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Abstract 
We discuss the use of monotonic measures for the representation criteria importance information 

in multi-criteria decision-making.  We show that the Choquet integral provides an appropriate 

method for the aggregation of the individual criteria satisfactions in the case where the 

relationship between criteria importance’s is expressed using a measure.  We describe the use of 

categories and the related idea of a categorization in formulating the structural relationship 

between multiple criteria.  We show how we can model this categorization using a measure on the 

space of criteria, which in turn allows us to use the Choquet integral to evaluate an alternative’s 

satisfaction to this type of multi-criteria decision problem.  We look at a special categorization of 

the criteria that is closely to a prioritization of the criteria.   

Keywords:  Multi-Criteria, Set Measure, Aggregation, Categorization, Priority 

 

1. Introduction 

 Multi-criteria appear in many modern technological tasks such as medical diagnosis, 

information retrieval, financial decision making and pattern recognition [1-5].  Collectively we 

shall refer to these as multi-criteria decision problems.  Professor Janusz Kacprzyk has made 

important contributions this field [6-9].  In multi-criteria decision problems our interest is in 

selecting from some set of alternatives the one that best satisfies the criteria.  Since it is generally 

difficult to rank alternatives based on their satisfaction’s to multiple individual criteria a standard 

approach is to aggregate an alternative’s satisfaction to the individual criteria to obtain a single 

scalar value corresponding to the alternative’s overall satisfaction to the collection of criteria.  

These scalar values can then be used to rank the alternatives and enable a choice to be made.  The 

aggregation of these multi-criteria satisfactions generally requires the use of some information 
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regarding the importance of the individual criteria.  The classic approach to this aggregation is to 

take a weighted average of an alternative’s satisfaction to the individual criteria, the weights in 

this approach being the importance of the individual criteria.  Implicit in this approach is an 

assumption that the individual criteria importance weights are additive.  That is, for example, the 

importance of criteria weight of criteria one and two together is simply the addition of the two 

individual criteria importance weights.  More generally, this assumes that the importance of any 

group of criteria taken together is simply the sum of the importance of the individual criteria.  In 

many cases of decision making this simplifying assumption is not valid.  For example, when 

selecting an employee the situation where the criteria of having a good education or considerable 

experience are interchangeable doesn’t justify this assumption.  More generally the situation in 

which the satisfaction of any one of a group of criteria is all that is needed does not satisfy the 

assumption of an additive relationship between individual criteria importance.   

 To model more complex relationships about the importance of subsets of criteria recent 

interest has focused on the use of a fuzzy measure [10-13].  In this approach, the additivity of the 

individual criteria importance’s has been replaced by a monotonicity condition, if A and B are 

subsets of criteria such that A contains all the criteria in B then it is assumed that the importance 

of collection the A is at least as large as the collection B of criteria. 

 The use of this more general measure structure to represent our information about the 

importance of subsets of criteria complicates the process of aggregating the satisfactions of the 

individual criteria based on the importance information.  The use of the simple weighted average 

of individual satisfactions does not always work.  Here we show that the Choquet integral [14-18] 

provides an approach to the aggregation of the individual criteria satisfactions which generalizes 

the simple weighted average approach for additive weights to the case where the importance 

information is carried by a measure.  

 In some applications of multi-criteria decision making the criteria can be categorized, 

these categories can then used for expressing the information about criteria importance (see Zadeh 

[19]).  Here, the collection of criteria in the same category shares a given amount of importance.  

This shared importance is distributed to the individual criteria in the category according to some 

rule, called the dispenser rule.  Here, an alternative is evaluated as a weighted aggregation of the 
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individual criteria satisfactions where the individual criteria weights is the sum of the amount of 

importance allocated to it by the categories to which it belongs.  There can be many basis of this 

categorization.  For example, criteria can be placed in the same category because of they are 

interchangeable.  At the other extreme is one in which criteria can be placed in the same category 

because satisfying all of them is necessary.  Here we shall look at the situation in which our 

information about the relationship between the criteria is expressed via a categorization.  We 

show how we can use this category expressed importance information to obtain a measure-based 

representation of importance information.  Once having this measure based representation we can 

use the Choquet integral to help in the evaluation of alternatives. 

 

2. Aggregating Criteria Satisfactions using Measure Based Importance  

 Let C = {C1, …, Ck, …, Cq} be a collection of criteria of interest in a decision problem.  

Here we shall use a measure  to convey our information about the importance of subsets of 

criteria [10, 20].  In particular : 2C  [0, 1] where  

  1) () = 0 

  2) (C) = 1 

  3) (A)  (B) if B  A 

Thus here for any subset A of criteria (A)  [0, 1] indicates the importance of this subset of 

criteria.  We note that condition () = 0 indicates that the importance of the null set is zero.  The 

condition (C) = 1 tells us the importance of the whole set of criteria is one.  Condition 3 says that 

if B is a smaller set of criteria then A, then B cannot have a larger importance. 

 The prototypical situation is the basic additive case where we have for each criteria Ck an 

importance k, ({Ck}) = k and for any subset A of criteria i(A) = 

k

k
C A

 .  We note for this 

situation since (C) = 1 we have that 

1

q

k

 ({Ck}) = 

1

q

k
k

 = 1.   

 Using a measure  to capture our importance provides an ability to model more 

sophisticated relationship between the criteria importance than the basic additive case.  Here the 

use of a general measure  can allow among other things the possibility that 

1

q

k

 ({Ck})  1.  
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Thus if we have ({Ck}) = k we can allow that 

1

q

k
k

   1. 

 Assume X = {xi| i = 1 to r} are a set of alternatives and we are interested in choosing 

among those alternatives based upon their satisfactions to the criteria in C.  Here Ck(xi)  [0, 1] is 

the degree of satisfaction of criteria Ck by alternative xi. 

 One way to select between these alternatives is to aggregate the alternative’s individual 

criteria satisfactions guided by the importance information in , and then select the alternative 

with the largest aggregated value.  Thus  

D(x) = Agg(C1(x), C2(x), …, Cq(x)). 

For the situation where the importance relationship corresponds to the basic additive model then 

D(x) = 

1

q

k
k

 Ck(x). 

 Our concern here is with the formulation of D in the general case of a measure based 

representation of the importance information.  Let us look at some properties we desire of the 

formulation D(x) = Agg(C1(x), …, Cq(x)).  In considering these properties we shall to some 

extent be guided by properties associated with the classic weighted average that comes from the 

case of additive importance’s, D(x) = 

1

q

k
k

 Ck(x). 

 A first feature we require of the general aggregator is that it is a mean like operator [21].  

This requires this Agg has the following three properties 

1) Symmetry - It is indifferent to the index of the Ck(x).  More formally if Q = {1, …, q} and 

 : Q  Q is a permutation operator then 

Agg(C1(x), …, Cq(x)) = Agg(C(1)(x), …, C(q)C(x)) 

2) Monotonicity with respect to the Ck(x) 

 If Ck(x)  Ck(y) for all k = 1, …, q then 

          D(x) = Agg(C1(x), …, Cq(x))  Agg(C1(y), …, Cq(y)) = D(y) 

3) Boundedness 

 Mink(Ck(x))  Agg(C1(x), …, Cq(x))  Maxk(Ck(x)) 

One implication of the boundedness is idempotency, if all Ck(x) = a then D(x) = a. 

 Another feature we desire of the function Agg is a kind of linearity.  This is manifested in 
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requiring the following two properties 

4) Additivity: If Ck(y) = Ck(x) + a for all k = 1 to q then D(y) = D(x) + a. 

5) Positive homogeneity: If Ck(y) = Ck(x) for all k and   [0, 1] then D(y) = D(x) 

 One fundamental feature associated with the classic weighted average based on additive 

weights is the following.  If we move importance weight from a criteria with lesser satisfaction to 

one with greater satisfaction then D(x) increases.  More formally if C1(x) > C2(x) and 1  = 1 + 

 and 2  = 2 -  and k  = k for all other k = 2 to q then 

1

q

k

k

 Ck(x) = 

1

q

k
k

 Ck(x) + C1(x) - C2(x) = 

1

q

k
k

 Ck(x) +  (C1(x) - C2(x)  

1

q

k
k

 Ck(x) 

 In order to capture this feature in the more general case where our importance weights are 

expressed via a measure  we require the following property of Agg. 

6) Dominance  

 Let  be an index function so that (j) is the index of jth largest of the criteria satisfactions, 

here then C(j)(x) is the jth largest criteria satisfaction.  Let Hj be the subset of criteria with the j 

largest satisfactions, Hj = {C(1), …, C(j)}.  Assume 1 and 2 are two importance measures 

such that 2(Hj)  1(Hj) for all j = 1 to q, then by dominance we require our function Agg to be 

such that 

2
Agg (C1(x), …, Cq(x))  

1
Agg (C1(x), …, Cq(x)) 

The condition 2(Hj)  1(Hj) indicates that measure 2 has more importance associated with the 

j most satisfied criteria then 1. 

 Let us see that this property of dominance captures the situation in the case where our 

measure is the basic additive measure, 1(A) = 

k

k
C A

 .  Here with Hj = {C(1), …, C(j)} and 

1(Hj) = ( )
1

j

i
i




 .  In particular 1(H1) = (1) and 1(H2) = (1) + (2) with 1(Hj) = 

1

( )

j

i

i


 .  Assume we now move some importance weight from C(2) to C(1) to form 2 , thus 

in the case of 2  we have (1)  = (1) +  and (2)  = (2) -  and ( )j  = (j) for all other 

j.  In this case 

    2 (H1) = (1)  = (1) +  
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                2 (H2) = (1)  + (2)  = (1) +  + (2) -  = (1) + (2) 

                2 (Hj) = ( )

1

j

j

i





  = ( )
1

j

j
i




  for j = 3 to q 

Thus here we have that 2 (Hj)  1(Hj) for all j.   

 Thus we see that the condition 2 (Hj)  1(Hj) for all j generalizes the idea of moving 

importance weight from less satisfied criteria to more satisfied criteria.  Here then the requirement 

that
2

Agg (C1(x), …, Cq(x))  
1

Agg (C1(x), …, Cq(x)) if 2 (Hj)  1(H1) for all j generalizes 

the property that if we move importance weight from less satisfied criteria to more satisfied 

criteria we should increase of overall satisfaction. 

 If 1 and 2 are two measures of importance we say that 2  1 if the 2(A)  1(A) for 

all A.  We observe in the case 2  1 whatever elements constitute the Hj we have that 

2(Hj)  1(Hj) for all Hj.  Therefore we see in the situation where 2  1 we require that the 

Agg operator should satisfy 
2

Agg (C1(x), …, Cq(x)))  
1

Agg (C1(x), …, Cq(x)) for any values 

of Ck(x). 

 We now show that the Choquet integral expressed below can provide a formulation for 

Agg(C1(x), …, Cq(x)) that can satisfy all our requirements.  Using the Choquet integral [21] 

D(x) = Agg(C1(x), …, Cq(x)) = 

1

( ( )

q

j
j

H



  - (Hj - 1))C(j)(x)) 

In the above formula  is an index function such that (j) is the index of the criteria with the jth 

largest satisfaction and Hj is the subset of criteria with the j largest satisfactions. 

 We first observe that if we denote (Hj) - (Hj - 1) = wj then each wj  0.  In addition we 

have 

1

q

j
j

w



 =

1

( ( )

q

j
j

H



  - (Hj - 1)) = (Hq) - (H0) = (C) - () = 1.  Thus the Choquet 

integral, D(x) = 

1

q

j
j

w



 C(j)(x), is a kind of weighted average of the criteria satisfactions. 

 It is well known that the Choquet integral satisfies conditions 1 – 5.  [21, 22]  Let us look 

at the sixth condition, dominance.  To show that is condition is satisfied we shall rearrange the 

summation in the Choquet integral.  Using some arithmetic manipulations we can show that 

D(x) = 

1

( ( )

q

j
j

H



  - (Hj - 1))C(j)(x) = 

1

( )

q

j
j

H



 (C(j)(x) – C(j + 1)(x)) 
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Consider the case where we have two measures of importance 1 and 2 such that 2  1, i.e. 

2(A)  1(A) for all A.   Consider  

 D1(x) = 
1

Agg (C1(x), …, Cq(x)) = 1
1

( )

q

j
j

H



  (C(j)(x) – C(j + 1)(x)) 

and 

 D2(x) =
2

Agg (C1(x), …, Cq(x)| = 2
1

( )

q

j
j

H



  (C(j)(x) – C(j + 1)(x)) 

 

We see that D2(x) - D1(x) = 2
1

( ( )

q

j
j

H



  - 1(H1)) (C(j)(x) – Cj + 1) (x)). Since 2(Hj)  1(Hj) 

for all j and C(j)(x)  Cj + 1) (x) for all j then D2(x) - D1(x)  0 and hence D2(x)  D1(x).  Thus 

the sixth condition is satisfied. 

 

3. Categorization of Criteria 

 Let C = {C1, …, Cq} be a set of criteria that are relevant to a decision.  A category F is any 

subset of criteria from C.  A categorization F consists of a collection of categories, Fi for i = 1 to r.  

Thus a categorization consists of a collection of subsets of C.  In a categorization there is no 

requirement for the constituent categories to be disjoint.  In addition the categories in the 

categorization do not need to cover the whole set C, 

1

r

i

i

F



  C.  Thus, a categorization does not 

require a partitioning of C. 

 Associated with each category Fi in the categorization F is a weigh i  [0, 1] such that 

1

r

i
i

  = 1.  Also associated with each category Fi in a categorization F is a dispenser rule which 

describes how the weight i is dispensed depending on the criteria in the category satisfied.  One 

extreme example of a dispenser rule is case where the whole weight i is dispensed to the least 

satisfied criteria in the category, here all the criteria in the category can be seen as required to be 

satisfied.  At the other extreme is the case in which the whole weight i is dispensed to the most 

satisfied criteria in the category, here the criteria in a category can be seen as completely 

interchangeable.  Intermediate to these extreme cases is one in which the whole weight i is 
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dispensed to the kth most satisfied criteria in Fi. 

 Another special case of dispenser is a linear rule.  Here rather when dispensing all the 

weight i of a category Fi to one criterion we dispense it in a proportional manner, all the 

members of category get the same portion. 

 More generally we associate with a category Fi of cardinality ni = |Fi| a set of values Vijfor 

j = 0 to ni so that 

 1) Vi0 = 0 

 2) 
iinV  = 1 

 3) Vij + 1  Vij 

Here Vij is the proportion of the ith category weight i that is dispensed to the j most satisfied 

criteria in Fi. 

 We can see the examples of dispenser rules we previously described can be seen as special 

case of this formulation.  The case where we require all the criteria in a category Fi to be satisfied 

is one in which 
iinV  = 1 and Vij = 0 for all other j.  The case where we only need any element in 

Fi to be satisfied is one where Vi0 = 0 and Vij = 1 for j  0.  The case where we want at least K 

criteria can be modeled by one in which Vij = 0 for j < K and Vij = 1 for j  K.  Finally the case of 

linear dispenser rule can be modeled by one in which Vij = j/ni for all j = 0 to ni. 

 There are a number of alternate ways we can model the dispenser rule for category Fi.  

One useful ways is via a function monotonic function Gi: [0, 1]  [0, 1] having Gi(0) = 0 and 

Gi(1) = 1.  In this case we obtain Vij = Gi(
i

j

n
). 

 One advantage of using this function Gi is that we can easily compute the dispenser rule 

for different categories even if they have different number of elements.  That is we can assign two 

categories of different cardinalities the same dispenser rule by using the same function G. 

 We now show how we can use a categorization F specifying a relationship between criteria 

from C to generate an importance measure  on the space C of criteria.  Having this measure  we 

can use the Choquet integral to determine the overall satisfaction of an alternative x to the 

categorization F based upon its satisfaction to the individual criteria, the Ci(x). 

 Consider now the set function  on the space C of criteria so that for any subset A of 

criteria 
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(A) = | |
1

i

r

i i F A
i

V 


  

where |Fi  A| is the number of elements in Fi that are in A.  We now show that this has the basic 

properties of a measure 

 1. IF A =  then |Fi  A| = |Fi  | = || = 0.  In this case Vio = 0 for all i and () = 0 

 2) If A = C then |Fi  A) = |Fi  C| = |Fi| = ni.  In case | |ii F AV   = | |ii F CV  = 
iinV  = 1.  

Here then (C) = 

1

r

i
i

  = 1, 

 3) If A  B then |Fi  A|  |Fi  B| and with (A) = | |
1

i

r

i i F A
i

V 


  and 

(B) = | |
1

i

r

i i F B
i

V 


  from the monotonicity of Vij we see that (B)  (A). 

 Let us now look at form of the decision function, D(x), generated by this F categorization 

based importance measure , D(x) =

1

( ( )

q

j
j

H



  - (Hj - 1)) C(j)(x). Here with 

(Hj) = | |
1

i j

r

i i F H
i

V 


  and (Hj - 1) = 
1| |

1
i j

r

i i F H
i

V




  we have  

  D(x) = 
1| | | | ( )

1 1 1

( ) ( )
i j i j

q r r

i i F H i i F H j
j i i

V V C x
  

  

      

  D(x) = 
1| | | | ( )

1 1

( ( )) ( )
i j i j

q r

i i F H i F H j
j i

V V C x
  

 

                   (I) 

  D(x) =  
1| | | | ( )

1 1

( ( ) ( )
i j i j

qr

i i F H i F H j
i j

V V C x
  

 

                  (II) 

We see that (I) allows us to view D(x) in terms of the ordered criteria satisfactions, the C(j)(x).  

On the other hand (II) allows viewing D(x) in terms of categories. 

 In the following we shall focus on (II).  Assume C(j) is not in Fi.  In this case we see that 

Fi  Hj = Fi  Hj-1 and hence | |i ji F HV   = 
1| |i ji F HV
 .  In this case the term C(j)(x) does not 

make any contribution to the inner sum. 

 Let i be a subpart of the function  just corresponding to the ordering of the elements in 

Fi.  Thus 
( )ji

C  is the criteria in Fi with the jth largest satisfaction.  Using this we can express 
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D(x) = 1 ( )
1 1

( ( ) ( ))
i

i

nr

i ij ij j
i j

V V C x 
 

   . 

Let us denote 1 ( )
1

( ) ( ) ( )
i

i

n

i ij ij j
j

M x V V C x 


  .  Using this we see the D(x) = 

1

( )
r

i i
i

M x



 . 

 Let us look at the form of Mi(x) for notable examples of category dispenser rules. 

  1) If Vij is linear, Vij = 
i

j

n
 then Mi(x) = ( )

1

1
( )

i

i

n

j
ij

C x
n




 .  Here Mi(x) is the 

average satisfaction of the criteria in Fi. 

 2) If Vij is such that Vi0= 0 and Vij = 1 for all j  0 then Mi(x) = 
k iC F

Max


[Ck(x)] 

 3) If Vij is such that 
iinV  = 1 and all other Vij = 0 then Mi(x) = 

k iC F
Min


[Ck(x)] 

 

4. Nominal Importance of a Criterion in a Categorization 

 In [23] Shapley introduced the concept of the Shapley index associated with a measure.  

Assume  is a measure on the space C = {C1, …, Cq} and the Shapley index Si of the element Ci 

is defined as 

Si = 
( ( ) 1)! ( )!

!
iF E

q Card F Card F

q


 
 ((F  {Ci}) - (F)) 

where Ei = C - {Ci}.  Here then F is a subset of C not containing Ci.  We see that Shapley index Si 

is a kind of average gain in the measure  by adding Ci to a subset of C not containing Ci. 

 The Shapley value associated with  is the vector (S1, S2, …, Sq).  It is known [24] that 

the following properties are satisfied by the Si 

  1) Si  [0, 1] for all i 

  2) 

1

q

i
i

S



  = 1 

In [24] Yager looked at the Shapley index for various types of measure.  If  is a basic additive 

measure with ({Ci}) = i it can be shown that Si = i. [24] 

 In the framework of using the measure  to capture the importance associated with a 

subset of C we see that the Shapley index Si can be seen as some type of nominal or average 

importance associated with the criteria Ci. 

 In the case of the measure  used to represent the categorization F it can be shown that 
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Sk = 

1

r
i

ii
n




 Fi(Ck) where Fi(Ck) = 1 if Ck  Fi and Fi(Ck) = 0 if Ck  Fi.  It is interesting to 

observe here that the values of Sk are independent of the dispenser function Vij associated the 

categories. 

 We see the formulation D(x) = 1 ( )
1 1

( ( ) ( ))
i

i

nr

i ij ij j
i j

V V C x 
 

    depends on the dispenser 

function as manifested by the inclusion of Vij.  Consider the special cases where the Vij is linear.  

Here Vij = 
i

j

n
 and Vij - Vij - 1 = 

1

in
 and D(x) = ( )

1 1

1
( ( ))

i

i
i

nr

i j
ni j

C x
 

  .  After some algebraic 

manipulations we see that D(x) = 

1

q

k
k

S



 Ck(x).  Thus we see that the Shapley values, the Sk, are 

the weights associated with criteria the Ck in the calculation of D(x) in the special case where all 

the categories have linear dispenser rule. 

 

5. Prioritized Type Categorization 

 An interesting example of categorization is shown below.  Assume for i = 1 to q we have 

the following categories in our categorization 

 F1 = {C1} 

 F2 = {C1, C2} 

   ……. 

 Fi = {(Ck| for k = 1 to i} 

             …. 

 Fq = {C1, …, Cq} = C 

Here the number of categories r = q, the number of criteria.  Furthermore associated with each 

category Fi is a weight i  0 where 

1

q

i
i

  = 1.  We note here that category Fi has cardinality 

ni = i. 

 As we earlier showed the Shapley index is independent of the dispenser rule and hence 

Sk = 

1

1
q

i
ii

n


  Fi(Ck) where Fi(Ck) = 1 if Ck  Fi and Fi(Ck) = 0 if Ck  F.  Furthermore in this 
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case we indicated that ni = i, thus Sk = 

1

1
q

i
i

i


  Fi(Ck).  For this categorization we see that for i  k 

we have that Ck  Fi.  Thus here Fi(Ck) = 1 for i  k and Fi(Ck) = 0 for i < k.  Here then we get 

Sk = 

q
i

i k
i




 .  Thus the nominal importance associated with Ck in this categorization is 

Sk = 

q
i

i k
i




 .  Here then we have that Sk  Sk + 1.  Thus C1 has the largest nominal importance 

and Cq the smallest. 

 Let us look at the calculation of D(x) using the measure  induced by this categorization 

of the criteria in C for different formulation of the dispenser function.  Since this is a special case 

of the categorization F studied earlier we can take advantage of many of the preceding results. 

 Here we shall look at D(x) for three prototypical forms of dispenser function V.  Here we 

shall assume that all the Fi have the same form of dispenser function. 

 For the case when all the Fi have linear dispenser function then Vij  = 
i

j j

n i
  and hence 

D(x) = 

1 1

( ) ( )

q k
i

k
k i

C x
i

 


  . 

 The second prototypical case is one in which Vi0 = 0 and Vij = 1 for all j = 1 to ni.  Here Fi 

dispenses all of its weight if any of the criteria in Fi is satisfied.  Here we see that  

D*(x) = 

1 k i

q

i
C Fi

Max


 [Ck(x)] = 
11

q

i
k toii

Max


 [Ck(x)] 

 The last case is where Fi dispenses all its weight if all the criteria in Fi are satisfied.  In this 

D*(x) = 

1 k i

q

i
C Fi

Min


 [Ck(x)] = 
11

q

i
k toii

Min


 [Ck(x)] 

We easily see that D*(x)  D*(x) for any values of the Ck(x).   

 We also observe that 
1k toi

Max


[Ck(x)] ≥ C1(x) for all i and 
1k toi

Min


[Ck(x)] ≤ C1(x) for all i.  

Hence we see that D*(x)  

1

q

i
i

 C1(x)  C1(x) and D*(x)  

1

q

i
i

 C1(x)  C1(x) 

 Let (j) be index function so that (j) is the index of jth most satisfied criteria.  Let us 

look at the formulation of D*(x) and D*(x) for different forms of the (j).  First consider the case 

where (j) = j, here the ordering of the satisfactions is the same as the priority.  We see that for 
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this case 
k iC F

Max


[Ck(x)] = C1(x) for all Fi.  Here then we get that D*(x) = 

1

q

i
i

 C1(x) = C1(x) = 

k
Max [Ck(x)].  On the other hand we see that 

k iC F
Min


[Ck(x)] = Ci(x) for all i and here 

D*(x) = 

1

q

i
i

 Ci(x). 

 Consider now the case where (j) is inversely ordered to criteria, thus (j) = q – 1 + j.  In 

this case we see that 
k iC F

Max


[Ck(x)] = Ci(x).  Here we get D*(x) = 

1

q

i
i

 Ci(x).  This is the same as 

D*(x) for the case where (j) = j.   For this inverse ordering 
k iC F
Min


[Ck(x)] = C1(x) for all i.  Here 

then we get D*(x) = 

1

q

i
i

 C1(x) = C1(x) = 
k

Min [Ck(x)]. 

 We shall say that Cj has priority over Cj+1, a prioritization exists between Cj and Cj+1, if 

even the largest increase in the satisfaction to Cj+1 generally cannot compensate for even the 

smallest loss in satisfaction to Cj.  We now show that the categorization that is manifested as D* 

provides the basic properties of a prioritization between Cj and Cj + 1. 

 Assume that Cj(x) = Cj+1(x) = a and all other Ci(x) = 1.  We see here that from 

D*(x) = 

1

q

i
i


1k toi

Min


[Ck(x)] with these values we get D*(x) = 

1

1

j

i
i





  + a

q

i
i j

 .  Assume now for 

 >>  we increase Cj + 1 to 1jC  (x) = a +  and we decrease Cj so that jC (x) = a -  and leave 

all other Ci(x) = 1.  Here we see that *D (x) = 

1

1

j

i
i





  + (a - )

q

i
i j

  < D*(x).   

 Now assume we have Cj(x) = a and Cj + 1(x) = b where b > a.  Here again we get 

D1(x) = 

1

1

j

i
i





  + a

q

i
i j

 .  Now assume we again we increase Cj + 1 so that 1jC   = b +  and 

decrease Cj so that jC (x) = a - .  Here again we see that *D  (x) = 

1

1

j

i
i





  + (a - )

q

i
i j

  < D1(x). 

Finally consider the situation where a > b.  Here we get D1(x) = 

1

1

j

i
i





  + aj + b

1

q

i
i j 

 . Now 

assume we increase Cj + 1 so that 1jC   = b +  and decrease Cj so that jC  = a - .  Here we get 

*D (x) = 

1

j

i
i

  + (a - )j + Min[(b + ), (a - )]

1

q

i
i j 

   Only if  is so large such that 
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(b + ) > (a - ) then 
*D (x) = 

1

j

i
i

  + (a - )j + (a - ) 

1

q

i
i j 

  > D*(x).  Only in this case we 

can obtain some comparison however we are bounded by (a - ). 

  

 

6. Conclusion 

 We discussed the use of monotonic measures for the representation criteria importance 

information in multi-criteria decision-making.  We showed that the Choquet integral provides an 

appropriate method for the aggregation of the individual criteria satisfactions in this case where 

the relationship between criteria importance is expressed using a measure.  We described the use 

of categories and the related idea of a categorization in expressing the structural relationship 

between multiple criteria.  We showed how we could model this categorization using a measure 

on the space of criteria, which in turn allowed us to use the Choquet integral to evaluate an 

alternative’s satisfaction to this type of multi-criteria decision problem.  We looked at a special 

categorization of the criteria that is closely to a prioritization of the criteria.   
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