars
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Based on our BN-GIS land cover model, we selected all pixels that
were classified in the top quartile of development suitability in each of
the two watersheds. This procedure identified 41,768 ha in LPRW (re-
presenting 4% of the land area) and 244,616 ha in CBLA (equal to 38%
of the land area) that were predicted to have the highest probability of
suitability for future development. A GIS query was then performed to
determine which of those pixels with a high probability for future

Table 3

development were located in catchments in the highest quartile of
vulnerability (Fig. 7). Using that final set of pixels, we screened
catchments to determine which ones could potentially attain a future
urban footprint of 6% IC, a level of impervious cover that corresponds
with the Maine DEP IC threshold associated with streams that no longer
attain statutory Classes AA/A or B (Danielson et al., 2016). Because
algorithms for converting development to IC generally indicate that

(a) Model validation analysis showing which attaining and non-attaining streams above or below the IC impairment thresholds have the
expected vulnerability scores from BN model predictions. Table entries show IC impairment thresholds by statutory class (e.g., > 3% IC for
statutory class A) vs. quartile of vulnerability (Q1 through Q4). (b) The lower table summarizes the results from part (a). The 108 streams in
this analysis met the selection criteria described in the methods section and were characterized using macroinvertebrate community data.

Statutory Class A

Statutory Class B

Statutory Class C

<1 1-3 >3 <3 3-6 >6 <10 10-15 >15 TOTAL
Number not attaining 0 1 1 3 0 21 0 1 5 32
number in Q1 0 1 0 2 0 0 0 0 0 3
number in Q2 0 0 0 0 0 2 0 0 0 2
number in Q3 0 0 0 1 0 3 0 0 0 4
number in Q4 0 0 1 0 0 16 0 1 5 23
Number attaining 12 9 2 30 1 5 2 0 2 76
number in Q1 6 3 1 18 6 2 0 0 0 36
number in Q2 2 3 1 8 6 1 1 0 0 22
number in Q3 1 3 0 4 1 1 0 0 0 10
number in Q4 3 0 0 0 1 1 1 0 2 8
Sum 108

Attaining with High IC

Not Attaining with Low IC

Total number of streams 9
Number in correct quartile 5
Percent in correct quartile 56

33
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Lower Penobscot River
Watershed

Fig. 6. The Casco Bay/Lower Androscoggin (CBLA) and Lower Penobscot River Watershed (LPRW) study areas. Development suitability in each watershed is displayed by quartile, with
Quartile 4 representing areas with the highest probability of suitability for development. Areas in white are unavailable for development (e.g., conserved land).
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Fig. 7. Catchments in the CBLA and LPRW that are classified in the top quartile of BN vulnerability to urbanization (Quartile 4). Colors show the percent of total area in a vulnerable
catchment that is classified in the top quartile of development suitability (Quartile 4 in Fig. 6).

only 25-80% of developed land can be classified as IC (Danielson et al.,
2016), we computed projected future IC in the study catchments as
current IC + (area with high development suitability/2), which as-
sumes that areas with high suitability will eventually be fully developed
and that half of that urbanized area will become actual IC. Results in-
dicated that 415 streams in the LPRW and CBLA watersheds met our
criteria for an elevated risk of future impairment based on their location
in catchments with projected future IC levels greater than 6%, com-
bined with vulnerability scores in the uppermost or 4th quartile of the

BN model probability distribution (Fig. 8). Those streams represent 5%
of the sub-catchments in the LPRW and CBLA watersheds. For per-
spective, there are currently 29 waterways listed as 303 (d) urban-im-
paired streams (Maine DEP, 2012b) in the LPRW and CBLA study areas.

5. Discussion

In this investigation, we worked with a team of aquatic resource
experts to develop a BN spatial model for predicting stream
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Fig. 8. Spatial distribution of 415 “at risk” catchments in the CBLA and LPRW watersheds. The at-risk catchments exhibit both high BN vulnerability (Quartile 4) and a projected future

impervious cover greater than 6%.

vulnerability to urbanization stress. By integrating outputs from our BN
watershed vulnerability model with the development suitability model
of Meyer, Johnson et al. (2014), we identified over 400 streams in the
Lower Penobscot River and Casco Bay-Lower Androscoggin River wa-
tersheds that have an elevated risk of impairment from future devel-
opment in their catchments. These vulnerable streams represent key
targets for monitoring, proactive growth management, and conserva-
tion efforts intended to protect the surrounding watersheds and asso-
ciated streams from degradation. Model results such as these can be
used not only to guide development away from vulnerable watersheds,
but also to identify watersheds that are less likely to be impacted by
new development - i.e., areas suitable for future growth. As such, this
information should allow developers, municipalities, and decision-ma-
kers to plan strategically for smart development that will avoid ex-
pensive stream restoration costs.

To our knowledge, this is the first investigation to use com-
plementary BN spatial models to identify streams that are not only
vulnerable to urbanization, but are also located in watersheds with a
high probability of development suitability and future urbanization. In
their alternative futures model, Van Sickle et al. (2004) projected how
different scenarios of land use change could affect stream biological
condition, but did not examine how the impacts of anthropogenic dri-
vers might be mitigated by watershed resilience and resistance factors.
McCluney et al. (2014) presented a conceptual model for the potential
effects of resistance and resilience factors on river responses to human
alterations, but did not develop an actual application of their macro-
systems theory.

A major advantage of expert-based BN modeling is the ability to
gain an improved understanding of the knowledge base for a particular
model topic (Chen and Pollino 2012; Marcot et al., 2001; Uusitalo
2007), especially in instances when the state-of-science is incomplete or
is inconsistent. Throughout our modeling process, we encouraged dis-
cussion among the experts regarding the variables and structure in our
BN model. In some cases, experts had opposing views about the effect of
a variable on stream vulnerability to urbanization, and our modeling
process helped to clarify areas of agreement and disagreement on the
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state-of-science.

One focus of ongoing discussion throughout the modeling process
was the effect of soil drainage class (i.e., class A or B soils vs. D soils) on
vulnerability to urbanization. Some experts argued that well-drained A
or B soils allow infiltration of water surrounding urban IC, which tends
to increase stream health. Others thought that a watershed with poorly
draining D soils supports a stream that is naturally exposed to flashy
flows, so the difference in hydrologic disturbance due to urbanization is
not as large as in a watershed with well-draining soils. This debate
caused CPT surveys to be completed in different ways by each expert,
depending on which opinion the expert held. The lack of agreement
resulted in soil drainage variables having a relatively low rank in the
sensitivity analysis and highlighted this topic as one requiring further
research.

The BN vulnerability model was intended to improve on current IC-
based models by identifying biophysical factors that modulate stream
responses to IC, causing aquatic ecosystems to be either more or less
sensitive to IC and urbanization. Unfortunately, BN model outputs only
partially agreed with our validation benchmarks based on stream at-
tainment of statutory class. One explanation for the inconclusive model
performance is that the empirical data set was too small to provide a
robust number of streams meeting our criteria for the validation ana-
lysis. This made it difficult to judge the accuracy of the BN model
predictions. Besides the constraint of a small sample size in our vali-
dation test, there were at least four other factors that introduced un-
certainty regarding the performance characteristics of the model. The
lack of adequate spatial data on groundwater influences meant that this
important factor was not well represented in the model. Another source
of variability arose because our expert panel members represented a
range of disciplines and often disagreed on their CPT surveys, which
made it difficult to generate a strong consensus and sharply defined
probabilities in BN model. As a result, several child nodes had relatively
high standard deviations. For example, the road salting parameter in
the model reflected disagreements in both the direction of the re-
lationship and the strength or magnitude of influence by that para-
meter. Vulnerability to salt stress has two input variables: percent class
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A or B soils and watershed area. All experts agreed that increased
drainage area would decrease vulnerability to chloride stress due to
larger dilution capacity; however, experts disagreed on the effect of
well-drained soils. Other potential sources of uncertainty in the BN
model were related to the subjective discretization of data variables and
the conversion of Likert scores to probability distributions. A future
version of this model would benefit from addressing those technical
issues.

Our use of an expert panel in model development was a source of
critical insights and valuable wisdom, but it also introduced compli-
cations that could have affected the accuracy of the final model.
Because our definition of vulnerability was difficult for several experts
to grasp, there were differences in fundamental understanding of the
BN model. Ease of use was a priority in designing the CPT survey, yet
some experts were uncomfortable with the survey process. We miti-
gated this problem by working in small groups to fill out the CPTs,
reviewing responses, and communicating with experts when their re-
sponses seemed unintended or counterintuitive. A final concern was the
length of the surveys; because CPT surveys covered 27 pages and re-
quired 419 Likert scale responses, expert exhaustion may have com-
promised the process to some extent.

One purpose of this study was to facilitate better proactive policy
responses to the issue of stream impairment. By identifying the loca-
tions of at-risk watersheds, we hoped to provide communities with
information to be used in setting priorities to protect streams. Within
the two watersheds that were examined (CBLA and LPRW), we found
numerous at-risk watersheds in dozens of municipalities. Because this
impairment risk is concentrated in suburban-style towns and adjacent
rural areas that are only a subset of the state, we suggest an initial
policy response aimed at producing a model watershed protection or-
dinance that focuses on avoiding over-development in vulnerable
catchments. Such an ordinance could be developed at the state level,
and then offered to local municipalities to adopt or to tailor to local
conditions as appropriate.

6. Conclusion

A major research theme in sustainability science is the analysis of
vulnerability in coupled social-ecological systems. Communities and
ecosystems with high vulnerability and low resilience are regarded as
important targets for conservation protection and management for
long-term sustainability (Kates et al., 2001; Wu 2013). Turner et al.
(2003) have argued that vulnerability analyses must use a place-based
approach that incorporates multiple interacting stressors, accounts for
the sensitivity of the system to those stressors, and results in develop-
ment of metrics and models for measuring vulnerability.

Our study used expert knowledge and a BN modeling framework to
assess the complex relationships influencing stream responses to
catchment urbanization in the northern temperate landscape of Maine.
By combining a BN model for stream vulnerability to urbanization
stress with a complementary BN model of development suitability, we
developed a process for predicting the spatial distribution of streams
that are at higher risk of impairment from future land use changes. Our
analysis identified over 400 streams and associated small watersheds in
the Maine landscape that are at increased risk of degradation from fu-
ture human development activities. Further, we developed a framework
that can be used to identify catchments where aquatic ecosystem ser-
vices may be less vulnerable to development pressure. This information
provides a probabilistic basis for more informed decision-making and
proactive watershed management focused on sustaining aquatic re-
sources. Overall, our BN vulnerability model provides a new application
of spatial land use planning aimed at mitigating human development
impacts on both natural ecosystems and ecosystem services.
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