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Abstract
Systematic exploration of Android apps is an enabler for a
variety of app analysis and testing tasks. Performing the ex-
ploration while apps run on actual phones is essential for
exploring the full range of app capabilities. However, ex-
ploring real-world apps on real phones is challenging due
to non-determinism, non-standard control flow, scalability
and overhead constraints. Relying on end-users to conduct
the exploration might not be very effective: we performed
a 7-user study on popular Android apps, and found that the
combined 7-user coverage was 30.08% of the app screens
and 6.46% of the app methods. Prior approaches for au-
tomated exploration of Android apps have run apps in an
emulator or focused on small apps whose source code was
available. To address these problems, we present A3E, an
approach and tool that allows substantial Android apps to be
explored systematically while running on actual phones, yet
without requiring access to the app’s source code. The key
insight of our approach is to use a static, taint-style, dataflow
analysis on the app bytecode in a novel way, to construct a
high-level control flow graph that captures legal transitions
among activities (app screens). We then use this graph to de-
velop an exploration strategy named Targeted Exploration
that permits fast, direct exploration of activities, including
activities that would be difficult to reach during normal use.
We also developed a strategy named Depth-first Exploration
that mimics user actions for exploring activities and their
constituents in a slower, but more systematic way. To mea-
sure the effectiveness of our techniques, we use two metrics:
activity coverage (number of screens explored) and method
coverage. Experiments with using our approach on 25 pop-
ular Android apps including BBC News, Gas Buddy, Amazon
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Mobile, YouTube, Shazam Encore, and CNN, show that our
exploration techniques achieve 59.39–64.11% activity cov-
erage and 29.53–36.46% method coverage.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Reliability, Vali-
dation; D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools,Tracing
General Terms Languages, Reliability, Verification
Keywords Google Android, GUI testing, Systematic ex-
ploration, Test case generation, Code coverage, Greybox
testing, Dynamic analysis, Taint analysis

1. Introduction
Users are increasingly relying on smartphones for compu-
tational tasks [1, 2], hence concerns such as app correct-
ness, performance, and security become increasingly press-
ing [6, 8, 30, 31, 38]. Dynamic analysis is an attractive ap-
proach for tackling such concerns via profiling and moni-
toring, and has been used to study a wide range of proper-
ties, from energy usage [38, 39] to profiling [40] and secu-
rity [31]. However, dynamic analysis critically hinges on the
availability of test cases that can ensure good coverage, i.e.,
drive program execution through a significant set of repre-
sentative program states [36, 37].

To facilitate test case construction and exploration for
smartphone apps, several approaches have emerged. The
Monkey tool [15] can send random event streams to an app,
but this limits exploration effectiveness. Frameworks such
as Monkeyrunner [24], Robotium [18] and Troyd [20] sup-
port scripting and sending events, but scripting takes manual
effort. Prior approaches for automated GUI exploration [9–
12, 17, 34] have one or more limitations that stand in the
way of understanding how popular apps run in their natural
environment, i.e., on actual phones: running apps in an em-
ulator, targeting small apps whose source code is available,
incomplete model extraction, state space explosion.

For illustration, consider the task of automatically ex-
ploring popular apps, such as Amazon Mobile, Gas Buddy,
YouTube, Shazam Encore, or CNN, whose source code is not
available. Our approach can carry out this task, as shown in
Section 6, since we connect to apps running naturally on the



phone. However, existing approaches have multiple difficul-
ties due to the lack of source code or running the app on
the emulator where the full range of required sensor inputs
(camera, GPS, microphone) or output devices (e.g., flash-
light) is either unavailable [32] or would have to be simu-
lated.

To tackle these challenges, we present Automatic An-
droid App Explorer (A3E), an approach and open-source
tool1 for systematically exploring real-world, popular apps
Android apps running on actual phones. Developers can use
our approach to complement their existing test suites with
automatically-generated test cases aimed at systematic ex-
ploration. Since A3E does not require access to source code,
users other than the developers can execute substantial parts
of the app automatically. A3E supports sensors and does not
require kernel- or framework-level instrumentation, so the
typical overhead of instrumentation and device emulation
can be avoided. Hence we believe that researchers and prac-
titioners can use A3E as a basis for dynamic analyses [36]
(e.g., monitoring, profiling, information flow tracking), test-
ing, debugging, etc.

In this paper, our approach is focused on improving cov-
erage at two granularity levels: activity (high-level) and
method (low-level). Activities are the main parts of Android
apps—an activity roughly corresponds to a different screen
or window in traditional GUI-based applications. Increasing
activity coverage means, roughly, exploring more screens.
For method coverage we focus on covering app methods,
as available in the Dalvik bytecode (compiled from Java),
that runs on the Dalvik VM on an actual phone; an activity’s
implementation usually consists of many methods, so by
improving method coverage we allow the functionality as-
sociated with each activity to be systematically explored and
tested. In Section 2 we provide an overview of the Android
platform and apps, we define the graphs that help drive our
approach, and provide definitions for our coverage metrics.

To understand the level of exploration attained by An-
droid app users in practice, we performed a user study and
measured coverage during regular interaction. For the study,
we enrolled 7 users that exercised 28 popular Android apps.
We found that across all apps and participants, on average,
just 30.08% of the app screens and 6.46% of the app methods
were explored. The results and reasons for these low levels
of coverage are presented in Section 3.

In Section 4 we present our approach for automated ex-
ploration: given an app, we construct systematic exploration
traces that can then be replayed, analyzed and used for a
variety of purposes, e.g., to drive dynamic analysis or as-
semble test suites. Our approach consists of two techniques,
Targeted Exploration and Depth-First Exploration. Targeted
Exploration is a directed approach that first uses static byte-
code analysis to extract a Static Activity Transition Graph
and then explore the graph systematically while the app runs

1 http://spruce.cs.ucr.edu/A3E/

on a phone. Depth-First Exploration is a completely dynamic
approach based on automated exploration of activities and
GUI elements in a depth-first manner.

In Section 5 we provide an overview of A3E’s imple-
mentation: hardware platform, tools and measurement pro-
cedures. In Section 6 we provide an evaluation of our ap-
proach on 25 apps (3 apps could not be explored because
they were written mainly in native code rather than byte-
code). We show that our approach is effective: on average
it attains 64.11% and 59.39% activity coverage via Tar-
geted and Depth-first Exploration, respectively (a 2x in-
crease compared to what the 7 users have attained); it also at-
tains 29.53% and 36.46% method coverage via Targeted and
Depth-first Exploration, respectively (a 4.5x increase com-
pared to the 7 users). Our approach is also efficient: average
figures are 74 seconds for Static Activity Transition Graph
construction, 87 minutes for Targeted Exploration and 104
minutes for Depth-first Exploration.

In summary, this work makes the following contributions:
• A qualitative and quantitative study of coverage attained

in practice by 7 users for 28 popular Android apps.
• Two approaches, Targeted Exploration and Depth-first

Exploration, for exploring substantial apps running on
Android smartphones.

• An evaluation of the effectiveness of Targeted and Depth-
first Exploration on 25 popular Android apps.

2. Android Activities, Graphs and Metrics
We have chosen Android as the target platform for our A3E
implementation as it is currently the leading mobile platform
in the US [4] and worldwide [3]. We now describe the high-
level structure of Android platform and apps; introduce two
kinds of Activity Graphs that define the high-level workflow
within an app; and define coverage based on these graphs.

2.1 Android App Structure
Android platform and apps. Android apps are typically
written in Java (possibly with some additional native code).
The Java code is compiled to a .dex file, containing com-
pressed bytecode. The bytecode runs in the Dalvik virtual
machine, which in turn runs on top of a smartphone-specific
version of the Linux kernel. Android apps are distributed as
.apk files, which bundle the .dex code with a “manifest”
(app specification) file named AndroidManifest.xml.

Android app workflow. A rich application framework fa-
cilitates Android app construction, as it provides a set of li-
braries, a high-level interface for interaction with low-level
devices, etc. More importantly, for our purposes, the applica-
tion framework orchestrates the workflow of an app, which
makes it easy to construct apps but hard to reason about con-
trol flow.

A typical Android app consists of separate screens named
Activities. An activity defines a set of tasks that can be
grouped together in terms of their behavior and corresponds
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Figure 1. An example activity transition scenario from the
popular Android app, Amazon Mobile.

to a window in a conventional desktop GUI. Developers
implement activities by extending the android.app. Activity

class. As Android apps are GUI-centric, the programming
model is based on callbacks and differs from the traditional
main()-based model. The Android framework will invoke
the callbacks in response to GUI events and developers can
control activity behavior throughout its life-cycle (create,
paused, resumed, or destroy) by filling-in the appropriate
callbacks.

An activity acts as a container for typical GUI elements
such as toasts (pop-ups), text boxes, text view objects, spin-
ners, list items, progress bars, check boxes. When interact-
ing with an app, users navigate (i.e., transition between)
different activities using the aforementioned GUI elements.
Therefore in our approach activities, activity transitions and
activity coverage are fundamental, because activities are the
main interfaces presented to an end-user. For this reason we
primarily focused on activity transition during a normal ap-
plication run, because its role is very significant in GUI test-
ing.

Activities can serve different purposes. For example in
a typical news app, an activity home screen shows the list
of current news; selecting a news headline will trigger the
transition to another activity that displays the full news item.
Activities are usually invoked from within the app, though
some activities can be invoked from outside the app if the
host app allows it.

Naturally, these activity transitions form a graph. In Fig-
ure 1 we illustrate how activity transitions graphs emerge
as a result of a user interaction in the popular Android app,
Amazon Mobile. On top we have the textual description of
users’ actions, in the middle we have an actual screen shot,
and on the bottom we have the activities and their transitions.
Initially the app is in the Main Activity; when the user clicks
the search box, the app transitions to the Search Activity
(note the different screen). The user searches for items by
typing in item names, and a textual list of items is presented.
When the user presses “Go”, the screen layout changes as
the app transitions to the Search List Activity.

App Type Category Size # Down-
Kinst. KBytes loads

Amazon Mobile Free Shopping 146 4,501 58,745
Angry Birds Free Games 167 23,560 1,586,884
Angry Birds Space P. Paid Games 179 25,256 14,962
Advanced Task Killer Free Productivity 9 75 428,808
Advanced Task Killer P. Paid Productivity 3 99 4,638
BBC News Free News&Mag. 77 890 14,477
CNN Free News&Mag. 204 5,402 33,788
Craigslist Mobile Free Shopping 56 648 61,771
Dictionary.com Free Books&Ref. 105 2,253 285,373
Dictionary.com Ad-free Paid Books&Ref. 49 1,972 2,775
Dolphin Browser Free Communication 248 4,170 1,040,437
ESPN ScoreCenter Free Sports 78 1,620 195,761
Facebook Free Social 475 3,779 6,499,521
Tiny Flashlight + LED Free Tools 47 1,320 1,612,517
Movies by Flixster Free Entertainment 202 4,115 398,239
Gas Buddy Free Travel&Local 125 1,622 421,422
IMDb Movies & TV Free Entertainment 242 3,899 129,759
Instant Heart Rate Free Health&Fit. 63 5,068 100,075
Instant Heart R.-Pro Paid Health&Fit. 63 5,068 6,969
Pandora internet radio Free Music&Audio 214 4,485 968,714
PicSay - Photo Editor Free Photography 49 1,315 96,404
PicSay Pro - Photo E. Paid Photography 80 955 18,455
Shazam Free Music&Audio 308 4,503 432,875
Shazam Encore Paid Music&Audio 308 4,321 18,617
WeatherBug Free Weather 187 4,284 213,688
WeatherBug Elite Paid Weather 190 4,031 40,145
YouTube Free Media&Video 253 3,582 1,262,070
ZEDGE Free Personalization 144 1,855 515,369

Table 1. Overview of our examined apps.

We now proceed to defining the activity transitions graphs
that form the basis of our work.

2.2 Static Activity Transition Graph
The Static Activity Transition Graph (SATG) is a graph
GS = (VS , ES) where the set of vertices, VS , represents the
app activities, while the set of edges, ES , represents possible
activity transitions. We extract SATG’s automatically from
apps using static analysis, as described in Section 4.1.

Figure 2 shows the SATG for the popular shopping app,
Craigslist Mobile; the reader can ignore node and edge colors
as well as line styles for now. Note that activities can be
called independently, i.e., without the need for entering into
another activity. Therefore, the SATG can be a disconnected
graph. SATG’s are useful for program understanding as they
provide an at-a-glance view of the high-level app workflow.

2.3 Dynamic Activity Transition Graph
The Dynamic Activity Transition Graph (DATG) is a graph
GD = (VD, ED) where the set of vertices, VD, represents
the app activities, while the set of edges, ED, represents
actual activity transitions, as observed at runtime.

A DATG captures the footprint of dynamic exploration or
user interaction in an intuitive way and is a subgraph of the
SATG. Figure 2 contains the DATG for the popular shop-
ping app, Craigslist Mobile: the DATG is the subgraph con-
sisting of solid edges and nodes. Paths in DATG’s illustrate
sequences of actions required to reach a particular state of
an app, which is helpful for constructing test cases or repro-
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Figure 2. Static Activity Transition Graph extracted automatically by our approach from the Craigslist Mobile app. Grey
nodes and associated edges have been explored by users. Solid-contour nodes (grey or white) and solid-line edges were
traversed dynamically by our exploration. Dashed-contour nodes and dashed-line edges remained unexplored. Activity names
are simplified for legibility.

ducing bugs. In the Appendix (Figure 7) we present a second
DATG example based on runs from 5 different users, which
is illustrates how different users exercise the app differently.

2.4 Coverage Metrics
We chose two coverage metrics as basis for measuring and
assessing the effectiveness of our approach: activity cover-
age and method coverage. We chose these metrics because
they strike a good balance between utility and collection
overhead: first, activities and methods are central to app con-
struction, so the numeric values of activity and method cov-
erage are intuitive and informative; second, the runtime per-
formance overhead associated with collecting these metrics
is low enough so that user experience and app performance
are not affected. We now proceed to defining the metrics.

Activity coverage. We define activity coverage (AC) as
the ratio of activities reached during execution (AR) to the
total number of activities defined in the app (AT ), that is,
AC = AR

AT . Intuitively, the higher the AC for a certain run,
the more screens have been explored, and the more thorough
and complete the app exploration has been. We retrieve
the AR dynamically, and the AT statically, as described in
Section 5.2.

Method coverage. Activity coverage is intuitive, as it indi-
cates what percentage of the screens (that is, functionality at
a high level) are reached. In addition, users might be inter-
ested in the thoroughness of exploration measured at a lower,
method-level. Hence we use a finer-grained metric—what
percentage of methods are reached—to quantify this aspect.
We define method coverage (MC) as the ratio of methods

called during execution (ME) to the total number of meth-
ods defined in the app (MT ), that is, MC = ME

MT .
We found that all the examined apps, except Advanced

Task Killer, ship with third-party library code bundled in the
app’s APK file; we exclude third-party methods from ME
and MT computations as these methods were not defined
by app developers hence we consider that including them
would be misleading. We measured the ME using runtime
profiling information and the MT via static analysis, as
described in Section 5.2.

3. User Study: Coverage During Regular Use
One possible approach to exploration is to rely on (or at least
seed the exploration with) actual runs, i.e., by observing how
end-users interact with the app. Unfortunately, this approach
is not systematic: as our measurements indicate, during nor-
mal user interaction, coverage tends to be low, as users ex-
plore just a small set among the features and functionality of-
fered by the app. Therefore, relying on users might have lim-
ited utility. To quantify the actual coverage attained by end-
users, we have performed a user study, as described next.

App dataset. As of March 2013, Google Play, the main
Android app market, lists more than 600,000 apps. We se-
lected a set of 28 apps for our study; the apps and their
characteristics are presented in Table 1. The selection was
based on several criteria. First, we wanted a mix of free and
paid apps, so for 7 apps we selected both the free and the
paid versions (column 2). Second, we wanted representation
across different categories such as productivity, games, en-
tertainment, news; in total, our dataset has apps from 17 dif-



ferent categories (column 3). Third, we wanted substantial
apps; the sizes of our selected apps, in thousands of bytecode
instructions and KB, respectively, are shown in columns 4
and 5. Finally, we wanted to investigate popular apps; in the
last column we show the number of downloads as listed on
Google Play as of March 28, 2013; the number of down-
loads varied from 2,775 to 6,499,521. We believe that this
set covers a good range of popular, real-world mobile apps.

Methodology. We enrolled 7 different users in our study;
one high-coverage minded user (called User 1) and six
“regular” users (User 2–User 7). Each app was exercised by
each user for 5 minutes, which is far longer than the typical
average app session (71.56 seconds) [35]. To mirror actual
app use “in the wild,” the six regular users were instructed
to interact with the app as they normally would; that is, reg-
ular users were not told that they should try to achieve high
coverage. However, User 1 was special because the user’s
stated goal was to achieve maximum coverage within the
time limit. For each run, we collected runtime information
so we could replicate the experiment later. We then analyzed
the 192 runs2 to quantify the levels of activity coverage (sep-
arate screens) and method coverage attained in practice.

3.1 Activity Coverage
We now turn to discussing the levels of activity coverage that
could be attained based on end-user coverage (separate and
combined across users) for each metric.

Cumulative coverage. As different users might explore
different app features, we developed a technique to “merge”
different executions of the same app. More specifically,
given two DATG’s G1 and G2 (as defined in Section 2.3), we
construct the union, i.e., a graph G = G1 ∪G2 that contains
the union of G1 and G2’s nodes and edges. This technique
can potentially increase coverage if the different executions
explore different parts of the app. We use this graph union-
based cumulative coverage as a basis for comparing manual
exploration with automated exploration.

Results. In Table 2, we present the activity count and a
summary of the activity coverage achieved manually by the
7 users. Column 2 presents the number of activities in each
app, including ads. Column 3 presents the number of activ-
ities, excluding ads (hence these numbers indicate the max-
imum the number of activities users can explore without
clicking on ads). Column 4 shows the cumulative activity
coverage, i.e., when combining coverage via graph union.
The percentages are calculated with respect to column 3, i.e.,
non-ad activities; we decided to exclude ads as they are not
related to core app functionality. The complete dataset (each
app, each user) is available in Table 5 in the Appendix.

2 We had access to 192 (28 × 7 − 4) instead of 196 runs; due to the
unavailability of two user study subjects, we could not collect app execution
data for two users for the apps IMDb Movies & TV and BBC News.

We can see that in regular exploration cumulative cover-
age is quite low across users: mean3 cumulative coverage is
30.08% across all apps. We now proceed to explain why that
is the case.

Why are so few activities explored? The “Missed activi-
ties” group of columns in Table 2 shows, for each app, the
number of activities that all users missed (first column in the
group), and the reason why these activities were missed (the
remaining 6 columns in the group). We were able to group
the missing activities into the following categories:

• Unexplored features. Specific features can be missed
because users are not aware of/interested in those fea-
tures. For example, apps such as Dictionary.com or Tiny

Flashlight + LED, provide a “widget” feature, i.e., an app
interface typically wider than a desktop icon to provide
easy to access functionality. Another example is “voice
search” functionality in the Dolphin Browser browser,
which is only explored when users search by voice.

• Social network integration. Many apps offer the op-
tion to share information on social networking sites—
third-party sites such as Facebook or Twitter, or the app’s
own network, e.g., Shazam. During normal app use, users
do not necessarily feel compelled to share information.
These missed activity types appear in the “social” col-
umn.

• Account. Many apps can function, e.g., watch videos on
YouTube, without the user necessarily logging-in. If an
user logs into her account, she can see her profile and
have access to further activities, e.g., account settings or
play-lists on YouTube. In those cases where users did not
have (or did not log into) an account, account-specific
activities were not exercised.

• Purchase. E-commerce apps such as Amazon Mobile of-
fer functionality such as buy/sell items. If test users do
not conduct such operations, those activities will not be
explored.

• Options. When users are content with the default settings
of the app and do not change settings, e.g., by accessing
the “options” menu, options activities are not exercised.

• Ads. Many free apps contain ad-related activities. For
example, in Angry Birds, all the activities but one (play
game) were ad-related. Therefore, in general, free apps
contain more activities than their paid counterparts—see
Angry Birds, Advanced Task Killer, Dictionary.com. When
users do not click on ads, the ad-related activities are not
explored.

3.2 Method Coverage
Since activity coverage was on average about 30%, we
would expect method coverage to be low as well, as the

3 We use geometric mean for all mean computations due to large standard
deviations.
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Amazon Mobile 39 36 25.64 30 • • • 7,154 4.93
Angry Birds 8 1 100 6 • 6,176 10.98
Angry Birds Space Premium 1 1 100 0 7,402 0.68
Advanced Task Killer 7 6 70 3 • • 3,836 11.46
Advanced Task Killer Pro 6 6 57 2 • • 427 21.32
BBC News 10 10 52.34 3 • • 257 7.69
CNN 42 39 19.05 10 • • 7,725 4.97
Craigslist Mobile 17 15 42 35 • • • 2,095 10.76
Dictionary.com 22 18 61 11 • • • 2,784 13.83
Dictionary.com Ad-free 15 15 73.33 4 • 1,272 19.10
Dolphin Browser 56 56 12.5 49 • • 13,800 13.26
ESPN ScoreCenter 5 5 60 2 • 4,398 1.35
Facebook 107 107 5.60 95 • • 21,896 1.69
Tiny Flashlight + LED 6 4 66.67 4 • • 1,578 15.91
Movies by Flixster 68 67 23.3 48 • • • 7,490 5.32
Gas Buddy 38 33 30.2 29 • • • • 5,792 9.13
IMDb Movies & TV 39 37 25.64 30 • • 8,463 4.60
Instant Heart Rate 17 14 29.4 15 • • • 2,002 4.60
Instant Heart Rate - Pro 17 16 13.2 16 • • • 1,927 5.13
Pandora internet radio 32 30 12.5 30 • • • 7,620 3.21
PicSay - Photo Editor 10 10 10 9 • • 1,580 4.39
PicSay Pro - Photo Editor 10 10 33.33 9 • -a -
Shazam 38 37 15.8 36 • • • 9,884 9.43
Shazam Encore 38 37 22.3 33 • • • • 9,914 9.32
WeatherBug 29 24 29 24 • • • 7,948 8.15
WeatherBug Elite 28 28 14.30 24 • • 8,194 6.39
YouTube 18 18 27.77 17 • • 11,125 5.13
ZEDGE 34 34 38.9 18 • • 6287 9.27
Mean 30.08 6.46
aWe could not get method profiling data for PicSay Pro as the profiler could not analyze it.

Table 2. The results of our user study.

methods associated with unexplored activities will not be in-
voked. The last group of columns in Table 2 shows the total
number of methods for each app, as well as the percentages
of methods covered by Users 1 and 2–7, respectively. We can
see that method coverage is quite low: 6.46% is the mean cu-
mulative coverage for users 1–7. The complete dataset (each
app, each user) is available in Table 6 in the Appendix. In
Section 6.1 we provide a detailed account of why method
coverage is low.

4. Approach
We now present the two thrusts of our approach: Targeted
Exploration, whose main goal is to achieve fast activity ex-

ploration, and Depth-first Exploration, whose main goal is to
systematically explore app states. The two strategies are not
complementary; rather, we devised them to achieve specific
goals. Depth-first Exploration tests the GUI similarly to how
an user would, i.e., clicking on objects or editing text boxes,
going to newer activities and then returning to the previous
ones via the “back” button. Targeted Exploration is designed
to handle some special circumstances: it can list all the activ-
ities which can be called from other apps or background ser-
vices directly without user intervention, and generates calls
to invoke those activities directly. The Targeted strategy was
required because not all activities are invoked through user
interaction. Both strategies can start the exploration in the



//class NewsListActivity extends TitleActivity
public void onItemClick (...)
{

Intent localIntent = new Intent(this , NewsStoryActivity . class );
...
startActivityWithoutAnimation( localIntent );
}

//class TitleActivity extends RootActivity
public startActivityWithoutAnimation( Intent paramIntent)
{ super. startActivityWithoutAnimation(paramIntent); }

//class RootActivity
protected void startActivityWithoutAnimation( Intent paramIntent)
{ startActivity (paramIntent );...}

Figure 4. Intent passing through superclasses in NPR News.

app entry points, inject user-like GUI actions and generate
callbacks to invoke certain activities.

To illustrate the main principles behind these strategies,
let us get back to the flow of the Amazon Mobile app shown
in Figure 1. In Targeted Exploration, the SATG is con-
structed via static analysis, and our exploration focuses on
quickly traversing activities in the order imposed by the
SATG—in the Amazon Mobile case, we quickly and au-
tomatically move from Main Activity to Search Activity
to Search List Activity. In Depth-first Exploration, we use
the app entry points from the SATG (that is, nodes with
no incoming edges) to start the exploration. Then, in each
activity, we retrieve the GUI elements and exercise them
systematically. In the Amazon Mobile case, we start with
the Main Activity and exercise all its contained GUI ele-
ments systematically (which will lead to eventually explor-
ing Search Activity and from there, Search List Activity);
this is more time-consuming, but significantly increases
method coverage.

We first discuss how the SATG is constructed (Sec-
tion 4.1), then show how it drives Targeted Exploration
(Section 4.2); next we present Depth-first Exploration (Sec-
tion 4.3) and finally how our approach supports test case
generation and debugging (Section 4.4).

4.1 SATG Construction
Determining the correct order in which GUI elements of an
Android app should be explored is challenging. The main
problem is that the control flow of Android apps is non-
standard: there is no main(), but rather apps are centered
around callbacks invoked by the Android framework in re-
sponse to user actions (e.g., GUI events) or background ser-
vices (e.g, GPS location updates). This makes reasoning
about control flow in the app difficult. For example, if the
current activity is A and a transition to activity B is possible
as a result of user interaction, the methods associated with A
will not directly invoke B. Instead, the transition is based
on a generic intent passing logic, which we will discuss
shortly. We realized that intent passing and consequently
SATG construction can be achieved via data-flow analysis,
more specifically taint tracking. Hence our key insight is that

SATG construction can be reduced to a taint-tracking prob-
lem.

Coming back to our prior example with the A and B ac-
tivities, using an appropriately set-up taint analysis, we taint
B; if the taint can reach an actual invocation request from
A, that means activity B is reachable from A and we add
an A→B edge to the SATG. The “glue” for activity transi-
tions is realized by objects named Intents. Per the official
Android documentation [33], an Intent is an “abstract de-
scription of an operation to be performed.” Intents can be
used to start activities by passing the intent as an argument
to a startActivity -like method. Intents are also used to start
services, or send broadcast messages to other apps. Hence
tracking taint through intents is key for understanding activ-
ity flow.

We now provide several examples to illustrate SATG con-
struction using taint analysis over the intent passing logic.
In Figure 3, on the left we have valid Android Java code for
class A that implements an activity. Suppose the programmer
wants to set up a transition to another activity class, B. We
show three examples of how this can be done by initializing
the intent initialized in a method of A, say A.foo(), and cou-
pling it with the information regarding the target activity B.
In Example 1, we make the A→B connection by passing the
class names to the intent constructor. In Example 2, the con-
nection is made by setting the B’s class as the intent’s class.
In Example 3, B is set to be called as a component of the
intent. Our analysis will tag these Intent object declarations
(new Intent()) as sources. Next, the taint analysis will look
for sinks; in our example, the tagged sinks are startActivity ,
startActivityForResult , and startActivityIfNeeded . Of course,

while here we show the Java code for clarity, our analysis
operates on bytecode. Taint tracking is shown in Figure 3
(center): after tagging sinks and sources, the taint analysis
will propagate dataflow facts through the app code, and in
the end check whether tainted sources reach sinks. For all
(source, sink) pairs for which taint has been detected, we
add an edge in the SATG (Figure 3 (right)). Hence the gen-
eral principle for constructing the SATG is to identify Intent
construction points as sources, and activity start requests as
sinks.

A more complicated, real-world example, of how our
analysis tracks taint through a class hierarchy is shown in
Figure 4, a code snippet extracted from the NPR News app.
An Intent is initialized in NewsListActivity .onItemClick (...) ,
tagged as a source, and passed through the superclass
TitleActivity to its superclass RootActivity. The startActivity

(on the last line) is tagged as a sink. When the analysis con-
cludes, based on the detected taint, we add an edge from
NewsListActivity to NewsStoryActivity in the SATG.

4.2 Targeted Exploration
We now proceed to describing how we perform Targeted
Exploration using the SATG as input. Figure 5 provides an
overview. The automatic explorer, running on a desktop or



Tagging sources and sinks Static analysis Resulting SATG
public class A extends Activity {
...
public void foo()
{
/∗ Example 1 ∗/
Intent intent1 = new Intent(A, B); //tagged as source
...
startActivity ( intent1 ); //tagged as sink

/∗ Example 2 ∗/
Intent intent2=new Intent(); //tagged as source
intent . setClass ( this , B.class );
...
startActivityForResult ( intent2 , requestCode); //tagged as sink

/∗ Example 3 ∗/
Intent intent3 = new Intent(); //Intent object tagged as source
intent .setComponent(new ComponentName(‘‘package.name’’, ‘‘B’’));
...
startActivityIfNeeded ( intent3 , requestCode); //tagged as sink

}}

A: intent=new Intent (A, B)

Track taint
through app

SC
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id

A: startActivity(intent)

A

B

Figure 3. Constructing SATG’s with taint analysis: sources and sinks are tagged automatically (left), taint is tracked by
SCanDroid (center); the resulting SATG (right).
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Figure 5. Overview of Targeted Exploration in A3E.

laptop, orchestrates the exploration. The explorer first reads
the SATG constructed by SCanDroid (a static dataflow ana-
lyzer that we customized to track intent tainting, as described
in Section 4.1) from the app’s bytecode, and then starts the
app on the phone. Our SATG construction algorithm lists all
the exported activities, and entry point activities. Exported
activities are activities that can be independently called from
within or outside the app; they are marked as such by setting
the parameter exported=true in the manifest file. Note
that not all activities can be called from outside—some have
to be reached by the normal process, primarily for security
reasons and to maintain application workflow. For example,
when an activity can receive parameters from a previous ac-
tivity, the parameters may contain security information that

is limited to the application domain. Therefore, we cannot
just “jump” to any arbitrary activity.

Next, the explorer runs the Targeted Exploration algo-
rithm, which we will describe shortly. The explorer controls
the app execution and communicates with the phone via the
Android Debugging Bridge. The result of the exploration
consists of a replayable trace—a sequence of events that can
be replayed using our RERAN tool [7]—as well as coverage
information.

We now proceed to describing the algorithm behind tar-
geted exploration; parts of the algorithm run on the phone,
parts in the automatic explorer. In a nutshell, the SATG con-
tains edges A→B indicating legal activity transitions. As-
suming we are currently exploring activity A, we have two



Algorithm 1 Targeted Exploration
Input: SATG GS = (VS , ES)

1: procedure TARGETEDEXPLORATION(GS)
2: for all nodes Ai in VS that are entry points do
3: Switch to activity Ai

4: currentActivity ← Ai

5: for all edges Ai → Aj in ES do
6: if Aj is exportable then
7: Switch to activity Aj

8: currentActivity ← Aj

9: G′S ← subgraph of GS from starting
node Aj

10: TARGETEDEXPLORATION(G′S)
11: end if
12: end for
13: guiElementSet ← EXTRACTGUIELE-

MENTS(currentActivity)
14: for each guiElement in guiElementSet do
15: exercise guiElement
16: if there is an activity transition to not-yet-

explored activity An then
17: G′S ← subgraph of GS from starting

node An

18: currentActivity ← An

19: TARGETEDEXPLORATION(G′S)
20: end if
21: end for
22: end for
23: end procedure

cases for B: (1) B is “exportable”,4 that is, reachable from
A but not a result of local GUI interaction in A; or (2) B is
reached from A as a result of local GUI interaction in A. In
case (1) we switch to B directly, and in case (2) we switch to
B when exploring A’s GUI elements. In either case, explo-
ration continues recursively from B.

Algorithm 1 provides a precise description of the Tar-
geted Exploration approach. The algorithm starts with the
SATG as input. First, we extract the app’s entry point ac-
tivities from the SATG (line 2) and start exploration at one
of these entry points Ai (lines 3–4). We look for all the ex-
portable activities Aj that have an incoming edge from Ai

(lines 5–6). We then switch to each of these exportable ac-
tivities and invoke the algorithm recursively from Aj (lines
7–10). Activities An that are not exportable but reachable
from Ai will be switched to automatically as a result of lo-
cal GUI exploration (lines 13–16) and then we invoke the
algorithm recursively from An (lines 17–19).

The advantage of Targeted Exploration is that it can
achieve activity coverage fast—we can switch to exportable
activities without firing GUI events.

4 The list of exportable activities is available in the
AndroidManifest.xml file included with the app.
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Figure 6. Overview of Depth-first Exploration in A3E.

Algorithm 2 Depth-First Exploration
Input: Entry point activities |A|

1: procedure DFE(|A|)
2: for all nodes Ai in |A| do
3: Switch to activity Ai

4: DEPTHFIRSTEXPLORATION(Ai)
5: end for
6: end procedure
7:
8: procedure DEPTHFIRSTEXPLORATION(Ai)
9: guiElementSet← EXTRACTGUIELEMENTS(Ai)

10: for each guiElement in guiElementSet do
11: excercise guiElement
12: if there is an activity transition to not-yet-

explored activity An then
13: DEPTHFIRSTEXPLORATION(An)
14: Switch back to activity Ai

15: end if
16: end for
17: end procedure

4.3 Depth-First Exploration
We now proceed to presenting Depth-First Exploration, an
approach that takes more time but can achieve higher method
coverage. As it is a dynamic approach, Depth-First Explo-
ration can be performed even when the tester does not have
activity transition information (i.e., the SATG) beforehand.
As the name suggests, this technique employs depth-first
search to mimic how an actual user would interact with the
app.

Figure 5 provides an overview. In this case, no SATG
is used, but the automatic explorer runs a different, Depth-
first Exploration algorithm, which we will describe shortly.
The rest of the operations are identical with Targeted Explo-



ration, that is, the explorer orchestrates the exploration and
the results are a replayable trace and coverage information.

Algorithm 2 provides the precise description of the
Depth-first Exploration approach. Similar to Targeted Ex-
ploration, we first extract the entry point activities from the
app’s APK; these activities will act as starting points for the
exploration. We then choose a starting point Ai and start
depth-first exploration from that point (lines 1–5). For each
activity Ai, we extract all its GUI elements (line 9). We then
systematically exercise the GUI elements by firing their cor-
responding event handlers (lines 10–11). Whenever we de-
tect a transition to a new activity An, we apply the same
algorithm recursively on An (line 13). This process contin-
ues in a depth-first manner until we do not find any transition
to a newer activity after exercising all the GUI elements in
that screen. We then go back to the previous activity and
continue exploring its view elements (line 14).

4.4 Replayable Test Cases and Debugging
During exploration, A3E automatically records the event
stream using RERAN, a low-overhead record-and-replay
tool [7], so that the exploration, or parts thereof, can be
replayed. This feature helps users construct test cases that
can later be executed via RERAN’s replay facility. In addi-
tion, the integration with RERAN facilitates debugging—if
the app crashes during exploration, we have the exact event
stream that has led to the crash; assuming the crash is deter-
ministic, we can reproduce it by replaying the event stream.

5. Implementation
We now proceed to presenting the experimental setup, im-
plementation details, and measurement procedures used for
constructing and evaluating A3E.

5.1 Setup and Tools
The smartphones used for experiments were Motorola Droid
Bionic running Android version 2.3.4, Linux kernel version
2.6.35. The phones have Dual Core ARM Cortex-A9 CPUs
running at 1GHz. We controlled the experiments from a
MacBook Pro laptop (2.66 GHz dual-core Intel Core i7 with
4GB RAM), running Mac OS X 10.8.3.

For the user study, we used RERAN, a tool we developed
previously [7] to record user interaction so we could replay
and analyze it later.

SCanDroid is a tool for static analysis on Dalvik bytecode
developed by other researchers and us [25]. For this work
we extended SCanDroid in two directions: (1) to tag intents
and activity life-cycle methods as sinks and sources so we
can construct the SATG, and (2) to list all the app-defined
methods—this information was used for method coverage
analysis.

5.2 Measuring Coverage
Activity coverage. The automatic explorer keeps track of
AR, the number of successfully explored activities, via the

logcat utility provided by Android Debug Bridge (adb)
tool from the Android SDK.

The total number of activities, AT , was obtained offline:
we used the open source apktool to extract the app’s man-
ifest file from the APK and parsed the manifest to list all
the activities. From the AT and AR we exclude “outside”
activities, as those are not part of the app’s code base. Exam-
ples of outside activities are ad-related activities and external
system activities (browser, music player, camera, etc.)

Method coverage. Android OS provides an Application
Manager (am) utility that can create method profiles on-the-
fly, while the app is running. To measure ME, the number
of methods called during execution, we extracted the method
entries from the profiling data reported by am. We measured
MT , the total number of methods in an app, via static anal-
ysis, by tailoring SCanDroid to find and list all the virtual
and declared method calls within the app. Note that third-
party code is not included in ME and MT computation
(Section 3.2).

5.3 Automatic Explorer
GUI element extraction and exercising is required for both
Targeted and Depth-first Exploration. To explore GUI ele-
ments, A3E “rips” the app, i.e., extracts its GUI elements dy-
namically using the Troyd tool [20] (which in turn is based
on Robotium [18]). Robotium can extract and fire event
handlers for a rich set of GUI elements. This set includes
lists, buttons, check boxes, toggle buttons, image views,
text views, image buttons, spinners, etc. Robotium also pro-
vides functionality for editing text boxes, clearing text fields,
clicking on text, clicking on screen positions, clicking on
hardware home menu, and back button. Troyd allows devel-
opers to write Ruby scripts that can drive the app using the
aforementioned functionality offered by Robotium (though
Troyd does not require access to the app’s source code).

A3E is built on top of Troyd. We modified Troyd to allow
automatic navigation through the app, as follows. Each An-
droid screen consists of GUI elements linked via event han-
dlers. Simply invoking all the possible event handlers and
firing the events associated with them would be incorrect—
the app has to be in a state where it can accept the events,
which we detected by interacting with the live app. Hence
A3E relies on live extraction of the GUI elements that are ac-
tually present on the screen (we call a collection of such ele-
ments a view). We then systematically map the related event
handlers, and call them mimicking a real user. This run-time
knowledge of views was essential for our automated explorer
to work. Once we get the information of the views, we can
systematically fire the correct actions.

As described in Section 3.1, our test users tended to
skip features such as options, ads, settings, or sharing via
social networks. To cover such activities and functionality,
A3E employs several strategies. A3E automatically detects
activities related to special responsibility, such as log in



screen, social networking, etc. We created sets of credential
information (e.g., username/password pairs) that A3E then
sends to the app just like a user would do to get past the
screen, and continues the exploration from there.

As we implemented our approach on top of the Robotium
testing framework, we had to compensate for its limitations.
One such limitation was Robotium’s inability to generate
and send gestures, which would leave many kinds of views
incompletely exercised when using Robotium alone. To ad-
dress this limitation we wrote a library of common simple
gestures (horizontal and vertical swipes, straight line swipes,
scrolling). We leave complex multi-touch gestures such as
pinching and zooming to future work; as explained in our
prior work [7], synthesizing complex, multi-touch gestures
is non-trivial.

In addition to the gesture library and log-on functional-
ity, A3E also supports microphone, GPS, compass, and ac-
celerometer events. However, certain apps’ functionality re-
quired complex inputs, e.g., processing a user-selected file.
Feeding such inputs could be achieved via OS-level record
and replay, a task we leave to future work.

With this library of input events, and GUI-element invo-
cation strategies at hand, A3E uses the appropriate explo-
ration algorithm depending on the kind of exploration we
perform, as described next.

5.4 Targeted Exploration
Section 4.1 described the intent passing logic among inter-
nal app activities, and Targeted Exploration uses the pre-
constructed SATG to explore these intra-app activity paths.
However, the Android platform also allows activities to be
called from external apps through implicit messaging by in-
tents, as follows: apps can define intent “filters” to notify
the OS that certain app activities accept intents and can be
started when the external app sends such an intent. There-
fore, when systematically exercising an app’s GUI elements,
there is a chance that these externally-callable activities are
missed if they are not reachable by internal activities. In ad-
dition to intent filters, developers can also identify activities
as “exported,” by defining android:exported="true" in
the manifest file. This will allow activities to be called from
outside the app. When implementing Targeted Exploration
we also invoked these externally-callable activities so we do
not miss them when they are not reachable from internal ac-
tivities.

5.5 Depth-First Exploration
With the infrastructure for dynamic GUI element extraction
and event firing at hand, we implemented Depth-first Ex-
ploration using a standard depth-first strategy: each time we
find a transition to a new activity, we switch to that activ-
ity and thus we enter deeper levels of the activity hierarchy.
This process continues until we cannot detect any more tran-
sition from the current activity. At this point we recursively
go back to the last activity and start exploring from there.

6. Evaluation
We now turn to presenting experimental results. From the
28 examined apps presented in Section 3, we were able to
explore 25; 3 apps could not be explored (Angry Birds, Angry
Birds Space premium, Facebook) because they are written
primarily in native code, rather than bytecode, as explained
in Section 6.2.

We first evaluate our automated exploration techniques
on these apps in terms of effectiveness and efficiency (Sec-
tion 6.1), then discuss app characteristics that make them
more or less amenable to our techniques (Section 6.2).

6.1 Effectiveness and Efficiency
Activity coverage. We present the activity coverage results
in Table 3. Column 2 shows the number of nodes in the
SATG, that is, the number of activities in each app, exclud-
ing ads. The grouped columns 3–5 show the activity cover-
age in percents, in three scenarios: the cumulative coverage
for users 1–7, coverage attained via Targeted Exploration,
and coverage attained via Depth-first Exploration. We make
several observations. First, systematic exploration increases
activity coverage by a factor of 2x, from 30.08% attained by
7 users cumulatively to 64.11% and 59.39% attained by Tar-
geted and Depth-first Exploration, respectively. Hence our
approach is effective at systematically exploring activities.
Second, SATG construction pays off; because it relies on
statically-discovered transitions, Targeted Exploration will
be able to fire transitions in cases where Depth-first Explo-
ration cannot, and overcome a limitation of dynamic tools
that start the exploration inside the app.

Method coverage. The method coverage results are shown
in the last columns of Table 3. The methods column shows
the number of methods defined in the app, excluding third-
party code. The next columns show activity coverage in per-
cents, in three scenarios: the cumulative coverage for users
1–7, coverage attained via Targeted Exploration, and cov-
erage attained via Depth-first Exploration. We make several
observations. First, systematic exploration increases method
coverage by about 4.5x, from 6.46% attained by 7 users cu-
mulatively to 29.53% and 36.46% attained by Targeted and
Depth-first Exploration, respectively. Hence our approach
is effective at systematically exploring methods. Second, the
lengthier, systematic exercising of each activity element per-
formed by Depth-first Exploration translates to better explo-
ration of methods associated directly (or transitively) with
that activity.

Exploration time. In Table 4 we show the time required
for exploration. Column 2 contains the static analysis time,
which is required for SATG construction; this is quite ef-
ficient, at most 10 minutes but typically 4 minutes or less.
We measured exploration time by letting both Targeted and
Depth-first explorations run to completion, that is until we
have explored all entry point activities and activities we
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Amazon Mobile 36 25.64 63.90 58.30 7,154 4.93 28.1 45.10
Angry Birds - 100 - - - 10.98 - -
Angry Birds Space Premium - 100 - - - 0.68 - -
Advanced Task Killer 6 70 83.33 83.33 420 11.46 59.76 62.86
Advanced Task Kill. P. 6 57 83.30 83.30 257 21.32 39.30 73.20
BBC News 10 52.34 80.00 80.00 3,836 7.69 31.80 37.40
CNN 39 19.05 69.23 61.54 9,269 4.97 29.88 29.97
Craigslist Mobile 15 42 73.30 66.70 2,095 10.76 30.50 41.10
Dictionary.com 18 61 83.33 72.22 3,881 13.83 44.29 44.62
Dictionary.com Ad Free 15 73.33 100 80 1,846 19.10 47.72 49.13
Dolphin Browser 56 12.50 42.86 37.50 17,007 13.26 42.92 43.37
ESPN ScoreCenter 5 60 80.00 80.00 4,398 1.35 16.10 31.20
Facebook 107 5.60 - - - 1.69 - -
Tiny Flashlight + LED 4 66.67 75 75 1,837 15.91 28.03 47.63
Movies by Flixster 67 23.30 77.60 61.20 10,151 5.32 29.50 31.80
Gas Buddy 33 30.20 72.70 63.60 5,792 9.13 31.40 47.80
IMDb Movies & TV 37 25.64 54.10 62.10 11,950 4.60 29.80 32.40
Instant Heart Rate 14 29.40 42.86 35.71 2,407 4.60 20.40 23.18
Instant Heart Rate - Pro 16 13.20 37.50 37.50 2,514 5.13 26.05 26.21
Pandora internet radio 30 12.50 80.0 76.70 7,620 3.21 21.10 31.70
PicSay - Photo Editor 10 10 50 40 1,458 4.39 25.58 27.43
PicSay Pro - Photo Editor 10 33.33 50 40 - - - -
Shazam 37 15.80 45.95 45.95 12,461 9.43 34.74 35.67
Shazam Encore 37 22.30 45.90 51.40 9,914 9.32 29.10 36.30
WeatherBug free 24 29 54.17 45.83 7,744 8.15 40.05 40.33
WeatherBug Elite 24 14.30 91.70 87.50 7,948 6.39 17.20 25.70
YouTube 18 27.77 55.56 50 14,550 5.13 26.95 26.99
ZEDGE 34 38.90 67.60 67.60 6,287 9.27 16.60 24

Mean 30.08 64.11 59.39 6.46 29.53 36.46

Table 3. Evaluation results: activity and method coverage.

could transitively reach from them. We imposed no time-
out. Columns 3 and 4 show the dynamic exploration time,
18–236 minutes for Targeted Exploration and 39–239 min-
utes for Depth-first Exploration. Hence our approach per-
forms systematic exploration efficiently. As expected, Tar-
geted Exploration is faster, even after adding the SATG con-
struction time, because it can fire activity transitions directly
(there were two exceptions to this, explained shortly). We
believe that these times are acceptable and well worth it, con-
sidering the provided benefits: a replayable trace that can be
used as basis for dynamic analysis or constructing test cases.

Targeted vs. Depth-first Exploration. While the two ex-
ploration techniques implemented in A3E have similar goals
(automated exploration) they have several differences.

Targeted Exploration requires a preliminary static data-
flow analysis stage to construct the SATG. However, once
the SATG is constructed, targeted exploration is fast, espe-
cially if a high number of activities are exportable, hence
we can quickly achieve high activity coverage by directly
switching to activities.

Depth-first Exploration does not require a SATG, but the
exploration phase is slower—systematically exercising all
GUI elements will prolong exploration. However, this pro-
longed exploration could be a worthy trade-off since Depth-
first Exploration achieves higher method coverage.

We now present some examples that illustrate tradeoffs
and shed light on some counterintuitive results. For Ad-

vanced Task Killer and ESPN ScoreCenter we attain similar
activity coverage but for ESPN ScoreCenter method coverage
is significantly lower. The reason for this is app structure:



App Time
SATG Targeted Depth-first

(seconds) (minutes) (minutes)
Amazon Mobile 222 123 131
Advanced Task Killer 39 41 47
Advanced Task Kill. P. 24 27 58
BBC News 68 18 52
CNN 14 158 161
Craigslist Mobile 43 83 91
Dictionary.com 66 113 131
Dictionary.com Ad Free 45 153 156
Dolphin Browser 595 171 179
ESPN ScoreCenter 42 22 44
Tiny Flashlight + LED 52 33 39
Movies by Flixster 53 228 219
Gas Buddy 157 109 124
IMDb Movies & TV 107 135 126
Instant Heart Rate 56 47 51
Instant Heart Rate - Pro 50 48 49
Pandora internet radio 92 89 111
PicSay - Photo Editor 36 119 121
PicSay Pro - Photo Ed. 40 112 129
Shazam 64 236 239
Shazam Encore 248 188 230
WeatherBug free 120 69 107
WeatherBug Elite 119 115 124
YouTube 200 131 135
ZEDGE 124 97 114
Mean 74 87 104

Table 4. Evaluation results: time taken by SATG construc-
tion and exploration. Note the different units across columns
(seconds vs. minutes).

ESPN ScoreCenter employs complex activities, i.e., differ-
ent layouts within an activity with more features to use. The
Targeted algorithm quickly switches the activities without
exploring layout elements in depth, while Depth-first takes
longer to exercise the layout elements thoroughly. For the
same app structure reason, Targeted exploration finishes sig-
nificantly faster for Advanced Task Killer Pro and BBC News.

Most apps show better activity coverage for Targeted than
Depth-first Exploration. This is primarily because they have
multiple entry points, or they have activities with intent fil-
ters to allow functionality to be invoked from outside the
app—starting the exploration from within the app for intent-
filter based activities which are not invoked from within the
app will fail to discover those activities. For instance, Ama-

zon Mobile has a bar-code search activity which was missed
during the Depth-first search, but the Targeted Exploration
succeeded to call the activity with the information from the
SATG. An exception from this were IMDb Movies & TV

and Shazam Encore: both apps have lower activity coverage
in Targeted Exploration than Depth-first. After investigation

we found that some activities could be invoked by Targeted
Exploration using intent filters with parameters, but Targeted
Exploration failed to exercise the activities; this was due to
specific input parameters what Targeted exploration failed to
produce. The Depth-first search exercised the app as a user
would and landed on those particular pages from the right
context with correct input parameters, achieving higher cov-
erage. For example the “play trailer” activity in IMDb Movies

& TV was not run during Targeted Exploration as it does not
have the required parameter, in this case the video file name
or location.

The exploration times depicted in Table 4 also have some
interesting data points. The exploration time largely de-
pends on the size and GUI complexity of the app. Normally,
Depth-first Exploration is slower than Targeted because of
the switch back (line 14 in Algorithm 2). Two apps, though,
Movies by Flixster and IMDb Movies & TV do not conform
to this. Upon investigation, we found that activities in these
apps form (almost) complete graphs, with many activities
being callable from both inside the app or outside the app
(but when called from outside, parameters need to be set
correctly). Depth-first reached the activities naturally with
the correct parameters, whereas Targeted had to back off re-
peatedly for some activities when attempting to invoke those
activities before parameters were properly constructed.

6.2 Automatic Exploration Catalysts and Inhibitors
We now reflect on our experience with the 28 apps and dis-
cuss app features that facilitate or hinder exploration via
A3E. The reasons that prevent us from achieving 100% cov-
erage are both fundamental and technical. Fundamental rea-
sons include the presence of activities that cannot be auto-
matically explored due to their nature, and for a good reason.
For example, in Amazon Mobile, purchase-related activities
could not be explored because server-side validation would
be required: to go to the “purchased” state, we would first
need to get past the checkout screen where credentials and
credit card are verified.

Complex gestures and inputs. Our techniques can get
good traction for apps built around GUI elements provided
by the Android SDK, such as text boxes, buttons, images,
text views, list views, check boxes, toggle buttons, spinners,
etc. However, some apps rely on complex, app-specific ges-
tures. For example, in the PicSay-Photo Editor app, most of
the view elements are custom-designed objects, e.g., artwork
and images that are manipulated via specific gestures. Our
gesture and sensor libraries (Section 5.3) partially address
this limitation.

Task switching. Another inhibitor is task switching: if our
app under test loses focus, and another app gains focus,
we cannot control this second app. For example, if an app
invokes the default file browser to a specific file location,
the A3E explorer will stop tracking, because the file browser
runs in a different process, and will resume tracking when
the app under test regains focus. This is for a good reason,



as part of the Android app isolation policy, but we cannot
track GUI events in other apps.

Service-providing apps. Some apps can act as service
providers by implementing services that run in the back-
ground. For example, WeatherBug runs in the background
reporting the weather; Advanced Task Killer runs in the back-
ground and kills apps which were not accessed for a spe-
cific amount of time. Hence for such apps we cannot explore
methods that implement background service-providing func-
tionality because they are not reachable from the GUI.

Native code. Finally, our static analysis works on Dalvik
VM bytecode. If the app uses native code instead of Dalvik
bytecode to handle GUI elements, we cannot apply our tech-
niques. For example, the two Angry Birds apps use native
Open GL code to manage drawing on the canvas, hence our
GUI element extraction does not have access to the native
GUI information. We could not explore the Facebook app
for the same reason.

7. Related Work
The work of Rastogi et. al. [10] is most closely related to
ours. Their system, named Playground, runs apps in the An-
droid emulator on top of a modified Android software stack
(TaintDroid); their end goal was dynamic taint tracking.
Their work introduced an automated exploration technique
named intelligent execution (akin to our Depth-first Explo-
ration). Intelligent execution involves starting the app, dy-
namically extracting GUI elements and exploring them (with
pruning for some apps to ensure termination) according to
a sequencing policy authors have identified works best—
explore input events first, then explore action providers such
as buttons. They ran Playground on an impressive 3,968 apps
and achieved 33% code coverage on average. The are several
differences between their approach and A3E. First, they run
the apps on a modified software stack on top of the Android
emulator, whereas we run apps on actual phones using an
unmodified software stack. The emulator has several limita-
tions [32], e.g., no support for actual calls, USB, Bluetooth,
in addition to lacking physical sensors (GPS, accelerome-
ter, camera), which are essential for a complete app expe-
rience. Second, Playground, just like our Depth-first Explo-
ration, can miss activities, as Table 4 shows—hence our need
for Targeted Exploration which uses static analysis to find
all the possible activities and entry points. Third, their GUI
element exploration strategy is based on heuristics, ours is
depth-first; both strategies have advantages and disadvan-
tages. Fourth, since we ran our experiments on actual phones
with unmodified VMs we could not collect instruction cov-
erage, so we cannot directly compare our coverage numbers
with theirs.

Memon et. al.’s line of work on GUI testing for desktop
applications [12–14] is centered around event-based model-
ing of the application to automate GUI exploration. Their ap-
proach models the GUI as an event interaction graph (EIG);

the EIG captures the sequences of user actions that can be
executed on the GUI. While the EIG approach is suitable for
devising exploration strategies for GUI testing in applica-
tions with traditional GUI design, i.e., desktop applications,
several factors pose complications when using it for touch-
based smartphone apps. First, and most importantly, transi-
tions associated with non-activity elements cannot be easily
captured as a graph. There is a rich set of user input fea-
tures associated with smartphone apps in general (such as
gestures—swipes, pinches and zooms) which are not tightly
bound to a particular GUI object such as a text box or a but-
ton, so there is not always a “current node” as with EIG to
determine the next action. For example, if the GUI consists
of a widget overlapped on a canvas, each modeled as graphs,
then the graph corresponding to the widget and the canvas
combined has a set of nodes of size proportional to the prod-
uct of number of nodes in the widget and canvas graphs; this
quickly becomes intractable. Moreover, the next user action
can affect the state of the canvas, widget, both, or neither,
which again is intractable as it leads to an explosion in the
number of edges in the combined graph. For example, activ-
ity com.aws.android.lib.location.LocationListActivity in the
WeatherBug app contains different layouts, each contain-
ing multiple widgets; a horizontal swipe on any widget can
change the layout, hence with EIGs we would have to rep-
resent this using a bipartite graph with a full set of edges
among widgets in the two layouts. Second, as mobility is
a core feature of smartphones, smartphone apps are built
around multimodal sensors and sensor event streams (ac-
celerometer, compass, GPS); these sensor events can change
the state of the GUI, but are not easily captured in the EIG
paradigm—many sensors do not exist on desktop systems
and their supported actions are far richer than clicks or drags.
Modeling such events to permit GUI exploration requires a
different scheme compared to EIG; our event library (Sec-
tion 5.3) and dynamic identification of next possible states
allows us to generate multimodal events to permit systematic
exploration. Third, Android app GUI state can be changed
from outside the app, or by a background service. For ex-
ample, an outside app can invoke an activity of another app
through a system-wide callback which in the EIG model
would a spontaneous transition into a node with no incom-
ing edge. The behavior of the callback requests can certainly
modify GUI states. Hence creating lists of action sequences
that can be executed by a user on an interface will lead to ex-
ploring only a subset of GUI states. This is the reason why,
while constructing the SATG, we analyze activities that ac-
cept intent filters and take appropriate action to design ex-
ploration test cases automatically. GUITAR [16] is a GUI
testing framework for Java and Windows applications based
on EIG. Android GUITAR [17] applies GUITAR to Android
by extending Android SDK’s MonkeyRunner tool to allow
users to create their own test cases with a point-and-click in-



terface that captures press events. In our approach, test case
creation is automated.

Yang et. al. [11] implemented a tool for automatic ex-
ploration called ORBIT. Their approach uses static analysis
on the app’s Java source code to detect actions associated
with GUI states and then use a dynamic crawler (built on
top of Robotium) to fire the actions. We use static analysis
on app bytecode to extract the SATG, as activities are stable,
but then use dynamic GUI exploration to cope with dynamic
layouts inside activities. They achieved significant statement
coverage (63%–91%) on a set of 8 small open source apps;
exploration took 80–480 seconds. We focus on a different
problem domain: large real-world apps for which the source
code is not available, so exploration times and coverage are
not directly comparable.

Anand et al. [34] developed an approach named ACTEVE
for concolic generation of events for testing Android apps
whose source code is available. Their focus is on cover-
ing branches while avoiding the path explosion problem.
ACTEVE generated test inputs for five small open source
in 0.3–2.7 hours. Similarly, Jensen et al. [5] have used con-
colic execution to derive event sequences that can lead to
a specific target state in an Android app, and applied their
approach to five open source apps (0.4–33KLOC) and show
that their approach can reach states that could not be reached
using Monkey. Our focus and problem domains are different:
GUI and sensor-driven exploration for substantial, popular
apps, rather than focusing on covering specific paths. We
believe that using concolic execution would allow us to in-
crease coverage (especially method coverage), but it would
require a symbolic execution engine robust enough to work
on APKs of real-world substantial apps.

Monkey [15] is a testing utility provided by the Android
SDK that can send a sequence of random and deterministic
events to the app. Random events are effective for stress test-
ing and fuzz testing, but not for systematic exploration; de-
terministic events have to be scripted, which involves effort,
whereas in our case systematic exploration is automated.
MonkeyRunner [24] is an API provided by the Android SDK
which allows programmers to write Python test scripts for
exercising Android apps. Similar to Monkey, scripts must be
written to explore apps, rather than using automated explo-
ration as we do.

Robotium [18] is a testing framework for Android that
supports both black-box and white-box testing. Robotium
facilitates interaction with GUI components such as menus,
toasts, text boxes, etc., as it can discover these elements,
fire related events, and generate test cases for exercising the
elements. However, it does not permit automated exploration
as we do.

Troyd [20] is a testing and capture-replay tool built on top
of Robotium that can be used to extract GUI widgets, record
GUI events and fire events from a script. We used parts
of Troyd in our approach. However, Troyd cannot be used

directly for either Targeted or Depth-first Exploration, as it
needs input scripts for exercising GUI elements. Moreover,
in its unmodified form, Troyd had a substantial performance
overhead which slowed down exploration considerably—we
had to modify it to reduce the performance overhead.

TEMA [41] is a collection of model-based testing tools
which have been applied to Android. GUI elements form
a state machine and basic GUI events are treated as key-
words like events. Within this framework, test scripts can
be designed and executed. In contrast, we extract a model
either statically or dynamically and automatically construct
test cases.

Android Ripper [9] is a GUI-based static and dynamic
testing tool for Android. It uses a state-based approach to dy-
namically analyze GUI events and can be used to automate
testing by separate test cases. Android Ripper preserves the
state of the application where state is actually a tuple of a
particular GUI widget and its properties. An input event trig-
gers the change in the state and users can write test scripts
based on the tasks that can modify the state. The approach
works only on the Android emulator and thus cannot mimic
sensor events properly like a real world application.

Several commercial tools provide functionality somewhat
related to our approach, though their end-goals differ form
ours. Testdroid [26] can record and run the tests on multi-
ple devices. Ranorex [27] is a test automation framework.
Eggplant [29] facilitates writing automated scripts for test-
ing Android apps. Framework for Automated Software Test-
ing (FAST) [28] can automate the testing process of Android
apps over multiple devices.

Finally, there exist a variety of static [19, 21, 23, 25] and
dynamic [22, 31] analysis tools for Android, though these
tools are only marginally related to our work. We apply static
analysis for SATG construction but our end goal is not static
analysis. However, our replayable traces can fit very well
into a dynamic analysis scenario as they provide significant
coverage.

8. Conclusions
We have presented A3E, an approach and tool that allow An-
droid apps to be explored systematically. We performed a
user study that has revealed that users tend to explore just
a small set of features when interacting with Android apps.
We have introduced Targeted Exploration, a novel technique
that leverages static taint analysis to facilitate fast yet effec-
tive exploration of Android app activities. We have also in-
troduced Depth-first Exploration, a technique that does not
use static analysis, but instead performs a thorough GUI ex-
ploration which results in increased method coverage. Our
approach has the advantage of permitting exploration with-
out requiring the app source code. Through experiments on
25 popular Android apps, we have demonstrated that our
techniques can achieve substantial coverage increases. Our



approach can serve as basis for a variety of dynamic analy-
sis and testing tasks.
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Figure 7. Dynamic Activity Transition Graph for the BBC News app, constructed based on runs from 5 different users: colors
represent users and labels on the edges represent the sequence in which the edges are explored.



App Activities Activity coverage (%)
total # excluding ads User 1 User 2 User 3 User 4 User 5 User 6 User 7

Amazon Mobile 39 36 18 13 15.4 10.26 13 25.64 13
Angry Birds 8 1 100 100 100 100 100 100 100
Angry Birds Space Premium 1 1 100 100 100 100 100 100 100
BBC News 10 10 70 20 30 - - 70 20
Advanced Task Killer 7 6 28.6 43 43 28.6 28.6 28.6 57
Advanced Task Killer Pro 6 6 50 33.33 50 16.66 16.66 16.66 33.33
CNN 42 39 19.05 9.5 14.29 12 12 19 14.29
Craigslist Mobile 17 15 23.5 35.3 41.2 23.5 29.4 29.4 35.3
Dictionary.com 22 18 41 41 59 32 41 59 41
Dictionary.com Ad-free 15 15 33.33 60 53.33 20 20 73.33 33.33
Dolphin Browser 56 56 12.5 8.9 1.78 1.78 1.78 1.78 1.78
ESPN ScoreCenter 5 5 60 40 20 20 20 20 20
Facebook 107 107 5.60 2.8 4.67 4.67 6.54 3.73 3.73
Tiny Flashlight + LED 6 4 50 50 50 50 50 50 66.67
Movies by Flixster 68 67 8.8 14.7 5.9 13.2 8.8 20.6 7.3
Gas Buddy 38 33 29 29 23.6 21 29 26 15.8
IMDb Movies & TV 39 37 25.64 15.4 15.4 - - 20.5 12.8
Instant Heart Rate 17 14 23.5 29.4 29.4 23.5 23.5 23.5 23.5
Instant Heart Rate - Pro 17 16 11.8 17.65 11.8 11.8 11.8 11.8 11.8
Pandora internet radio 32 30 9.4 9.4 12.5 12.5 12.5 9.4 12.5
PicSay - Photo Editor 10 10 10 10 10 10 10 10 10
PicSay Pro - Photo Editor 10 10 10 30 10 10 10 10 10
Shazam 38 37 5.3 15.8 5.3 5.3 5.3 5.3 8
Shazam Encore 38 37 15.8 21 21 8 8 10.5 10.5
WeatherBug 29 24 27.6 24.13 20.7 20.7 20.7 20.7 27.6
WeatherBug Elite 28 28 10.71 14.3 14.28 7.14 7.14 3.57 3.57
YouTube 18 18 11.11 11.11 11.11 11.11 11.11 11.11 27.77
ZEDGE 34 34 35.29 29.41 32.35 29.41 20.58 11.76 23.52

Table 5. Activity count and coverage. User 1 has explicitly tried to achieve high coverage, while 2–7 are “regular” users.



App Method External App specific Method coverage (%)
count packages method count

User 1 User 2 User 3 User 4 User 5 User 6 User 7
Amazon Mobile 13151 5 7154 4.21 1.36 3.93 1.64 4.93 3.99 2.92
Angry Birds 12245 4 6176 10.81 10.27 10.37 10.98 10.94 10.43 10.17
Angry Birds Space Premium 12953 4 7402 0.68 0.33 0.37 0.63 0.42 0.31 0.19
BBC News 4918 1 427 11.46 6.52 4.92 9.37 10.30 11.24 11.00
Advanced Task Killer 525 0 257 19.26 17.51 16.73 14.01 16.34 18.29 16.54
Advanced Task Killer Pro 257 4 3836 3.96 3.18 2.77 - - 3.47 7.69
CNN 13029 11 7725 4.86 4.72 4.12 4.44 1.89 4.44 4.44
Craigslist Mobile 2765 4 2095 6.88 5.78 8.78 3.10 9.27 10.07 10.69
Dictionary.com 4664 6 2784 0.97 0.97 5.96 10.86 12.31 4.64 11.02
Dictionary.com Ad-free 2199 4 1272 18.64 17.55 15.33 15.65 17.37 18.08 15.80
Dolphin Browser 23701 6 13800 13.26 9.98 10.06 7.54 3.95 4.17 11.15
ESPN ScoreCenter 5511 5 4398 0.55 0.45 0.23 0.28 0.28 1.04 1.20
Facebook 34883 12 21896 1.67 1.61 1.64 1.48 1.59 1.56 1.53
Tiny Flashlight + LED 2121 3 1578 15.59 15.85 4.81 13.68 0.70 15.85 15.05
Movies by Flixster 12476 8 7490 3.53 3.30 4.60 4.66 2.86 3.41 4.68
Gas Buddy 7841 4 5792 7.38 5.51 3.82 7.84 5.52 3.53 5.31
IMDb Movies & TV 19781 9 8463 4.60 1.78 0.98 - - 0.89 0.47
Instant Heart Rate 3044 5 2002 2.69 8.44 1.35 3.30 2.30 3.60 4.90
Instant Heart Rate - Pro 3044 5 1927 6.49 7.79 6.43 2.07 1.14 6.54 7.84
Pandora internet radio 13704 7 7620 2.88 2.01 1.44 2.07 3.24 2.75 2.18
PicSay - Photo Editor 1580 0 1580 2.97 3.04 2.66 2.59 4.37 1.39 2.97
Shazam 22071 13 9884 9.40 7.61 5.23 8.46 7.93 8.89 6.25
Shazam Encore 22071 9 9914 6.92 6.52 6.72 6.66 6.99 7.03 9.24
WeatherBug 9581 10 7948 3.70 8.02 3.11 3.82 4.52 3.93 5.75
WeatherBug Elite 9688 8 8194 5.06 4.24 6.36 3.41 6.12 5.89 3.83
YouTube 19902 10 11125 4.85 5.01 2.04 3.08 3.86 2.83 5.12
ZEDGE 8308 11 6287 6.96 3.00 4.82 6.44 7.32 8.44 5.75

Table 6. Method count and coverage.




