
Review

Application optimization in mobile cloud computing: Motivation,
taxonomies, and open challenges

Ejaz Ahmed a,n, Abdullah Gani a, Mehdi Sookhak a, Siti Hafizah Ab Hamid a, Feng Xia b

a Mobile Cloud Computing Research Lab, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
b Mobile and Social Computing Laboratory, School of Software, Dalian University of Technology (DUT), China

a r t i c l e i n f o

Article history:
Received 27 June 2014
Received in revised form
30 November 2014
Accepted 28 February 2015
Available online 10 March 2015

Keywords:
Mobile cloud computing
Cloud-based mobile applications
Application optimization
Cloud-based mobile application execution
frameworks

a b s t r a c t

In Mobile Cloud Computing (MCC), migrating an application processing to the cloud data centers enables
the execution of resource-intensive applications on the mobile devices. However, the resource-intensive
migration approaches and the intrinsic limitations of the wireless medium impede the applications from
attaining optimal performance in the cloud. Hence, executing the application with low cost, minimal
overhead, and non-obtrusive migration is a challenging research area. This paper presents the state-of-
the-art mobile application execution frameworks and provides the readers a discussion on the
optimization strategies that facilitate attaining the effective design, efficient deployment, and applica-
tion migration with optimal performance in MCC. We highlight the significance of optimizing the
application performance by providing real-life scenarios requiring the effective design, efficient
deployment, and optimal application execution in MCC. The paper also presents cloud-based mobile
application-related taxonomies. Moreover, we compare the application execution frameworks on the
basis of significant optimization parameters that affect performance of the applications and mobile
devices in MCC. We also discuss the future research directions for optimizing the application in MCC.
Finally, we conclude the paper by highlighting the key contributions and possible research directions in
cloud-based mobile application optimization.

& 2015 Elsevier Ltd. All rights reserved.

Contents

1. Introduction . 53
2. Background . 54

2.1. Mobile cloud computing . 54
2.2. Cloud-based mobile application and its execution in MCC . 54
2.3. Application execution optimization . 54

3. Motivation . 54
3.1. Image processing . 54
3.2. Voice recognition and translation . 55
3.3. M-gaming. 55
3.4. Cooperative spectrum sensing in cognitive radio cloud networks . 55

4. State-of-the-art cloud-based mobile application execution frameworks . 55
4.1. Mono-objective optimization-based frameworks. 55
4.2. Bi-objective optimization-based frameworks . 57
4.3. Multi-objective optimization-based frameworks . 60

5. Cloud-based mobile application-centric taxonomies . 62
5.1. Taxonomy of application optimization strategies in MCC . 62
5.2. Taxonomy of application execution operations in MCC . 62
5.3. Taxonomy of application execution frameworks . 64

6. Metrics for optimal application migration in MCC. 64

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2015.02.003
1084-8045/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: imejaz@siswa.um.edu.my (E. Ahmed), abdullahgani@ieee.org (A. Gani), m.sookhak@ieee.org (M. Sookhak), siti.hamid@ieee.org (S.H.A. Hamid),

f.xia@ieee.org (F. Xia).

Journal of Network and Computer Applications 52 (2015) 52–68

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2015.02.003
http://dx.doi.org/10.1016/j.jnca.2015.02.003
http://dx.doi.org/10.1016/j.jnca.2015.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.02.003&domain=pdf
mailto:imejaz@siswa.um.edu.my
mailto:abdullahgani@ieee.org
mailto:m.sookhak@ieee.org
mailto:siti.hamid@ieee.org
mailto:f.xia@ieee.org
http://dx.doi.org/10.1016/j.jnca.2015.02.003

6.1. Mobile device. 64
6.2. Application type . 65
6.3. User preferences . 65
6.4. Cost . 66
6.5. Network . 66

7. Future research directions. 66
8. Open challenges. 66

8.1. Optimal application and execution framework design . 67
8.2. Efficient deployment and user-transparent execution . 67
8.3. Realtime optimized management of heterogeneous computing environment . 67
8.4. Automated service provisioning . 67
8.5. Scalability . 67
8.6. Availability of services . 67

9. Conclusions . 67
Acknowledgements . 67
References . 67

1. Introduction

During the last decade, the advancements of network technol-
ogies and the growth of computational devices have turned the
dream of ubiquitous computing into reality. The favourable devel-
opments have provided a driving force for a number of emerging
e-applications such as e-learning, e-commerce, e-tourism guides,
e-health, and internet gaming. Recently, with the advent of
wireless technologies (Chin et al., 2014; Ahmed et al., 2015b,c)
and mobile devices, e-application paradigm is shifted towards m-
application paradigm. Hence, a range of m-applications, such as
m-learning (Motiwalla, 2007), m-health (Cruz and Barros, 2005),
m-guides (Oppermann and Specht, 1999), m-gaming (Ballagas
et al., 2007), and mobile worker applications (Mazzoleni and Tai,
2007), are now part of mobile user's application suit. The mobile
users expect to run m-applications with identical performance
level as they get for the similar applications running on the
stationary computer systems. However, the mobile devices are
resource-constrained devices that cannot provide the same level
of user experience.

In this context, the computation migration is endeavoured as a
significant software-level solution that mitigates resource con-
straints of mobile devices by migrating applications to available
stationary computers (Huerta-Canepa and Lee, 2010; Marinelli,
2009; Goyal and Carter, 2004; Cuervo et al., 2010; Kovachev et al.,
2012b; Verbelen et al., 2012b; Fesehaye et al., 2012; Yang et al.,
2008; Chun and Maniatis, 2009). The computational migration is
handled by the application execution frameworks. Similar to other
research areas such as communication networks (Shamshirband
et al., 2015; Zheng, 2008) and distributed systems such as cloud
computing (Ning et al., 2013), the optimization techniques are also
widely used in application execution frameworks of MCC. The
execution frameworks consider diverse optimization objective
functions as follows: saving processing power, efficient bandwidth
utilization, and minimizing energy consumption. In short, the
frameworks are designed to optimize the execution cost. The
overall aim of all such approaches is to enable the compute-
intensive mobile applications on resource-constrained mobile
devices. The execution of compute-intensive components of a
mobile application in mobile cloud computing (MCC) involves
the complex application partitioning at different granularity levels
and component migration to the cloud server node (Ahmed et al.,
2015a). Such delay-inducing and resource-intensive mechanisms
adversely affect the user experience. Therefore, it is imperative to
employ lightweight procedures for optimal execution of intensive
mobile applications in MCC. The optimal execution refers to the
state of the application execution in MCC that can deliver

enhanced performance as compared to local execution with
minimum cost and low overhead. The effective design of an
application ensures that the finished design incurs low cost, high
reliability, and the excellent performance. The efficient deploy-
ment ensures that non-collocated components of mobile applica-
tion in MCC have minimal dependency on each other; thereby,
reducing the operational overhead and execution cost.

Although several survey papers (Abolfazli et al., 2013; Fernando
et al., 2013; Dinh et al., 2013; Kumar et al., 2013; Khan et al., 2014;
Rahimi et al., 2014) have studied different aspects of leveraging the
cloud services to augment the capabilities of mobile devices, applica-
tion execution optimization in MCC is still not investigated. In Abolfazli
et al. (2013), we have comprehensively studied cloud-based mobile
augmentation and discussed various methods to augment the poten-
tial of mobile devices. In Kumar et al. (2013) and Khan et al. (2014), the
authors have reviewed state-of-the-art distributed application off-
loading frameworks for smart mobile devices. The research works in
Fernando et al. (2013), Dinh et al. (2013), and Rahimi et al. (2014)
present the comprehensive surveys on MCC that cover the application,
architectures, open issues, and challenges. However, this paper is the
first research effort that surveys the state-of-the-art application
execution frameworks to identify optimization approaches employed
by the application designers, classify the optimization approaches, and
highlight the challenges involved in attaining the application
optimization.

The contribution of the paper includes (a) survey of the state-of-
the-art application execution frameworks in MCC; (b) identification of
optimization approaches related to application design, deployment,
and execution in MCC; (c) classification and presentation of identified
approaches in the form of taxonomies; (d) comparison of the state-of-
the-art application execution frameworks; and (e) identification of
open research challenges in optimizing the application design, deploy-
ment, and execution of application in MCC. The comparison highlights
the commonalities and differences among the state-of-the-art applica-
tion execution frameworks on the basis of significant parameters that
affect the performance of application. Some of the parameters are
transmission delay, Quality of Service (QoS) support, profiler overhead,
scalability, and operational cost. We also present different application
migration metrics that are usually optimized in migration decision.
Finally, we discuss the future research required to optimize the
application design, deployment, and execution in MCC.

The paper is organized into the following sections. Section 2
introduces the fundamental concepts of MCC, cloud-based mobile
application and its execution in MCC, and application execution
optimization. Section 3 discusses the real-life scenarios that high-
light the requirements of application optimization in MCC. Section 4
presents the literature survey for current application execution

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–68 53

frameworks for MCC and provides the comparative study of current
application execution frameworks to highlight the merits and
demerits of existing frameworks. The application-centric taxo-
nomies are presented in Section 5 that covers (a) application
optimization strategies, (b) application execution operations, and
(c) application execution frameworks. In Section 6, suitability of
various metrics is investigated to assist the frameworks designers in
selection of suitable metric for attaining the optimized application
performance. Future research directions on the basis of literature
survey are discussed in Section 7. Finally, open research challenges
are presented in Section 8 and Section 9 draws the conclusions by
presenting the summary and insights for the readers.

2. Background

This section provides a brief background of MCC, cloud-based
mobile application and its execution in MCC. Moreover, the section
also briefly discusses the application execution optimization to
provide the fundamental knowledge to reader.

2.1. Mobile cloud computing

MCC is the latest distributed computing model, which extends the
widespread services and resources of computational clouds for
mitigating resource limitations in mobile devices. MCC reduces the
development and execution cost of mobile applications and enables
mobile user to acquire new technology conveniently on demand basis.
Therefore, the model is attracting the attention of enterprises as a
profitable business. MCC focuses on alleviating resource limitations in
mobile devices by employing different augmentation strategies; such
as screen augmentation, energy augmentation, storage augmentation,
and application processing augmentation of mobile device (Abolfazli
et al., 2013). MCC employs the storage services of computational
clouds to enable off-device storage and accesses the application
processing services of cloud server nodes to enable compute-
intensive applications on mobile devices. However, an optimized
access to the contents which are stored in cloud data centers is still
challenging research perspectives.

2.2. Cloud-based mobile application and its execution in MCC

Cloud-based mobile applications can run on mobile devices as
well as on the cloud. The cloud-based mobile applications consist
of two types of components: transferable and non-transferable.
The transferable components are memory-intensive or compute-
intensive and do not interact with the mobile hardware, whereas
non-transferable components are designed and implemented for
especial functionality, such as hardware access, user-interaction,
and security-related tasks (Cuervo et al., 2010). The process of
dividing the application components into two sets, transferable
and non-transferable, is called partitioning. Usually, the partition-
ing is performed in three different ways; statically, dynamically,
and semi-dynamically.

The mobile application execution in MCC can be illustrated by a
state diagram as shown in Fig. 1. The execution of the application
starts when a user clicks the application icon. The application
enters into the running state where it performs different tasks. To
migrate the application into the cloud, the execution framework
pauses the running application. The application saves its running
states when the execution framework triggers pause. Then the
execution control transfers into the paused state. The application
and running states are migrated to the cloud server where the
application is resumed and reconfigured using the saved states.
The execution control enters into the running state. On completion
of the execution on the cloud server, the results are pushed back to

the mobile device, where the application resumes its execution on
the mobile device. Finally, on the completion of the execution,
application stops and enters into the terminated state.

2.3. Application execution optimization

The application execution optimization is vital for MCC because of
resource-constrained nature of mobile devices, distributed execution
environment, and intrinsic limitations of communicationmedium. The
performance of an application execution in MCC can be improved by
attaining the effective design of the application, by efficient deploy-
ment, and by optimal application execution in the distributed envir-
onment. Hence, the application execution in MCC requires effective
design, efficient deployment, and optimal execution in MCC. The
effective design of an application ensures that the application incurs
low cost, high reliability, and the excellent performance. The efficient
deployment ensures that non-collocated components of mobile appli-
cation in MCC have minimal dependency on each other; thereby,
reducing the operational overhead and execution cost. The optimal
execution enables uninterrupted and continuous application execution
with minimal user involvement. The application execution frame-
works are also designed with the aim to optimize different perfor-
mance metrics of an application. Example includes the following:
Mobile Assistance Using Infrastructure (MAUI) (Cuervo et al., 2010) is
designed to optimize the energy consumption of the mobile device.

3. Motivation

This section presents the application scenarios in the domain of
MCC for providing the motivation to do research in the area. The
application execution optimization is demanded in various sce-
narios, such as image processing, voice recognition and transla-
tion, m-gaming, cooperative spectrum sensing in cognitive radio
cloud networks, because of resource-intensive nature of the
application and intrinsic limitations of the mobile devices and
communication medium.

3.1. Image processing

The scenario discussed in Huerta-Canepa and Lee (2010) is an
example of compute-intensive time-critical image processing mobile
application. In the example scenario, “Peter who is a foreign visitor in
South Korea finds an interesting exhibit, with a description written in
Korean language, during his visit to a museum. He does not under-
stand the description written in Korean. He takes a snapshot of the
exhibit and wishes to process whole text image using a character
recognition program. The execution of program involves high com-
putation so resource-constrained mobile device cannot run it. He can
execute the software in three different ways: in (a) remote cloud,

Fig. 1. Application execution state diagram (Ahmed et al., 2015a).

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–6854

(b) cloudlet, and (c) virtual cloud or mobile ad-hoc cloud. For
simplicity, we consider that he opts mobile ad-hoc cloud to run the
application. He discovers mobile devices of other visitors who have
same objective to translate the description. He augments his mobile
device resources by utilizing idle mobile device resources of other
travellers in the vicinity. He forms a mobile ad-hoc cloud network.
Then, the mobile ad-hoc cloud runs the application for text extraction
and language translation”.

The mobile devices have limited resources and devices are
battery powered. Therefore, the application execution process
should efficiently consume the available resources and conserves
the battery power. Moreover, Peter and the other travellers are in
the museum for a short period and they have to extract number of
descriptions, so, it is vital to minimize the application execution
time for such real-life problems. The disruption because of
application migration should also be minimized to provide the
acceptable user experience. The optimal application execution
frameworks in this scenario can empower them to explore a
number of exhibits during their short stay with less overhead
involvement of mobile device. The application migration process
should also aim to minimize the consumption of energy during the
migration. However, there are a number of challenges involved in
realizing the optimal application execution in this scenario. The
device discovery to form mobile ad-hoc cloud is a main challenge
to realize the optimized application execution in this scenario. The
application partitioning, task scheduling, application migration,
authentication, authorization, and ensuring privacy of personal
data on mobile device are other common challenges in realizing
the optimal application execution.

3.2. Voice recognition and translation

The importance of realizing the application execution optimi-
zation in MCC can also be further highlighted by a scenario where
Peter, a foreign visitor, finds some local Koreans in the museum
and wants to have a discussion with the locals about the exhibits.
He does not know Korean language and the locals do not know the
English language which Peter can understand. Now Peter wants to
use the voice recognition and translation software to enable a
communication with the locals. The software is heavyweight to
run on the mobile device so he has to rely on the cloud. He can run
the software in three different ways in MCC environment:
(a) mobile ad-hoc cloud, (b) cloudlet, and (c) remote cloud. In this
case, we consider that he selects the remote cloud to run the
software. He has to perform number of tasks before the actual
execution of the software such as cloud server discovery, services
scanning, authentication, and other tasks for establishing the
application execution platform in MCC. All these tasks need to
be optimized to improve the overall application execution time
and overhead. As Peter and the locals are in the museum for a
shorter period they cannot tolerate the delay involved in applica-
tion execution in the cloud. In order to sustain the usability of
voice recognition and translation software, the execution time in
the cloud should be minimized. The mobile devices are resource-
constrained devices so the application execution in MCC should
use minimal device resources.

3.3. M-gaming

Cloud-based m-gaming is another example for realizing the need
of application execution optimization in MCC. Peter is playing a game
on his mobile device while waiting for meal in a restaurant. Suddenly,
battery power of the mobile device decreased and the mobile device is
going to be turned off by prompting user with alert message. This
situation disrupts execution of the application on the mobile device.
Instead, if the cloud-based execution framework is deployed on the

mobile device, then Peter can offload the game either to nearby server
or to a remote cloud when he wants to play. The offloading of the
game to nearby server or to the cloud can extend the battery power
life of the mobile device and Peter can play game without any
disruption. However, the offloading decision is based on the residual
battery power of the mobile device. In this scenario, we consider
offloading of game in nearby available server. The discovery of server
and services provided by the server and their authentication involve
time-intensive and compute-intensive processes, which need to be
optimized to use the nearby available resources in a user-transparent
way (Ahmed et al., 2013).

3.4. Cooperative spectrum sensing in cognitive radio cloud networks

In Wu et al. (2012), authors have integrated MCC with cognitive
radio networks to process huge amount of spectrum sensing data to
generate one complete report for a primary user detection in
proximity. The time-sensitive nature of scenario demands high
computational resources along with fast authentication to detect the
masqueraders and a lightweight data integrity mechanism to check
data forgery. The incorrect sensing report may result in false alarm and
mis-detection of primary user. The time-sensitive nature of spectrum
sensing demands optimized execution of cooperative sensing algo-
rithm in MCC environment and resource-constrained nature of mobile
devices requires efficient utilization of resources. The communication
medium limitations also require minimizing the communication
overhead and cost.

4. State-of-the-art cloud-based mobile application execution
frameworks

The application execution frameworks are designed to run in
diverse environment and fulfill the requirements of various types
of applications. The main aim of the application execution frame-
works in MCC is to augment the resources of mobile devices by
leveraging the resources and services of the cloud. However, the
number of parameters involved in optimization varied from
framework to framework. Based on the number of optimization
parameters involved, we have classified the state-of-the-art cloud-
based mobile application execution frameworks into three main
categories: mono-objective optimization-based frameworks, bi-
objective optimization-based frameworks, and multi-objective
optimization-based frameworks.

4.1. Mono-objective optimization-based frameworks

The mono-objective optimization-based frameworks mainly
focus to optimize a single objective. The mono-objective optimiza-
tion is simplest form of optimization but it cannot fit to diverse
running environment and cannot fulfill the requirements of
various applications. Herein, we are presenting the frameworks
that aim to optimize a single objective:

(a) CloneCloud: In Chun et al. (2011), CloneCloud, a flexible
application partitioner, is proposed that empowers mobile appli-
cations to seamlessly offload part of it into the remote cloud. The
system employs dynamic profiling and static analysis to partition
the mobile application. The main goal of partitioning is to optimize
overall execution cost. The execution cost comprises computation
cost, Comp(E), and migration cost, Migr(E). The energy consump-
tion cost consists of CPU activity, display state, and network state:

CðEÞ ¼ CompðEÞþMigrðEÞ ð1Þ

CompðEÞ ¼
X
iAE;m

½ð1�LðmÞÞIði;mÞCcði;0ÞþLðmÞIði;mÞCcði;1Þ� ð2Þ

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–68 55

The computation cost takes value from the clone cost variables
Cc(i;1) when the method runs on the clone of the mobile device, or
from the mobile device cost variables Cc(i;0). The migration cost
sums the individual migration cost Cs(i) of those invocations
whose methods have migration points:

MigrðEÞ ¼
X
iAE;m

RðmÞIði;mÞCsðiÞ ð3Þ

Eq. (4) models the constraint that two methods calling directly
each others cannot be on the same location. Eq. (5) shows that
method annotated to run on the mobile device run only on the
mobile device. Eq. (6) ensures that methods dependent on the
same class C's native state are collocated. Eq. (7) ensures that all
methods transitively called by a migrated method must not be
migrated:

Lðm1ÞaLðm2Þ; 8m1;m2 : DCðm1;m2Þ ¼ 14Rðm2Þ ¼ 1 ð4Þ

LðmÞ ¼ 0; 8mAVM ð5Þ

Lðm1Þ ¼ Lðm2Þ; 8m1;m2;C : m1;m2AVNatC ð6Þ

Rðm2Þ ¼ 0; 8m1;m2 : TCðm1;m2Þ ¼ 14Rðm1Þ ¼ 1 ð7Þ
RðmÞ is a decision variable that represents the insertion of the

migration point in method ‘m’ at entry and exist of a method, if
RðmÞ is 1 partitioner will insert the migration point otherwise
method will remain unmodified. The relationship between two
methods is represented by DCðm1;m2Þ and TCðm1;m2Þ where
DCðm1;m2Þ read as “method m1 directly calls method m2” and
TCðm1;m2Þ read as “method m1 transitively calls method m2. LðmÞ
is an auxiliary decision variable that represents the location of a
method m. VM and VNatC represent the set of methods and
annotated methods of class C, respectively.

(b) Data stream application partitioning framework: A frame-
work for optimal partitioning of data stream application to
maximize the speed/throughput in processing is proposed in
Yang et al. (2012). The partitioning problem is modeled as the
problem of assigning a set of components of dataflow graph to the
resources with an objective to maximize the data stream applica-
tion throughput. To make the framework a lightweight, the
optimization solver is kept at cloud side. The objective function
is defined as follows:

max
xi ;yi;j

TP¼ 1
tp
; i; jA 0;1;…; vþ1f g where

tp ¼max max
iAV

xi:
si
ηp

X
iAV

xi

 !
; max

ði;jÞAE

di;j xi�xj
� �2
yi;j

 !()

s:t:

P
i;jAE

yi;jðxi�xjÞ2 ¼ B;

yi;j40;
x0 ¼ 1;
xvþ1 ¼ 1;
xi ¼ 0 or 1; iAf1;2;…; vg

8>>>>>>>><
>>>>>>>>:

ð8Þ

where p and η are the CPU's capability of the mobile device and the
percentage of the mobile device ideal CPU resource, respectively. In Eq.
(8), B is the bandwidth. The variables xi is the decision variable that
can get value either 1 or 0. The xi¼1 means the component i runs on
the mobile device; otherwise xi¼0 runs on the cloud. The variable yi;j
represents the wireless bandwidth dedicated to the channel (i; j). The
two virtual nodes 0 and vþ1 are added to satisfy the constraint that
data is originated from and delivered to the mobile device. The
variables d0;1 and dv;vþ1 represent the size of unit of input data and
output data, respectively. However, the genetic-based partitioning
algorithm used by the framework does not assure a constant optim-
ization response time.

(c) Computational offloading dynamic middleware (CODM): In
Verbelen et al. (2011), a middleware framework for selection of
deployment of a configuration with best quality considering
current connectivity and available resources is presented. The
main unit of deployment is bundle. For each bundle, the frame-
work provides multiple configurations with different levels of
resource's demand and offers different quality levels.

The best configuration is modeled by the objective function:

max
configurations

X
i

wi

s:t:

8m :
P
i
Xim �wirMm

8 i :P
m
Xim ¼ 1

8><
>: ð9Þ

The variable wi represents the weight of ith component that
depicts the quality of the component. The decision variable Xim

value is equal to 1 if it is assigned to machine otherwise it is zero.
First constraint ensures that the sum of the weights of all bundles
deployed on the device or the server does not exceed the
maximum allowed limit. Second constraint ensures that each
bundle of the configuration can be deployed on either the mobile
device or the server. The framework can dynamically adapt the
configuration and deployment, and gracefully degrades the quality
in case of connection lost. However, the framework requires
different configurations and deployments of application. More-
over, the framework also requires Open Service Gateway initiative
(OSGi) support in remote cloud.

(d) Hyrax: Hyrax (Marinelli, 2009) leverages the available
resources from a cluster of mobile devices in a local proximity to
run the compute-intensive tasks. Hyrax employs fault tolerance
mechanism of Hadoop to reduce the frequent disconnections of
mobile servers. Hyrax also provides accessibility to the remote
clouds in case the nearby mobile resources are not sufficiently
available. Hyrax is developed based on Hadoop for Android mobile
devices. The server employs two client side processes of MapRe-
duce, namely NameNode and JobTracker to coordinate the com-
putation process on a group of mobile devices. The mobile device
employs two Hadoop processes, namely TaskTracker and Data-
Node to receive the tasks from the JobTracker. The mobile devices
connect with the server and other mobile devices via IEEE 802.11g
technology. The Hyrax transparently uses distributed resources
and provides interoperability across heterogeneous platform.
However, the Hyrax has high overhead because of the complexity
of Hadoop algorithm.

(e) Virtualized mobile replicas offloading architecture (VMROA):
In Chun and Maniatis (2009), the authors propose an offloading
architecture using loosely synchronized virtualized mobile replicas
in the cloud. The execution in the offloading architecture involves
three phases. The architecture demands less bandwidth due to
incremental checkpoint system replication. There are three main
components of architecture, namely replicator, controller, and
augmenter. The replicator is responsible for synchronizing the
changes in phone software and states of the clone. The controller
on the mobile device starts an augmented execution and re-
integrates the result back to mobile device. The augmenter on
the clone side is responsible for local execution and returning of
results. The VMROA reduces the synchronization overhead by
opportunistically synchronizing the mobile device and cloud
server. However, the execution environment migration creates
issues of security, privacy, and management in the cloud.

(f) MAUI: In Cuervo et al. (2010), MAUI, an energy-aware
method level offloading mechanism for mobile applications in
the cloud is proposed. MAUI employs both static and dynamic
partitioning. First of all, the programmer annotates the method as
a remotable which does not implement the following

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–6856

functionalities: (a) the user interface implementation and
(b) input/output implementation. Thereafter, the proposed system
automatically identifies remotable, non-remotable methods, and
states of remotable method, then automatically performs migra-
tion. MAUI uses timeout mechanism to detect the failures in
connection with the server. MAUI profiler performs three types
of profiling namely device profiling, program profiling, and net-
work profiling. MAUI formulates the execution problem as a 0–1
integer linear programming (ILP) problem:

maximize
X
vAV

Iv � Elv�
X

ðu;vÞAE

j Iu� Iv j � Cu;v

such that :
X
vAV

ðð1� IvÞ � Tl
vÞþðIv � Tr

vÞÞþ
X

ðu;vÞAE

ðj Iu� Iv j � Bu;vÞ

rL and Ivrrv; 8vAV ð10Þ
where Iv is the decision variable: Iv¼0 if method is executed
locally, otherwise Iv¼1. The Ev

l and Tv
l denote the energy and time

required to execute the method locally, respectively. The Bu;v

represents the necessary program state when u calls v. The
parameter Cu;v represents the energy cost of transferring states,
and parameter rv indicates that the method is marked remotable
or not. Although MAUI significantly improves the energy con-
sumption of mobile device and incorporates the user mobility and
network dynamics, it does not address scalability and does not
provide the QoS features.

Table 1 presents the comparative summary of mono-objective
optimization-based frameworks considering the objective. The
general comparison of these frameworks is presented in Table 2.

4.2. Bi-objective optimization-based frameworks

The bi-objective optimization-based frameworks mainly focus
to optimize the two objectives. The bi-objective optimization-
based frameworks have relatively higher complexity than mono-
objective optimization-based frameworks. These frameworks
incorporate two diverse parameters in the objective function.
The bi-objective optimization-based frameworks can better fit

to diverse running environment and can fulfill the some require-
ments of applications in MCC. Herein, we are presenting the
frameworks that aim to optimize two objective functions:

(a) Virtual machine (VM)-based cloudlet: In Satyanarayanan
et al. (2009), the authors highlight the limitations of cloud
computing. The WAN latency, jitter, packet losses are some of
the limitations, which hurt the usability of time sensitive applica-
tions. Using cloudlet in local proximity reduces latency and
provides a single hop, high bandwidth wireless access to the
resource-rich cloudlet. It provides pre-use modifications and after-
use clean-up, which ensures that the infrastructure is restored in
faultless states after use. There are two approaches that can deliver
VM state to cloudlet. One is VM migration and the other approach
is dynamic VM synthesis. In VM migration approach, an executing
VM is paused; all its states are transferred to the cloudlet and then
VM execution again resumed at the cloudlet. In the dynamic VM
synthesis approach, mobile device sends a small VM overlay to the
cloudlet that already has the base VM from which overlay VM was
derived. The cloudlet infrastructure then derives the launch VM by
applying overlay to the base VM. The proposed solution alleviates
the migration overhead by employing the dynamic synthesis.
Moreover, the performance of dynamic synthesis is further
improved by employing parallel processing and by employing
caching and pre-fetching techniques. However, privacy and access
control are issues with migration of entire application execution
environment that needs to be addressed.

(b) AIOLOS1: In Verbelen et al. (2012a), AIOLOS, a mobile
middle-ware framework is proposed, which has an adaptive off-
loading decision engine that considers dynamic available
resources of server and varying network conditions in its off-
loading decision. The framework estimates execution time for each
method call at both local and remote execution considering
argument size. Thereafter, on basis of the result it selects the
execution location. The offloading decision algorithm goal is to
optimize local execution time and energy consumption. A history-

Table 2
General comparison of mono-objective optimization-based frameworks.

Application execution frameworks Network
latency

QoS
support

Profiler
overhead

Scalable Programmer
support

Cloud usage
overhead

Energy
consumption

Operational
cost

CloneCloud (Chun et al., 2011) Low n/a High No No High Low High
Data stream application partitioning framework

(Yang et al., 2012)
No No Med. Yes No Med. Low Low

CODM (Verbelen et al., 2011) Low Yes Low No Yes Low Low Low
Hyrax (Marinelli, 2009) Low No n/a Yes n/a Low Low Med.
VMROA (Chun and Maniatis, 2009) Low n/a Low Yes n/a High Low High
MAUI (Cuervo et al., 2010) Low No High No Yes Low Low Low

Med. – Medium, n/a – Not Applicable.

Table 1
Comparison of mono-objective optimization-based frameworks based on objectives.

Mono-objective optimization-based
frameworks

Optimizing
execution cost

Maximizing
throughput

Optimizing
deployment

Reducing
network latency

Transparent resource
augmentation

Minimizing energy
consumption

CloneCloud (Chun et al., 2011)
Data stream application partitioning

framework (Yang et al., 2012)
CODM (Verbelen et al., 2011)
Hyrax (Marinelli, 2009)
VMROA (Chun and Maniatis, 2009)
MAUI (Cuervo et al., 2010)

1 aiolos is an ancient Greek word meaning “quickly changing, adapting”.

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–68 57

based profile is used for a service method to calculate the local
execution time, which incorporates speedup processor α, network
bandwidth β, and latency γ:

T remote ¼ 1
α
�
X
iARM

ðT CPU;locali Þþ
1
β

�ðAþRÞþγþ
X
jACM

T CPU;localj þ
1
β
� ðAjþRjÞþγ

� �
ð11Þ

The parameters A and R represent the argument size and esti-
mated return size respectively.

Esaved ¼ ECPU �
X
iARM

ðT CPU;locali Þ�ETR � A�ERCV

�R�
X
jACM

ðERCV � AjþETR � RjÞ40 ð12Þ

where ECPU, ETR, and ERCV represent the energy consumed per time
unit by the CPU, the energy cost for transmitting and receiving a
byte, respectively. AIOLOS can only perform better in the scenarios
where previous history of cloud server is available.

(c) Calling the cloud: A middleware framework is presented in
Giurgiu et al. (2009) that dynamically partitions an application and
offloads the partitions to the cloud. The partitioning process
comprises two steps. Firstly, an application is modelled as a data
flow graph that consists of various software modules. Thereafter, a
partitioning algorithm computes the optimal cut, which optimizes
the given objective function. The optimization objective function
minimizes the interaction latency between the mobile device and
the cloud server while taking care of the exchanged data over-
head:

min OCc ¼min
Xtok

i ¼ 1

Xw
j ¼ 1

inijþoutjinf ij
α

þ
Xk
i ¼ 1

code_sizei
β

þ
Xwo s

i ¼ 1

proxy_costi

0
@

1
A

ð13Þ
where the first part of Eq. (13) models the cost of data exchange
between non-collocated components. The parameter fij represents
the frequency of data exchange between non-collocated compo-
nents. The α and β represent the capacities of communication and
computational resources, respectively. The second term represents
the computation cost on the mobile device. The last term repre-
sents the cost of creating the proxies for interaction with w remote
bundles. The framework reduces memory consumption, commu-
nication cost, and interaction time. However, the framework
employs compute-intensive migration process, which is involved
in dynamic analysis, profiling, synthesis, runtime partitioning and
offloading. The framework also requires continuous synchroniza-
tion, which keeps mobile device in active state for whole session
of distributed platform.

(d) Mobile cloud execution framework: In Hung et al. (2012), a
mobile cloud-based application execution framework has been
proposed. The framework does not demand application redesign.

Unlike a traditional VM-based scheme application migration,
the proposed scheme only requires the transfer of application
saved states instead of entire states of VM. For migrating an
application, the framework first pauses an application on a mobile,
sends saved state data files by the application to the cloud, and
finally resumes the application execution in cloud server. As the
state data files are smaller in size it causes low overhead. To avoid
the loss of input data, application replay technique is integrated
with already state-saving scheme. The proposed framework pro-
vides code security through encryption and isolated execution
environment. Moreover, the performance of interactive applica-
tions may degrade in low bandwidth networks.

(e) Cloudlet aided cooperative terminals service environment
(CACTSE): CACTSE (Qing et al., 2013) is proposed as a cloudlet-
based content delivery framework. The framework has a service

manager that manages the content distribution among the mobile
nodes. The cloudlet does not store the actual data, however, it
indexes the contents. The mobile devices register themselves with
the service manager and thereafter they request data from the
server. The service manager first searches the local index for the
requested file. If found, the service manager directs the requesting
node to the other node that contains the requested file. If the
requested data is not available on the local nodes cache, thereafter,
the service manager can then connect to Internet to download the
required data file. The objective of CACTSE is to enable the
cooperation among local mobile nodes to exchange the data
without using Internet or the cloud service. CACTSE pushes the
contents closer to the users without disrupting the existing
content delivery networks. The framework predicts the future
demands based on user's behavior; thereby, the demanding
contents can be transmitted to the edge in a proactive manner.
However, CACTSE increases the management load in the access
network. The cached contents can be outdated with the passage
of time.

(f) Cloudlet-based multi-lingual dictionaries: A cloudlet-based
multi-lingual dictionary is proposed in Achanta et al. (2012). The
cloudlet-based multi-lingual dictionary leverages the VM-based
cloudlet infrastructure to execute the application. The proposed
solution aims to minimize the VM migration overhead by employ-
ing VM synthesis. The VM synthesis combines two VMs called
dictionary base VM and dictionary overlay VM. The dictionary base
VM resides within the cloudlet and the dictionary overlay VM
resides on the mobile device. The dictionary overlay VM is
migrated from the mobile device to the cloud server where the
dictionary overlay VM is applied to the dictionary base VM. As a
result, a launched VM is derived from the VM synthesis. The
dictionary application and voice recognition is executed on launch
VM and results are sent back to the mobile device where results
are displayed. The proposed solution reduces the transmission
overhead and cost. However, the VM distribution in the cloudlet-
based multi-lingual dictionaries is coarse-grained.

(g) Dynamic cloudlet: In Verbelen et al. (2012b), a dynamic
cloud approach that deals with applications on component level is
presented. The framework does not require the fixed infrastruc-
ture near the access point but instead any device in local area
network with sufficient available resources can be a cloudlet. In
dynamic approach, all devices share their resources. Secondly, as a
unit of distribution, VM-based cloudlet uses a coarse-granular
approach of VM distribution that has its own deployment com-
plexities. As resources of cloudlet are limited, the latency critical
components are executed in cloudlet while non-real components
are executed in remote cloud.

The proposed solution provides hierarchical cloudlet deploy-
ment on multiple nodes, which enhances scalability of the system.
The proposed solution supports the component level application
migration instead of whole VM migration. The solution reduces
the data transfer size because of only migrating the compute-
intensive component. However, the framework has high runtime
dynamic application partitioning overhead and complex offloading
decisioning process.

(h) Virtual mobile cloud computing (VMCC): VMCC (Huerta-
Canepa and Lee, 2010) aims to enhance computing capabilities of
stable mobile devices by leveraging an available resources of
nearby mobile devices to execute the compute-intensive tasks
with low latency and network traffic overhead. During the execu-
tion, the application is partitioned into small codes and migrated
to nearby mobile devices for execution. The migrated code
executes on the nearby mobile devices and reintegrated back
upon completion. VMCC reduces the WAN latency by enabling
the compute-intensive application execution on local mobile
devices that requires no Internet connectivity. Similar to Hyrax,

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–6858

VMCC also does not consider the mobility. The overall perfor-
mance of offloading solely depends on number of locally available
nodes. Moreover, VMCC requires time-intensive neighbour dis-
covery process.

(i) Mirroring mobile device: Zhao et al. proposed a mirror server-
based framework that provides a VM for mobile devices inside the
telecommunication service provider network. The framework
shifts some of the workload to the mobile device mirror in the
cloud server. The server supports a loose synchronization between
the mobile device and the mirror server, thereby, enabling the
replays of the inputs to the mobile device on its mirror. The
support of data caching on the mirror enables the caching of
downloaded files from Internet into mirror cache. The files can be
directly retrieved by subsequent users from the server cache
instead from Internet server. Similarly, when a user wishes to
send a file to multiple users, the mobile device does not need to
send a file multiple times on the wireless links. The mobile device
just sends the file to the mirror server and mirror server sends to
mobile devices on their request. The mirroring of the mobile
device reduces the operational overhead on a mobile device by
transferring functionality of uploading to the mirror server. The
framework puts high synchronization overhead that requires more
network bandwidth.

(j) Code offload by migrating execution transparently (COMET):
COMET (Gordon et al., 2012) focuses on transparent migration of
multi-threaded application to the locally available servers. The
framework takes the migration decision considering the workload
of machines. COMET takes benefit from the distributed shared
memory techniques, such as field level granularity, to maintain the
consistency among the end systems. Multiple readers' and wri-
ters' threads of application in COMET can simultaneously use the

field without any coordination. COMET provides the VM-
synchronization between the mobile device and the cloud server.
A scheduler in COMET migrates the threads between the end-
points to optimize the throughput. The scheduler incorporates the
past behavior of thread execution in thread migration decision.
The past behavior is captured by monitoring how long a thread has
been running on the mobile device without calling a native
method. COMET provides transparent migration of partial threads
and multi-threads of an application. However, the framework does
not provide security mechanism and does not ensure the data
integrity.

(k) Replicated application framework: In Lee (2012), application
replication-based framework is proposed that comprises Work-
erNodes and MasterNodes. The WorkerNodes run the migrated
classes whereas the MasterNodes receive the offloading requests
from mobile clients and forward to the appropriate WorkerNodes.
To reduce the latency, first request only has an identifier of the
class to be migrated, but when a response from cloud server
exposes the absence of the replica in the cloud, then the class
binary file is migrated from the mobile client to the MasterNode.
The framework reduces the application migration overhead by
replicating the application inside the cloud for later use. The
offloading decisioning is lightweight because the decisioning is
performed inside the cloud instead of mobile device. However, the
offloading decisioning in the cloud requires information from
mobile device such as network connectivity, user preferences,
and mobile device capabilities.

(l) Cuckoo: Kemp et al. (2012) propose a framework, Cuckoo, for
partial offloading of mobile applications to the nearby/cloud
servers. The Cuckoo aims to facilitate the developers by leveraging
the development tools that are known to the developers. The

Table 3
Comparison of bi-objective optimization-based frameworks based on objectives.

Bi-objective
optimization-based
frameworks

Optimizing
execution
cost

Minimizing
execution
time

Reducing
offloading
time

Reducing
network
latency

Maximizing
resource
utilization

Minimizing
energy
consump-
tion

Optimizing
data
transfer
cost

Optimizing
bandwidth
utilization

Minimizing
VM
migration
overhead

Minimizing
response
time

VM-based cloudlet
(Satyanarayanan et
al., 2009)

AIOLOS (Verbelen et al.,
2012a)

Calling the cloud
(Giurgiu et al., 2009)

Mobile cloud execution
framework (Hung et
al., 2012)

CACTSE (Qing et al.,
2013)

Cloudlet-based multi-
lingual dictionaries
(Achanta et al., 2012)

Dynamic cloudlets
(Verbelen et al.,
2012b)

Virtual mobile cloud
computing (VMCC)
(Huerta-Canepa and
Lee, 2010)

Mirroring mobile device
(Zhao et al., 2012)

COMET (Gordon et al.,
2012)

Replicated application
framework (Lee,
2012)

Cuckoo (Kemp et al.,
2012)

MOCHA (Soyata et al.,
2012)

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–68 59

Cuckoo consists of two type of builders: Cuckoo Service Rewriter
(CSR) and Cuckoo Remote Service Deriver (CRSD). The Cuckoo
separates computation intensive (services) and interactive com-
ponents (activities) of the application using the Android Interface
Definition Language (AIDL) (2012). Once the service is available on
server, the address of the server is sent to the resource manager
running on the mobile device. Then, address registrar registers
the server address to enable the resources usable for the mobile
device. The Cuckoo framework requires programmers support
for application modification. The Cuckoo takes static decisions
for offloading that are context unaware. Moreover, the Cuckoo
provides proxy-based application execution that incurs addi-
tional delay.

(m) Mobile–cloudlet–cloud acceleration architecture (MOCHA):
MOCHA is proposed in Soyata et al. (2012) to leverage on the
mobile proximate cloudlet resources. MOCHA architecture consists
of three components: mobile device, cloudlet, and the cloud. The
mobile device is connected to the cloudlet which, in turn, is
connected to a larger cloud infrastructure such as Amazon Web
Services, Windows Azure. The cloudlet finds how to partition the
computation among the cloudlet and multiple servers in the cloud
based on different QoS metrics. MOCHA aims to minimize the
latency from user to the cloud. MOCHA supports parallel proces-
sing for application execution and provides QoS. However, acquir-
ing the network QoS parameters and finding the best QoS path
consume mobile device energy.

Table 3 presents the comparative summary of bi-objective
optimization-based frameworks considering the objective. The
general comparison of these frameworks is presented in Table 4.

4.3. Multi-objective optimization-based frameworks

The multi-objective optimization-based frameworks mainly
focus on optimizing the multiple objectives of the frameworks.
The multi-objective optimization-based frameworks have highest
complexity than other categories, mono-objective optimization-
based frameworks and bi-objective optimization-based frame-
works. These frameworks incorporate a variety of parameters in
the objective function. The multi-objective optimization-based
frameworks are better than others in diverse running environment
and to fulfill the requirements of different applications in MCC.
Herein, we are presenting the frameworks that aim to optimize
multiple objective functions:

(a) Elastic application model: In Zhang et al. (2010), an optimal
elastic application model is presented, which enables the use of

cloud resources in a transparent manner. The proposed elastic
framework incorporates four attributes in the cost model: mini-
mizing power consumption, minimizing monetary cost, maximiz-
ing throughput, and maximizing security and privacy. The
application is partitioned into various components called weblets
that are replicated across multiple clouds; thereby, enhancing the
availability and reliability. Moreover, the application execution
configuration is optimized by the following objective function:

yn ¼ arg max
y

pðyÞ ∏
L

i ¼ 1
pðxi jyÞ ∏

M

j ¼ 1
pðzj jyÞ ð14Þ

The vector ‘x’ has values of different device status components
such as throughput, memory usage, upload bandwidth, and file
cache. The vector ‘z’ has the values for user's preferred options
such as processing speed and monetary cost. The variable ‘y’ is the
configuration variable representing the total number of configura-
tions. The variables ‘L’ and ‘M’ represent the number of compo-
nents in the status vector and the number of components in the
preference vector, respectively. The establishment of runtime
distributed platform and its management require additional com-
puting resources. The offloading decision is based on complex cost
model which incorporates a number of parameters; thereby
making the offloading decision process compute-intensive.

(b) ThinkAir: ThinkAir (Kosta et al., 2012) exploits mobile device
virtualization to simultaneously execute multiple offloaded meth-
ods; thereby, reducing the application execution time. The remote
method invocation is usually done through execution controller,
which resides on mobile device as well as on the cloud side. The
execution controller takes the offloading decision based on the
information collected by the profiler. If the remote connection
fails, the framework falls back to local execution. The cloud side of
offloaded code is managed by application server. The framework
supports six types of VMs with different CPU, memory, and heap
sizes. The default server is called primary server, which always
stays online and the rest are of secondary server type. Moreover,
the framework supports accurate and lightweight profiling for
hardware, software, and network. The framework supports the
parallel execution and considers the multi-users application off-
loading scenarios for execution in the cloud that is more realistic.
However, the offloading decisioning process of ThinkAir is com-
plex. The framework also requires the installation of android
operating system-based VM on the cloud server.

(c) Pocket cloudlet: A storage-based cloudlet is proposed in
Koukoumidis et al. (2012) that is aiming to utilize the large

Table 4
General comparison of bi-objective optimization-based frameworks.

Application execution frameworks Network
latency

QoS
support

Profiler
overhead

Scalable Programmer
support

Cloud usage
overhead

Energy
consumption

Operational
cost

VM-based cloudlet (Satyanarayanan et al., 2009) Low n/a n/a Yes n/a Med. Low Med.
AIOLOS (Verbelen et al., 2012a) Low No Low No No Low Low Low
Calling the cloud (Giurgiu et al., 2009) Low n/a High No No Low Low Low
Mobile cloud execution framework (Hung et al.,

2012)
High Yes Low No Yes Low Low Low

CACTSE (Qing et al., 2013) Low Yes n/a Yes No Low Low Low
Cloudlet-based multi-lingual dictionaries (Achanta

et al., 2012)
Low n/a n/a Yes n/a Med. Low Low

Dynamic cloudlets (Verbelen et al., 2012b) Low Yes High Yes Yes Low Low Low
Virtual mobile cloud computing (VMCC) (Huerta-

Canepa and Lee, 2010)
Low No n/a No No High Low Low

Mirroring mobile device (Zhao et al., 2012) Low n/a n/a Yes n/a High Low High
COMET (Gordon et al., 2012) Low n/a n/a Yes Less Low Low Low
Replicated application framework (Lee, 2012) Low No Yes Yes n/a High Low High
Cuckoo (Kemp et al., 2012) Low n/a n/a Yes n/a Low Low Low
MOCHA (Soyata et al., 2012) High Yes n/a Yes n/a Med. Med. High

Med. – Medium, n/a – Not Applicable.

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–6860

available storage capacity of the nearby mobile devices to reduce
the latency and energy issues in accessing the distant cloud
services. The framework leverages on both the community access
model and personal access model to maximize the hit rate of user
queries. The partial or full cloud services are migrated to a mobile
device; thereby, transforming a mobile device into a pocket
cloudlet. The pocket cloudlet improves the user experience by
implementing the following functionalities: (a) caching the infor-
mation on proximate mobile devices; (b) personalizing the service
based on behavior and usage patterns of the individual users; and
(c) ensuring the privacy of individual users by locally running the
service on the mobile device. The pocket cloudlet improves the
mobile user experience by providing instant access to the informa-
tion. The pocket cloudlet reduces overall service discovery time
and energy consumption. However, the pocket cloudlet requires
real-time updates over the radio links to ensure the cached data
freshness.

(d) MISCO: MISCO (Dou et al., 2010) extends the MapReduce to
the distributed cloud environment that is composed of mobile
worker nodes and centralized server. The MapReduce is a data
processing framework that enables the parallel execution of an
application in cluster environment. A MapReduce framework is
implemented on a centralized master server. A unique feature of
the framework is that mobile devices are the worker nodes, which
provide remote application processing. The worker nodes get the
workload from the master server, perform computations, and
return the results to the master server. MISCO employs a centra-
lized monitoring mechanism for monitoring of the distributed
execution platform. MISCO provides powerful programming
abstract and supports parallel processing. However, the mobile
devices have high transmission overhead for input, synchroniza-
tion, monitoring, and results exchange.

(e) Extensible messaging and presence protocol (XMPP)-based
mobile cloud middle-ware: A XMPP-based mobile cloud middle-
ware is presented in Kovachev et al. (2012a) that provides
application partitioning and adaptive offloading to available
nearby server. The proposed middle-ware covers two crucial
aspects of mobile cloud computing architecture: a context-aware
cost model and standardization of XMPP as a cloudlet protocol.
The offloading decision is based on context-aware cost model,
which comprises different parameters particularly module execu-
tion time, battery level, resource consumption, security, monetary
cost, and network bandwidth. The objective of the model is to
perform intelligent decisions with minimal overhead while satis-
fying the environment constraints. The optimization model in
XMPP is supported with a lightweight, efficient and predictive
decision algorithms. The XMPP reduces the WAN latency, trans-
mission delay, incorporates QoS, but suffers with profiling over-
head. The offloading is lightweight as only the prediction
algorithm runs on the mobile device whereas optimization algo-
rithm runs in the cloudlet. However, the middle-ware requires
programmer support to annotate the methods for remote execu-
tion in MCC.

(f) MACS: An adaptive middleware which provides lightweight
application partitioning, seamless computational offloading, and
resources monitoring is presented in Kovachev et al. (2012b). The
partitioning decision is transformed into optimization problem
and solved by optimization solver. The cost function in optimiza-
tion problem comprises transfer cost of service, its related services
which are not collocated, CPU cost, and memory cost of mobile
device. The constraints are related with minimization of memory
usage, energy usage, and execution time. The cost function is
represented as follows:

min
xA0;1

ðctransfernwtrþcmemorynwmemþcCPUnwCPUÞ ð15ÞTa
b
le

5
C
om

p
ar
is
on

of
m
u
lt
i-
ob

je
ct
iv
e
op

ti
m
iz
at
io
n
-b
as
ed

fr
am

ew
or
ks

ba
se
d
on

ob
je
ct
iv
es
.

M
u
lt
i-
o
b
je
ct
iv
e
o
p
ti
m
iz
at
io
n
-

b
as
ed

fr
am

ew
o
rk

s
M
in
im

iz
in
g

en
er
gy

co
n
su

m
p
ti
o
n

M
ax

im
iz
in
g

th
ro

u
gh

p
u
t

M
in
im

iz
in
g

m
o
n
et
ar
y

co
st

M
ax

im
iz
in
g

se
cu

ri
ty

&
p
ri
va

cy

M
in
im

iz
in
g

ex
ec

u
ti
o
n

ti
m
e

M
in
im

iz
in
g

ex
ec

u
ti
o
n

co
st

M
ax

im
iz
in
g

Ca
ch

e
H
it

R
at
e

R
ed

u
ci
n
g

n
et
w
or

k
la
te
n
cy

M
in
im

iz
in
g

m
is
se
d

d
ea

d
li
n
es

Ea
si
n
g

ap
p
li
ca

ti
o
n

d
ev

el
o
p
m
en

t

M
in
im

iz
in
g

d
at
a

ex
ch

an
ge

El
as
ti
c
ap

p
lic

at
io
n
m
od

el
(Z
h
an

g
et

al
.,
20

10
)

Th
in
kA

ir
(K
os
ta

et
al
.,
20

12
)

Po
ck

et
cl
ou

d
le
t
(K
ou

ko
u
m
id
is

et
al
.,
20

12
)

M
IS
CO

(D
ou

et
al
.,
20

10
)

X
M
PP

-b
as
ed

m
ob

ile
cl
ou

d
m
id
d
le
w
ar
e
(K
ov

ac
h
ev

et
al
.,

20
12

a)
M
ob

ile
au

gm
en

ta
ti
on

cl
ou

d
se
rv
ic
es

(M
A
C
S)

(K
ov

ac
h
ev

et
al
.,
20

12
b)

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–68 61

where

ctransfer ¼
Xn
i ¼ 1

codeinxiþ
Xn
i ¼ 1

Xk
j ¼ 1

trjnðxj XOR xiÞ ð16Þ

cmemory ¼
Xn
i ¼ 1

meminð1�xiÞ ð17Þ

cCPU ¼
Xn
i ¼ 1

codeinαnð1�xiÞ ð18Þ

In above equations, n is number of offloaded modules. For a
particular module i, the code size and memory cost are repre-
sented by codei and memi, respectively. The transfer size of
module i is represented by tri that is equal to sum of sendi and
reci. The xi is a decision variable that shows whether the module i
is executed locally ðxi ¼ 0Þ or remotely ðxi ¼ 1Þ. Although MACS is
lightweight and provides dynamic partitioning and seamless off-
loading, it requires in advance developer support for structuring
the code in a model. Moreover, the offloading process is affected
with profiling, partitioning, and migration overhead.

Table 5 presents the comparative summary of multi-objective
optimization-based frameworks considering the objective. The
general comparison of these frameworks is presented in Table 6.

5. Cloud-based mobile application-centric taxonomies

In this section, we present the three taxonomies related to
cloud-based mobile application in MCC. First taxonomy classifies
the optimization strategies that are applied to optimize the
application performance. Second taxonomy classifies the opera-
tions involved during application execution in MCC. Third

taxonomy classifies various attributes of application execution
frameworks.

5.1. Taxonomy of application optimization strategies in MCC

The application in MCC can be optimized with respect to three
aspects: (a) design, (b) deployment, and (c) execution. Figure 2
presents the taxonomy of application related optimization strategies
in MCC. The application design can be optimized by employing
following features: (a) minimizing data exchange, (b) employing light-
weight migration framework, (c) leveraging agile security mechan-
isms, and (d) alleviating method call overhead. The data exchange can
be minimized by reducing the component dependency in the design
of an application. The lightweight frameworks can be designed by
either reducing the runtime overhead or shifting non-interactive
functionalities from mobile device to cloud side. The agile security
mechanisms can be employed at the design of the application by
either relying on cloud side security such as reputation-based trust
(Satyanarayanan et al., 2009) or using low overhead ciphers (Goyal and
Carter, 2004). The method call overhead can be reduced either by
using callback function (Verbelen et al., 2012a) or by reducing the
number of method calls that can be achieved by implementing
multiple similar operations in a single method (Cuervo et al., 2010).

The deployment of application can be optimized by efficiently
deploying the components in the execution environment. The
efficient application deployment can be attained by considering
the following concerns: (a) the dependency across the non-
collocated components is required to be minimized (Zhang et al.,
2010), (b) the distance to the available resources should be
reduced, (c) the bandwidth utilization should be minimal, and
(d) the runtime cost should be lower. The following type of
components should run on the mobile device: (a) user interface
(Giurgiu et al., 2009), (b) the component having a hardware
dependency on the mobile device (Cuervo et al., 2010), (c) real
time components (Verbelen et al., 2012b), and (d) components
that require secure data (Zhang et al., 2010). The execution of
application in MCC can be optimized by employing the following
features in the execution environment: (a) caching
(Satyanarayanan et al., 2009; Fesehaye et al., 2012), (b) parallel
execution (Zhang et al., 2010; Kosta et al., 2012), and (c) pre-
installations (Goyal and Carter, 2004; Lee, 2012). The caching can
help in reducing the application response time by pre-fetching the
data and storing it locally for subsequent use. The parallel execu-
tion reduces the overall execution time in the cloud but it requires
effective task scheduling. The pre-installation minimizes the pre-
execution delay in MCC.

5.2. Taxonomy of application execution operations in MCC

This section presents the taxonomy of operations performed by
application execution frameworks in MCC. Figure 3 presents the
taxonomy of application execution operations in MCC. The

Table 6
General comparison of multi-objective optimization-based frameworks.

Application execution frameworks Network
latency

QoS
support

Profiler
overhead

Scalable Programmer
support

Cloud usage
overhead

Energy
consumption

Operational
cost

Elastic application model (Zhang et al., 2010) High Yes High Yes Yes High Low High
ThinkAir (Kosta et al., 2012) n/a No High Yes Yes High Low Low
Pocket Cloudlet (Koukoumidis et al., 2012) Low No Med. Yes n/a Low Low Low
MISCO (Dou et al., 2010) Low No High Yes n/a Low High Low
XMPP-based mobile cloud middleware

(Kovachev et al., 2012a)
Med. Yes High Yes Yes Low Low Med.

MACS (Kovachev et al., 2012b) Low No High No Yes Low Low Low

Med. – Medium, n/a – Not Applicable.

Application
Optimization in

MCC

Design

Deployment

Execution

Minimal Data Exchange

Efficient Method Calls

Reduce Distance to Available Resources

Low Dependency Across Non-
collocated Components

Reducing Pre-execution Delays

Minimizing Execution Time

Maximizing Cache Hit Ratio

Minimal Bandwidth Utilization

Low Migration Overhead

Agile Security Mechanisms

Fig. 2. Taxonomy of application optimization strategies in MCC.

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–6862

operations involved in cloud-based application execution are
classified into five categories: initiation, pre-migration, in-migra-
tion, post-migration, in-execution, and post-execution.

Initiation operations are related to cloud discovery, scanning of
services, collecting user-preferences, gathering context informa-
tion, and characterizing application requirements. The cloud dis-
covery is the process of finding out the cloud server for leveraging

the available resources on the server to execute the application.
The cloud discovery can be performed in two ways either in a pro-
active manner or in a reactive manner. The pro-active cloud
discovery can reduce the pre-execution delay whereas reactive
cloud discovery induces delay before the start of actual execution.
The scanning of services discovers the services offered by a cloud.
The service scanning is performed on user request. Therefore, the

Fig. 3. Taxonomy of application execution operations in MCC.

Fig. 4. Taxonomy of application execution frameworks.

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–68 63

service scanning operation is also time-intensive task. The user-
preference collection operation gets the user preferences on cost,
quality, and other performance metrics. The device and network-
related context information is also collected in the initiation
operation. The context information include the device current
workload and residual battery power. The application require-
ments are also collected and characterized during the initiation of
application.

The pre-migration involves in authentication, admission con-
trol, authorization, service level agreement exchange, resource
reservation, application partitioning, offloading decisioning, VM
instance creation and initiation. Authentication verifies that some-
one is who he claims, he actually is. Admission control is a
validation process that checks whether the cloud resources are
sufficient for the requested application execution before the start
of the actual execution. The authorization is the process of
specifying access rights to cloud resources. The service level
agreement is exchanged between mobile users and cloud service
provider to exchange the resource requirements and the service
policies. The resource reservation process reserves the resources of
cloud server for mobile user as agreed in service level agreement.
The application partitioning is process that involves in dividing the
application in transferable and non-transferable components. The
application partitioning is performed in static, dynamic, and
hybrid form. Another important operation that is performed in
pre-migration phase is offloading decision making. The offloading
decision making is performed considering the runtime conditions
of environment. The VM instance creation and migration is the last
operation in pre-migration phase, which creates VM instance in
mobile device and VM instance creation in the cloud is initiated.

The in-migration operations deal with the migration of appli-
cation, its running states, and the VM clone migration. The
migration operation is dependent on the underlying wireless
network technologies that can be WiFi or cellular technologies.
The post-migration operations involved in VM instance creation in
the cloud, mobile OS image boot-up on the cloud server, applica-
tion start-up in the cloud, and running states of migrated applica-
tion in the cloud. The post-migration phase actually setups the
platform for execution of mobile application in the cloud. The in-
execution phase involves in resource monitoring in the cloud. The
resources are CPU, memory, and storage. The resources accounting
is also performed to systematize information about resources
utilization in the cloud. The privacy is also ensured during the
in-execution phase of the application. Lastly, the application
components are synchronized during the in-execution phase.
The application synchronization is of two types: (a) temporal
and (b) event-based. The temporal synchronization is performed
periodically whereas event-based application synchronization is
performed on trigger of an event. The post-execution phase
involves local and global states saving, result migration, and
integration of results on mobile device. The local and global states
of an application are saved in case if the computation migration is
required. Otherwise just results are saved and pushed back to the
mobile device.

5.3. Taxonomy of application execution frameworks

This section presents the taxonomy of application execution
frameworks as shown in Fig. 4. The features attribute of the
taxonomy presents the characteristics of the optimized application
execution frameworks. The features attribute shows that the
framework is required to be automatic, user transparent, adaptive,
agile, robust, and context-aware to attain the optimized applica-
tion execution.

The frameworks are required to support automated partition-
ing, offloading, and automated cloud-based service provisioning

mechanisms to attain the optimal application execution. User
transparency can be achieved by minimizing the user involvement
in the execution process. An application execution framework is
required to implement two functionalities to efficiently adapt
according to the changes in the environment: (a) change detection
mechanism, (b) response mechanism. The change detection
mechanism is required to be accurate, user transparent, and agile.
The response mechanism should peacefully degrade the quality of
application and respond to the resources in non-greedy opportu-
nistic way. The agile feature can be attained by minimizing the
overhead involved and expediting the computation process. The
robustness allows the framework to execute the application even if
the failure occurs. Context-awareness allows the framework to
know the available opportunities in terms of resources and
services in mobile cloud computing.

The state-of-the-art application execution frameworks are
designed to address different objectives such as optimizing execu-
tion cost, minimizing energy consumption, maximizing through-
put, minimizing execution time, and minimizing network latency.
The taxonomy also presents some of the cloud-based mobile
applications such as m-learning, m-health, m-guides, face-
recognition and m-augmented reality. The application execution
frameworks can also be categorized on the basis of deployment
platform type. The framework deployment is of three different
types: (a) cloud, (b) cloudlet, and (c) hybrid. Cloud provide remote
resources and services. The application execution in the cloud
suffers from high WAN latency which obstructs the realization of
the vision of optimal application execution. The cloudlets are of
three types: (a) infrastructure-based, (b) infrastructure-less, and
(c) virtualized infrastructure-based. The infrastructure-based
cloudlet requires a deployment of server in WLAN or in telecom-
munication service provider network. The infrastructure-less
cloudlet does not require any server for the deployment of
cloudlet, instead it uses the resources of available mobile devices.
The virtualized infrastructure-based cloudlet performs component
level application migration instead of whole VM. Some of the
components use mobile device resources while the rest utilizes
the cloud resources. Hybrid platforms are formed by integration of
mobile ad-hoc cloudlet, local cloudlet, and the remote cloud. The
taxonomy also presents the challenges in realizing the vision of
near-to-optimal application execution in MCC.

6. Metrics for optimal application migration in MCC

This section discusses the suitability of various metrics for
optimal application migration of delay-sensitive mobile applica-
tions. Figure 5 shows the metrics; the investigation of these
metrics in context of optimal application execution is an important
research perspective. These metrics belong to five areas namely
mobile device, network, application type, user preferences, and cost.
The significance of each metric with respect to optimal application
execution in MCC is discussed herein.

6.1. Mobile device

Mobile device related metrics mainly exploit device capabilities
in terms of processing load, CPU speed, memory, storage, wireless
access technologies, and number of interfaces. The processing load
represents the average CPU workload, while available memory and
available storage provide the information of idle memory and
storage, which can be used by the application. If processing load is
higher, then new application process may not have sufficient
number of CPU cycles for its execution. Hence, the application
requires migration to nearby or remote cloud server for smooth
execution. The available memory and storage provide memory

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–6864

space for intermediate application states and results. The low
memory disrupts the execution of the application and low storage
restrains the device from saving results. Hence, low memory and
storage impede the smooth execution of the application and in-
turn deteriorates the user experience. The mobility pattern of
mobile devices also affects the link failure across the mobile
network (Lenders et al., 2006). The offloading decision also
requires to incorporate the mobility pattern. The access technol-
ogy that is used for offloading an application also affects the
application performance in terms of latency and packet delivery
ratio which also in-turn degrades the user experience. Further-
more, available battery power also disrupts the execution of
mobile application. The mobile device with low battery power
can complete execution of the CPU-intensive application by off-
loading into the cloud while conserving the battery power. Nowa-
days, mobile devices support multiple interfaces so offloading can
be improved by exploiting available multiple interfaces to imple-
ment bandwidth aggregation. Bandwidth aggregation helps in
improving the throughput, packet delivery ratio, and reliability.
Furthermore, bandwidth aggregation can increase the capacity for
application offloading (Ramaboli et al., 2012).

6.2. Application type

The characteristics of mobile applications vary from application
to application as each application serves different needs of users.
The offloading decision is influenced by application type such as if
an application is more bandwidth-intensive than that of its
computational requirement, then it is wise decision to execute
application locally at mobile device (Hung et al., 2012). The work
in Zhang and Figueiredo (2006) classifies the mobile applications
as CPU-intensive, memory-intensive, and input/output-intensive.
The mobile applications can also be delay-sensitive (Nazir et al.,
2009), security-intensive (Cano and Domenech-Asensi, 2011; Khan
et al., 2013; Sookhak et al., 2014), and network-intensive (Ballagas
et al., 2007). Memory- and CPU-intensive applications are suitable
candidates for offloading; whereas network, input and security-
intensive applications have constraints to run in the remote cloud.

However, offloading decision of delay-sensitive application is
based on network latency and on execution time. If local execution
time of an application is longer than its remote execution time,
then offloading is beneficial (Verbelen et al., 2012a). In some cases,
offloading entire application degrades the application perfor-
mance. Such types of applications have two types of components
namely transferable and non-transferable parts. The non-
transferable parts can be one of the following: (1) a module that
involves in input/output (Cuervo et al., 2010; Othman and Hailes,
1998; Ou et al., 2006a); (2) a module that interacts with mobile
device hardware directly (Othman and Hailes, 1998); (3) a module
that depends on native code (Gu et al., 2004) or on the module of
the application which resides on mobile device (Ou et al., 2006b);
and (4) a module that uses directly device related information (Gu
et al., 2004). In short, to achieve the optimal application execution
in mobile cloud computing environment, the tasks are required to
be executed in the most suitable location considering the char-
acteristics of the task.

6.3. User preferences

Mobile applications run in dynamic wireless environment with
a variety of access technologies, where tradeoffs exist between
various available options such as high bandwidth link and cost.
End user prioritizes the available options to achieve the optimal
execution of application while satisfying all constraints related to
QoS, cost, and security. QoS related preferences are set by user to
attain the sufficient level of Quality of Experience considering his
budget. There exists a direct proportionality between QoS and
monetary cost, but usually user demands high QoS in low
monetary cost. The service providers charge different rates for
different levels of QoS. Hence, the QoS is an important parameter
for optimal application execution of a mobile cloud application.
The QoS improves overall latency and throughput to alleviate the
performance gap between local and remote execution. Similar to
QoS, security also increases the user monetary cost. Furthermore,
it also increases the processing complexity and communication
overhead for application execution. The increase in processing

Fig. 5. Metrics for optimal application migration in MCC.

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–68 65

complexity and communication overhead put additional delay,
which impedes the realization of optimal application execution in
MCC. Hence, security related features specifically authentication
and encryption are required to be wisely enabled considering the
application and end user requirements. The cost varies over the
range of services and for different types of networks. The cost
related options facilitate a user in selection of different services
considering his/her budget. For application requiring optimal
execution, a user can pay more to get higher bandwidth share
and obtain priority for his/her traffic in network.

6.4. Cost

The cost mainly involves monetary cost of wireless networks
and the cloud. The wireless networks such as 3G links charges
more to mobile users whereas WiFi is freely available access
technology. User can use WiFi for application offloading and
reintegration of results to reduce his overall cost. Whenever WiFi
is not available, a mobile user can switch to 3G for offloading his
application into the cloud. Different cloud service providers charge
the same service on different rates. User selects the cloud among
the available clouds considering the rate charged by the service
provider. The cost varies for different amount of resources so a
user can buy more resources to expedite the execution process by
performing parallel executions. To attain the optimal application
execution, user can pay more charges to access and utilize more
resources.

6.5. Network

Network related parameters are network latency, wireless link
quality, available bandwidth, security, and network cost. Incor-
poration of these parameters in offloading decision reduces the
latency and provides the secure offloading on affordable cost.
Selection of network with low latency, with better wireless link
quality, and available bandwidth helps in attaining the optimal
execution of mobile cloud applications by improving throughput
and reducing execution time.

7. Future research directions

The goal of attaining the optimal application execution in MCC
opens the doors for research in different dimensions. These
research dimensions cover the optimal application designing,
cost-effective application execution framework designing, devis-
ing and implementing lightweight context information exchange
mechanisms, solutions for efficient component deployment,
enabling the user-transparent execution, real-time optimized
management of heterogeneous environment, automated service
provisioning, and scalability of the cloudlet-based solutions.

The mobile applications have to run on the resource-constrained
mobile devices, therefore, the applications should be designed in such
a way that can reduce the energy consumption, attain better perfor-
mance and require less resources. The interdependency among
distributed modules of an application should be considered at the
time of designing. Moreover, the design of application execution
frameworks that are responsible to execute the applications in MCC
is also important to efficiently utilize the limited resources of mobile
devices. The application execution frameworks should be designed
considering the following key points: (a) the dependency across the
non-collocated components is required to be minimized, (b) the
bandwidth utilization should be minimized, (c) the framework should
support fault tolerance, and (d) runtime cost should be minimized.
Moreover, the high variability in bandwidth availability influences the
way execution framework decides and chooses the execution location.

The optimization of the application and execution frameworks beha-
vior using application and context aware techniques becomes more
important.

The lightweight context information collection mechanisms are
required to collect the information related to mobile device and the
cloud server. The MCC environment is highly dynamic, therefore, the
context information is also required to be frequently collected. More-
over, the efficient and agile mechanisms are required to apply context
information to take the offloading decisions in MCC. Moreover, a
mobile device can use context information to (a) increase the precision
of information retrieval, (b) discover services, (c) adapt interfaces, or
(d) make the user interaction implicit.

Another research direction for attaining the optimal application
execution is finding the effective component deployment mechan-
isms. The effective component deployment refers to the deploy-
ment of components strategy by which the components can be
executed with less computation and communication overhead.
The cloud-based mobile applications have multiple components
and these components may vary based on their characteristics and
functionalities. One of the components is user interface that is
involved in input, therefore, the component should be executed on
the mobile device. The component that interacts with the hard-
ware of mobile device should also be executed on the mobile
device. The components that have dependency on each other
should be executed on the same device and dependency among
non-collocated components should also be minimized. Therefore,
there is a need to investigate the lightweight methods that can
find the dependencies among the components on runtime with
less overhead on the mobile device.

The mobile application in MCC can run on any of the platform,
mobile device, cloudlet or a cloud, based on the availability of
resources in local proximity or access to the cloud. The running
application can be migrated from mobile device to the cloudlet or
the cloud server at runtime. The migration of the application from
mobile device to the cloudlet or the cloud is required to be user
transparent, therefore, there is a need to design application
execution frameworks that can provide user-transparent execution
of the application across the platform.

The real-time management of heterogeneous environment in MCC
refers to an optimal design, efficient monitoring, and effective main-
tenance of collaborative environment for execution of the application.
Such a vital necessity is of paramount significance in the optimized
execution of the application in MCC. The management of computing
environment in MCC usually involves the monitoring of the physical
assets, such as servers, virtual assets such as VMs, network infra-
structure such as control plane of switches and routers, and softwares
(Kant, 2009). It also demands efficient and effective deployment of
mobility management strategies (Zekri et al., 2012). Therefore, there is
a need of designing efficient monitoring and effective maintenance
mechanism that can monitor the collaborative cloud environment
with less overhead.

The automated service provisioning refers to the provisioning
of a service on demand with minimal service provider involve-
ment. Hence, the automated service provisioning requires model-
ing of application performance prediction model, periodically
predicting future demands, and allocating the resources. There is
a need to device a model that can predict the application
performance, estimate future demands, and allocate resources to
the cloud users considering their applications requirements.

8. Open challenges

In this section, we highlight some of the most important
challenges that impede the optimization of mobile application in
MCC. The discussion on the open challenges provides research

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–6866

directions to researchers in the domain for further investigations
in MCC.

8.1. Optimal application and execution framework design

The optimal design of an application and execution framework
involves minimal data exchange, less method call overhead, light-
weight migration process, and employment of agile security
mechanisms. The complexity of migration process is high because
of diverse MCC environment and dynamic conditions of wireless
networks. The designing of optimal application and execution
framework that can provide the optimal application execution
for such diverse and dynamic environment is an open research
challenge.

8.2. Efficient deployment and user-transparent execution

The efficient deployment of application involves minimal
dependency across non-collocated components, reducing the dis-
tance to the available resources, minimal bandwidth utilization,
and low runtime cost. However, the efficient deployment of
application in MCC is difficult to attain because of the complexity
involved in determining the dependency across non-collocated
components at runtime. Moreover, attaining the user-transparent
application execution in MCC is an open research challenge
because of complexity involved in migration process, intrinsic
limitations of wireless medium, and heterogeneity across MCC
platforms.

8.3. Realtime optimized management of heterogeneous computing
environment

The realtime management of the heterogeneous computing
environment becomes a challenge due to diverse nature of
environmental elements, intrinsic limitations of wireless medium,
and the highly dynamic mobility patterns. However, the research-
ers can obtain guidelines from the efforts already done in a similar
domain (Patouni et al., 2012) to design the lightweight solutions
for the real-time management of heterogeneous resources. Redu-
cing the number of monitoring elements and shrinking/compres-
sing the amount of information exchange for resource
management can aid in attaining the realtime management
strategy.

8.4. Automated service provisioning

The goal of automated service provisioning is to provide
resources on-demand with minimal service provider involvement.
The automated service provisioning is challenging task due to
complexity involved in modeling of application performance
prediction model and periodically predicting future demands.
The automated service provisioning can be realized by integrating
lightweight artificial intelligence approaches to predict the appli-
cation performance and future demands.

8.5. Scalability

The scalability ensures the service provisioning regardless of
the number of devices using the services. Scalability of services
and resource provisioning become critical for MCC when cloud is
not accessible and only limited local resources are available. With
limited resources and services, ensuring scalability is a challenging
task which affects the smooth execution of an application. In this
scenario, the scalability can be ensured by running only the
essential background tasks on the mobile device and prioritizing
the allocation of resources to the tasks.

8.6. Availability of services

The availability of services in the cloud ensures the provision of
remote services. The availability of cloud services in MCC mainly
relies on three factors: (1) wireless access medium, (2) residual
server capacity, and (3) access latency to the data. The MCC-based
execution frameworks face challenges in ensuring the availability
of services due to intrinsic limitations of underlying wireless
technologies and highly dynamic, non-deterministic server work-
load. Failure in obtaining sufficient resources for demands of
application disrupts the execution of an application. Availability
of resources can be ensured by pro-actively managing the local
resources to run the application locally in case of network
connectivity loss.

9. Conclusions

The paper investigates the state-of-the-art application optimization
strategies by conducting survey on the literature. The contribution
of the paper is manifold: (a) comprehensive literature survey,
(b) comparison of state-of-the-art application execution frameworks,
(c) identification of application optimization strategies for attaining the
optimal application execution, (d) devisal of application related
taxonomies, (e) investigation of metrics suitability for optimal applica-
tion execution, and (f) highlighting the open research challenges in
attaining the optimal application execution. The comparison highlights
the similarities and differences of the current frameworks and
evaluates the suitability of existing frameworks for optimal application
execution.

Some of the current application execution frameworks improve
the response time of application for MCC by reducing the WAN
latency. A number of current application execution frameworks
lack with scalability features and QoS support or suffer from
profiling overhead. Besides, some of the current frameworks either
demand programmer support or rely on intensive VM-based
application deployment. There is need to design optimal metrics
for attaining the optimal application execution while considering
user preferences and environment constraints. Furthermore, the
research is required to be done in the domain of framework
designing considering the identified demerits of existing
frameworks.

Acknowledgements

This work is supported in part by the Malaysian Ministry of
Higher Education under the University of Malaya High Impact
Research Grant (UM.C/625/1/HIR/MOE/FCSIT/03) and by the Bright
Spark Unit, University of Malaya, Malaysia.

References

Abolfazli S, Sanaei Z, Ahmed E, Gani A, Buyya R. Cloud-based augmentation for
mobile devices: motivation, taxonomies, and open challenges. IEEE Commun
Surv Tutorials 2013; 16(1). http://dx.doi.org/10.1109/SURV.2013.070813.00285.

Achanta V, Sureshbabu N, Thomas V, Sahitya M, Rao S. Cloudlet-based multi-lingual
dictionaries. In: Proceedings of third international conference on services in
emerging markets (ICSEM'03). Mysore, India; 2012. p. 30–6. http://dx.doi.org/
10.1109/ICSEM.2012.12.

Ahmed E, Khan S, Yaqoob I, Gani A, Salim F. Multi-objective optimization model for
seamless application execution in mobile cloud computing. In: Proceedings of
5th international conference on information communication technologies
(ICICT'13). Karachi, Pakistan; 2013. p. 1–6. http://dx.doi.org/10.1109/ICICT.
2013.6732790.

Ahmed E, Akhunzada A, Whaiduzzaman M, Gani A, Ab Hamid SH, Buyya R.
Network-centric performance analysis of runtime application migration in
mobile cloud computing. Simul Model Pract Theory 2015a [in press].

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–68 67

dx.doi.org/10.1109/SURV.2013.070813.00285
dx.doi.org/10.1109/ICSEM.2012.12
dx.doi.org/10.1109/ICSEM.2012.12
dx.doi.org/10.1109/ICICT.2013.6732790
dx.doi.org/10.1109/ICICT.2013.6732790
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref1111
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref1111
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref1111

Ahmed E, Gani A, Abolfazli S, Yao L, Khan S. Channel assignment algorithms in
cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Com-
mun Surv Tutor 2015b [in press].

Ahmed E, Qadir J, Baig A. High-throughput transmission-quality-aware broadcast
routing in cognitive radio networks. Wirel Netw 2015c [in press].

Android interface definition language (AIDL) [online], 〈http://developer.android.
com/guide/developing/tools/aidl.html [accessed December 2012]. 〉.

Ballagas R, Kratz S, Borchers J, Yu E, Walz S, Fuhr C, et al. Rexplorer: a mobile,
pervasive spell-casting game for tourists. In: CHI07' extended abstracts on
human factors in computing systems. San Jose, California, USA: ACM; 2007. p.
1929–34.

Cano M, Domenech-Asensi G. A secure energy-efficient m-banking application for
mobile devices. J Syst Softw 2011;84(11):1899–909.

Chin WH, Fan Z, Haines R. Emerging technologies and research challenges for 5G
wireless networks. IEEE Wirel Commun 2014;21(2):106–12.

Chun B, Maniatis P. Augmented smartphone applications through clone cloud
execution. In: Proceedings of the 8th workshop on hot topics in operating
systems (HotOS), Monte Verita, Switzerland, vol. 9; 2009. p. 8–11.

Chun B, Ihm S, Maniatis P, Naik M, Patti A. Clonecloud: elastic execution between
mobile device and cloud. In: Proceedings of the sixth conference on computer
systems; 2011. p. 301–14.

Cruz D, Barros E. Vital signs remote management system for PDAs. In: Proceedings
of 8th Euromicro conference on digital system design. Porto, Portugal: IEEE;
2005. p. 170–3.

Cuervo E, Balasubramanian A, Cho D, Wolman A, Saroiu S, Chandra R, et al. MAUI:
making smartphones last longer with code offload. In: Proceedings of the 8th
international conference on mobile systems, applications, and services. San
Francisco, CA, USA: ACM; 2010. p. 49–62.

Dinh HT, Lee C, Niyato D, Wang P. A survey of mobile cloud computing:
architecture, applications, and approaches. Wirel Commun Mob Comput
2013;13(18):1587–611.

Dou A, Kalogeraki V, Gunopulos D, Mielikainen T, Tuulos V. MISCO: a mapreduce
framework for mobile systems. In: Proceedings of the 3rd international
conference on PErvasive Technologies Related to Assistive environments
(PETRA'03). Samos, Greece: ACM; 2010. p. 32.

Fernando N, Loke S, Rahayu W. Mobile cloud computing: a survey. Future Gener
Comput Syst 2013;29(1):84–106.

Fesehaye D, Gao Y, Nahrstedt K, Wang G. Impact of cloudlets on interactive mobile
cloud applications. In: 16th IEEE international enterprise distributed object
computing conference. Beijing, China: IEEE; 2012. p. 123–32.

Giurgiu I, Riva O, Juric D, Krivulev I, Alonso G. Calling the cloud: enabling mobile
phones as interfaces to cloud applications. Middleware 2009;2009:83–102.

Gordon MS, Jamshidi DA, Mahlke S, Mao ZM, Chen X. COMET: code offload by
migrating execution transparently. In: Proceedings of the 10th USENIX con-
ference on operating systems design and implementation (OSDI'12), Holly-
wood, California, USA, vol. 12; 2012. p. 93–106.

Goyal S, Carter J. A lightweight secure cyber foraging infrastructure for resource-
constrained devices. In: Sixth IEEE workshop on mobile computing systems
and applications, Lake District National Park, UK. IEEE; 2004. p. 186–95.

Gu X, Nahrstedt K, Messer A, Greenberg I, Milojicic D. Adaptive offloading for
pervasive computing. IEEE Pervasive Comput 2004;3(3):66–73.

Huerta-Canepa G, Lee D. A virtual cloud computing provider for mobile devices. In:
Proceedings of the 1st ACM workshop on mobile cloud computing & services:
social networks and beyond. San Francisco, USA: ACM; 2010.

Hung S, Shih C, Shieh J, Lee C, Huang Y. Executing mobile applications on the cloud:
framework and issues. Comput Math Appl 2012;63(2):573–87.

Kant K. Data center evolution: a tutorial on state of the art, issues, and challenges.
Comput Netw 2009;53(17):2939–65.

Kemp R, Palmer N, Kielmann T, Bal H. Cuckoo: a computation offloading framework
for smartphones. In: Mobile computing, applications, and services. Seattle, WA,
USA: Springer; 2012. p. 59–79.

Khan AN, MatKiah M, Khan SU, Madani SA. Towards secure mobile cloud comput-
ing: a survey. Future Gener Comput Syst 2013;29(5):1278–99.

Khan A, Othman M, Madani S, Khan S. A survey of mobile cloud computing
application models. IEEE Commun Surv Tutorials 2014;16(1):393–413.

Kosta S, Aucinas A, Hui P, Mortier R, Zhang X. Thinkair: dynamic resource allocation
and parallel execution in the cloud for mobile code offloading. In: IEEE
proceedings INFOCOM. Orlando, FL, USA: IEEE; 2012. p. 945–53.

Koukoumidis E, Lymberopoulos D, Strauss K, Liu J, Burger D. Pocket cloudlets. ACM
SIGPLAN Not 2012;47(4):171–84.

Kovachev D, Cao Y, Klamma R. Augmenting pervasive environments with an XMPP-
based mobile cloud middleware. Mob Comput Appl Serv 2012a:361–72.

Kovachev D, Yu T, Klamma R. Adaptive computation offloading from mobile devices
into the cloud. In: Proceedings of the 10th IEEE international symposium on
parallel and distributed processing with applications. Madrid, Spain: IEEE;
2012b. p. 784–91.

Kumar K, Liu J, Lu Y-H, Bhargava B. A survey of computation offloading for mobile
systems. Mob Netw Appl 2013;18(1):129–40.

Lee B. A framework for seamless execution of mobile applications in the cloud. In:
Recent advances in computer science and information engineering; 2012. p.
145–53.

Lenders V, Wagner J, May M. Analyzing the impact of mobility in ad hoc networks.
In: Proceedings of the 2nd international workshop on multi-hop ad hoc
networks: from theory to reality. Florence, Italy: ACM; 2006. p. 39–46.

Marinelli E. Hyrax: cloud computing on mobile devices using mapreduce. Technical
report, DTIC Document; 2009.

Mazzoleni P, Tai S. Engineering mobile field worker applications. In: International
workshop on engineering of software services for pervasive environments: in
conjunction with the 6th ESEC/FSE joint meeting. Cavat, Croatia: ACM; 2007. p.
75–9.

Motiwalla L. Mobile learning: a framework and evaluation. Comput Educ 2007;49
(3):581–96.

Nazir F, Ma J, Seneviratne A. Time critical content delivery using predictable
patterns in mobile social networks. In: International conference on computa-
tional science and engineering, 2009. CSE09'. Vancouver, Canada, vol.4. IEEE;
2009. p. 1066–73.

Ning W, Yang Y, Kun M, Yu C, Hao D. A task scheduling algorithm based on qos and
complexity-aware optimization in cloud computing. In: National doctoral
academic forum on information and communications technology; 2013. p. 1–8.
http://dx.doi.org/10.1049/ic.2013.0202.

Oppermann R, Specht M. Adaptive mobile museum guide for information and
learning on demand. In: Proceedings of 8th HCI international. Citeseer; 1999. p.
642–6.

Othman M, Hailes S. Power conservation strategy for mobile computers using load
sharing. ACM SIGMOBILE Mob Comput Commun Rev 1998;2(1):44–51.

Ou S, Yang K, Liotta A. An adaptive multi-constraint partitioning algorithm for
offloading in pervasive systems. In: Proceedings of fourth annual IEEE interna-
tional conference on pervasive computing and communications (PerCom06').
Pisa, Italy. IEEE; 2006a.

Ou S, Yang K, Zhang Q. An efficient runtime offloading approach for pervasive
services. In: IEEE wireless communications and networking conference, 2006.
WCNC 2006, Las Vegas, NV, USA, vol.4. IEEE; 2006b. p. 2229–34.

Patouni E, Kypriadis D, Alonistioti N. A lightweight framework for prediction-based
resource management in future wireless networks. EURASIP J Wirel Commun
Netw 2012;2012(1):1–12.

Qing W, Zheng H, Ming W, Haifeng L. CACTSE: cloudlet aided cooperative terminals
service environment for mobile proximity content delivery. China Commun
2013;10(6):47–59. http://dx.doi.org/10.1109/CC.2013.6549258.

Rahimi MR, Ren J, Liu CH, Vasilakos AV, Venkatasubramanian N. Mobile cloud
computing: a survey, state of art and future directions. Mob Netw Appl 2014;19
(2):133–43.

Ramaboli A, Falowo O, Chan A. Bandwidth aggregation in heterogeneous wireless
networks: a survey of current approaches and issues. J Netw Comput Appl
2012;35(6):1674–90.

Satyanarayanan M, Bahl P, Caceres R, Davies N. The case for VM-based cloudlets in
mobile computing. IEEE Pervasive Comput 2009;8(4):14–23.

Shamshirband S, Daghighi B, Anuar NB, Kiah MLM, Patel A, Abraham A. Co-FQL:
anomaly detection using cooperative fuzzy Q-learning in network. J Intell Fuzzy
Syst 2015; in press.

Sookhak M, Talebian H, Ahmed E, Gani A, Khan MK. A review on remote data
auditing in single cloud server: taxonomy and open issues. J Netw Comput Appl
2014;43:121–41.

Soyata T, Muraleedharan R, Funai C, Kwon M, Heinzelman W. Cloud-vision: real-
time face recognition using a mobile-cloudlet-cloud acceleration architecture.
In: The eighteenth IEEE symposium on computers and communications
(ISCC'17), Split Croatia; 2012. p. 59–66. http://dx.doi.org/10.1109/ISCC.2012.
6249269.

Verbelen T, Stevens T, Simoens P, DeTurck F, Dhoedt B. Dynamic deployment and
quality adaptation for mobile augmented reality applications. J Syst Softw
2011;84(11):1871–82.

Verbelen T, Simoens P, DeTurck F, Dhoedt B. AIOLOS: middleware for improving
mobile application performance through cyber foraging. J Syst Softw 2012a;85
(11):2629–39.

Verbelen T, Simoens P, De Turck F, Dhoedt B. Cloudlets: bringing the cloud to the
mobile user. In: Proceedings of the third ACM workshop on mobile cloud
computing and services. Ambleside, United Kingdom: ACM; 2012b. p. 29–36.

Wu S, Chao H, Ko C, Mo S, Jiang C, Li T, et al. A cloud model and concept prototype
for cognitive radio networks. IEEE Wirel Commun 2012;19(4):49–58.

Yang K, Ou S, Chen H. On effective offloading services for resource-constrained
mobile devices running heavier mobile internet applications. IEEE Commun
Mag 2008;46(1):56–63.

Yang L, Cao J, Tang S, Li T, Chan A. A framework for partitioning and execution of
data stream applications in mobile cloud computing. In: Proceedings of IEEE
5th international conference on cloud computing (CLOUD12'). Honolulu,
Hawaii, USA: IEEE; 2012. p. 794–802.

Zekri M, Jouaber B, Zeghlache D. A review on mobility management and vertical
handover solutions over heterogeneous wireless networks. Comput Commun
2012;35(17):2055–68.

Zhang J, Figueiredo R. Application classification through monitoring and learning of
resource consumption patterns. In: 20th international parallel and distributed
processing symposium (IPDPS06'). Rhodes Island, Greece: IEEE; 2006.

Zhang X, Jeong S, Kunjithapatham A, Gibbs S. Towards an elastic application model
for augmenting computing capabilities of mobile platforms. In: Mobile wireless
middleware, operating systems, and applications; 2010. p. 161–74.

Zhao B, Xu Z, Chi C, Zhu S, Cao G. Mirroring smartphones for good: a feasibility
study. In: Mobile and ubiquitous systems: computing, networking, and ser-
vices; 2012. p. 26–38.

Zheng X. Optimization techniques in communication networks [Ph.D. thesis].
University of Florida; 2008.

E. Ahmed et al. / Journal of Network and Computer Applications 52 (2015) 52–6868

http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref2
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref2
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref2
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref31115225
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref31115225
http://developer.android.com/guide/developing/tools/aidl.html
http://developer.android.com/guide/developing/tools/aidl.html
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref9
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref9
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref10
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref10
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref15
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref15
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref15
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref17
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref17
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref19
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref19
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref22
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref22
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref24
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref24
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref25
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref25
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref27
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref27
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref28
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref28
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref30
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref30
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref31
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref31
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref33
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref33
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref38
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref38
dx.doi.org/10.1049/ic.2013.0202
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref42
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref42
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref45
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref45
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref45
http://dx.doi.org/10.1109/CC.2013.6549258
http://dx.doi.org/10.1109/CC.2013.6549258
http://dx.doi.org/10.1109/CC.2013.6549258
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref47
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref47
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref47
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref48
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref48
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref48
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref49
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref49
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref51
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref51
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref51
dx.doi.org/10.1109/ISCC.2012.6249269
dx.doi.org/10.1109/ISCC.2012.6249269
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref53
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref53
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref53
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref54
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref54
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref54
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref56
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref56
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref57
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref57
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref57
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref59
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref59
http://refhub.elsevier.com/S1084-8045(15)00041-7/sbref59

	Application optimization in mobile cloud computing: Motivation, taxonomies, and open challenges
	Introduction
	Background
	Mobile cloud computing
	Cloud-based mobile application and its execution in MCC
	Application execution optimization

	Motivation
	Image processing
	Voice recognition and translation
	M-gaming
	Cooperative spectrum sensing in cognitive radio cloud networks

	State-of-the-art cloud-based mobile application execution frameworks
	Mono-objective optimization-based frameworks
	Bi-objective optimization-based frameworks
	Multi-objective optimization-based frameworks

	Cloud-based mobile application-centric taxonomies
	Taxonomy of application optimization strategies in MCC
	Taxonomy of application execution operations in MCC
	Taxonomy of application execution frameworks

	Metrics for optimal application migration in MCC
	Mobile device
	Application type
	User preferences
	Cost
	Network

	Future research directions
	Open challenges
	Optimal application and execution framework design
	Efficient deployment and user-transparent execution
	Realtime optimized management of heterogeneous computing environment
	Automated service provisioning
	Scalability
	Availability of services

	Conclusions
	Acknowledgements
	References

