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Abstract The aim of this review is to investigate barriers and
challenges of wearable patient monitoring (WPM) solutions
adopted by clinicians in acute, as well as in community, care set-
tings. Currently, healthcare providers are coping with ever-
growing healthcare challenges including an ageing population,
chronicdiseases, thecostofhospitalization,andtheriskofmedical
errors.WPMsystems are a potential solution for addressing some
of these challenges by enabling advanced sensors, wearable tech-
nology, and secure and effective communication platforms be-
tween the clinicians and patients. A total of 791 articles were
screened and 20were selected for this review. Themost common
publication venue was conference proceedings (13, 54%). This
review only considered recent studies published between 2015
and 2017. The identified studies involved chronic conditions (6,
30%), rehabilitation (7, 35%), cardiovascular diseases (4, 20%),

falls (2, 10%)andmental health (1,5%).Most studies focussedon
the systemaspectsofWPMsolutions includingadvancedsensors,
wireless data collection, communication platform and clinical us-
ability based on a specific area or disease. The current studies are
progressing with localized sensor-software integration to solve a
specific use-case/health area using non-scalable and ‘silo’ solu-
tions. There is further work required regarding interoperability
andclinical acceptance challenges.The advancement ofwearable
technology and possibilities of usingmachine learning and artifi-
cial intelligence inhealthcare is a concept that hasbeen investigat-
ed by many studies. We believe future patient monitoring and
medical treatments will build upon efficient and affordable solu-
tions of wearable technology.

Keywords Wearable monitoring systems . Remote patient
monitoring .mHealth . eHealth .Wearable devices .Wearable
technology . Healthcare informatics . Decision support .

Bed-sidemonitoring

Introduction

In recent years, there has been an ever-growing need for a
sustainable health system which manages not only acute care
(in hospital wards or emergency departments), but also the
care of outpatients, especially those with chronic conditions.
Worldwide spending on chronic conditions has increased to a
point that immediate action is now required. A chronic condi-
tion is defined as a health condition that can be managed but
often cannot be cured; common examples include heart dis-
ease, stroke, cancer, diabetes and arthritis [1]. The number of
people withmultiple chronic conditions is likely to continue to
increase with the ageing of the population. Major contributing
factors are unhealthy lifestyles, along with the impact of the
economic downturn on mental and physical health [1].
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Wearable patient monitoring (WPM) systems are emerging as
an effective tool for the prevention, early detection and man-
agement of chronic conditions.

Recent estimates for annual expenditure on healthcare in the
US are between $US210.9 billion and $US306 billion [2]. In the
UK, nearly 29% of the total population now lives with a chronic
medical condition, and as much as 80% of the healthcare budget
is spent on the management of chronic diseases [1, 3].

As wearable sensors, smart textiles and body-worn gar-
ments become smaller, cheaper and more consumer-accessi-
ble, it is expected that they will be used more extensively
across a wide variety of contexts. The expansion of wearable
systems for health data collection offers the potential for user
engagement and self-management of chronic diseases [4].

The rapid increase in the global adoption of WPM systems
has occurred over the last couple of decades. Some of the early
foundation research includes; (1) thewearable healthcare system
(WEALTHY) project, which investigated the use of fabric inte-
grated sensors to continuously monitor the vital signs of high-
risk patients, including those undergoing rehabilitation [5]; (2)
an investigation of a custom-developed ubiquitous healthcare
(u-health-care) system consisting of custom 802.15.4-capable
nodes interfaced with electrocardiogram (ECG) and blood pres-
sure sensors, as well as a basic cell phone device for data display
and signal feature extraction [6]; (3) the Human++ project in the
Netherlands which developed a body area network consisting of
three sensor nodes and a base station [7]; (4) the CodeBlue
project developed by researchers at Harvard University [8]; (5)
research from the Media Laboratory of the Massachusetts
Institute of Technology (MIT) which involved designing
LiveNet [9]; (6) the development of the SmartVest, a wearable
physiological monitoring system that consists of a vest and a
variety of sensors integrated into the garment’s fabric to collect
several biosignals [10]; (7–9) and three European IST FP6 pro-
grams (the MERMOTH, MyHeart and HeartCycle projects),
which are recent examples of WPM systems [11–14].

The aim of this review is to investigate how current tech-
nological barriers and challenges limiting the global clinical
adoption of bed-side patient monitoring have been reduced by
the use of WPM systems. In addition, this review will high-
light opportunities and recommend the best possible approach
for the sustainable adoption of WPM in acute care, as well as
in community care settings. This continues on from previous
literature reviews conducted on WPM systems [6, 15–18].

Methodology

We chose the preferred reporting items for systematic reviews
and meta-analyses (PRISMA) as the systematic review meth-
odology [19]. A total of four databases were searched, includ-
ing PubMed, Scopus, SpringerLink and the IEEE Xplore
Digital Library. All databases were searched using keywords

BWearable Systems^ and BHospital Care^ or BWearable
Patient Monitoring^ or BWearable Patient Monitoring
Systems^ or BWearable Monitoring System^ and BAcute
Care^. Additionally, we searched ClinicalTrials.gov on 3
October 2016 and limited the search to 2015 to 2017, to
include ongoing registered clinical trials.

Articles selection and exclusion criteria

One of the authors conducted an initial screening of the re-
trieved records. Duplicated articles were eliminated and addi-
tional records were excluded after reviewing individual titles
and abstracts. A second author then reviewed the included
studies and evaluated the full-text articles or eligibility. The
eligibility criteria for inclusion in the review were:

a. Original articles published as a journal article or in con-
ference proceedings

b. Publication or reporting year (inclusive) 2015 and 2017
c. Wearable technology (a hardware integrated with a soft-

ware) for patient monitoring solution was the primary
subject of this study

d. Targeted towards acute and community care patient mon-
itoring solutions only

e. Written and published in English

We excluded articles that were not considered original re-
search, such as letters to the editor, comments or reviews.
Because this review paper focused on WPM systems, we also
excluded studies that solely tracked activity, exercise, sports or
fitness and health and well-being applications.

Article search results

Initially, 791 studies were identified through database
searching. After excluding duplicated records, 643 records
were eligible for screening. There were 517 records that did
not meet our inclusion criteria based on the initial screening. A
total of 126 studies were included to be evaluated for eligibil-
ity. Full-text records were retrieved and reviewed by two au-
thors. After excluding irrelevant studies, 20 articles were se-
lected for final review. The study selection process is depicted
in Fig. 1, the subject-wise distribution of the selected articles is
shown in Fig. 2 and the complete description of the included
studies is shown in Table 1.

The use and opportunities of wearable monitoring
systems in healthcare settings

Wearable systems/sensors and medical devices are widely used
to measure key health indicators, such as ECG, heart rate, blood
pressure, blood oxygen saturation, body temperature, posture
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and physical activities. The wearable systems supported by the
advanced information technology and sophisticated sensors have
the capability to continuously monitor human physiology and
consequently expedite treatments [26]. Typically in a functional
healthcare system, technology support is required for conducting
standardized clinical tests, to monitor disease progression, to aid
in treatment decision making, and to enable access to patient
medical records. These instances present an opportunity for
adopting wearable solutions and thus creating a more seamless
healthcare system experience. Relocating the resources into a
laterally distributed healthcare system allows the cost to be
shared and involves active patient engagement in long-term dis-
ease management [27]. This increases longitudinal–temporal
flexibility in the performance of regular examination and treat-
ment procedures, and reduces the work-load needed to maintain
continuous supervision. The wearable monitoring and seamless
integration of standardized clinical tests provides an example of
the potential that WPM systems have for self-management of
long-term andmultiple conditions in the wider healthcare system
[28, 29].

The chronic and progressive nature of many diseases,
which often present with symptoms that can vary within a
day and over longer periods of time, offers an ideal opportu-
nity for more demand on WPM systems [30]. Wearable

monitoring systems/ sensors are being designed to capture a
variety of disease data sets, including gait patterns, tremor
episodes, activity levels, motion and physiological parame-
ters. These solutions can be built by assembling small, inex-
pensive, convenient and wearable sensors that can be connect-
ed to the Internet via data aggregators such as mobile phones
[31]. The information can then be transmitted to the cloud or
local server for data processing and sent back to the user via
alerts, reminders, warnings or notifications for further actions

Fig. 1 The study selection
process
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Fig. 2 Subject-wise distribution of the selected articles. LTC/CCM is the
long-term conditions/ chronic care management. Number of studies for
Long-term conditions (LTC)/chronic care management (CCM) = 6,
rehabilitation = 7, cardiovascular care = 4, falls = 2 and mental
health = 1 (total n = 20)

J Med Syst (2017) 41: 115 Page 3 of 9 115



T
ab

le
1

C
om

pa
ri
so
n
of

th
e
se
le
ct
ed

w
ea
ra
bl
e
m
on
ito

ri
ng

sy
st
em

s

A
ut
ho
r
an
d
Y
ea
r

Ta
rg
et
A
re
a
or

Po
pu
la
tio

n
S
tu
dy

A
im

s
O
ut
co
m
es
/F
in
di
ng
s

Pl
at
fo
rm

/T
yp
e
of

Se
ns
or

U
se
d

E
te
m
ad
ie
ta
l.

20
16

[2
0]

L
on
g-
te
rm

m
on
ito

ri
ng
;

ch
ro
ni
c
ca
re

m
on
ito

ri
ng

To
de
ve
lo
p
a
lo
w
-p
ow

er
m
ul
ti-
m
od
al
pa
tc
h
fo
r

m
ea
su
ri
ng

ac
tiv

ity
us
in
g
E
C
G
an
d
SC

G
se
ns
or
s

T
he

de
ve
lo
pe
d
pa
tc
h
m
ea
su
re
d
th
e
co
m
bi
ne
d

ac
tiv

ity
,e
nv
ir
on
m
en
ta
lc
on
te
xt
,a
nd

he
m
od
yn
am

ic
s,
al
lo

n
th
e
sa
m
e
ha
rd
w
ar
e,

ca
pa
bl
e
of

op
er
at
in
g
fo
r
lo
ng
er

th
an

48
h
at
a

tim
e
w
ith

co
nt
in
uo
us

re
co
rd
in
g

T
hr
ee
-c
ha
nn
el
s
of

S
C
G
;o

ne
-l
ea
d
E
C
G
;t
he

pr
es
su
re

se
ns
or
;a
n
av
er
ag
e
cu
rr
en
t

co
ns
um

pt
io
n
of

le
ss

th
an

2
m
A
fr
om

a
3.
7
V

co
in

ce
ll
(L
IR
24
50
)
ba
tte
ry
.

T
ho
m
as

et
al
.

20
16

[2
1]

N
on
-i
nv
as
iv
e
co
nt
in
uo
us

B
P

m
on
ito

ri
ng

To
de
ve
lo
p
a
w
ri
st
w
at
ch
-b
as
ed

B
P
m
ea
su
re
m
en
t

sy
st
em

us
in
g
E
C
G
an
d
PP

G
T
he

av
er
ag
e
ro
ot

m
ea
n
sq
ua
re

er
ro
r
be
tw
ee
n
th
e

m
ea
su
re
d
sy
st
ol
ic
B
P
an
d
th
e
ca
lc
ul
at
ed

sy
st
ol
ic
B
P
w
as

be
tw
ee
n
7.
83

to
9.
37

m
m
H
g

ac
ro
ss

11
su
bj
ec
ts

A
PP

G
se
ns
or

w
ith

bo
th
in
fr
a-
re
d
an
d
re
d
L
E
D
s;

tw
o
di
ff
er
en
tia
le
le
ct
ro
de
s;
th
ir
d
bi
as

el
ec
tr
od
e;
B
io
W
at
ch

co
m
es

w
ith

tw
o
an
al
og

fr
on
te
nd
s:
th
e
T
IA

D
S1

29
2
fo
ra
cq
ui
ri
ng

E
C
G

si
gn
al
an
d
th
e
T
I
A
FE

44
00

fo
r
re
ad
in
g
PP

G

W
u
et
al
.2
01
5

[2
2]

B
io
fe
ed
ba
ck

sy
st
em

to
m
on
ito

r
an
d
le
ar
n
fr
om

ph
ys
io
lo
gi
ca
ls
ig
na
ls

To
de
ve
lo
p
a
w
ea
ra
bl
e
bi
of
ee
db
ac
k
sy
st
em

fo
r

pe
rs
on
al
is
ed

em
ot
io
na
lm

an
ag
em

en
tu

si
ng

he
ar
tr
at
e
va
ri
ab
ili
ty

R
ea
l-
tim

e
H
R
V
bi
of
ee
db
ac
k
is
si
gn
if
ic
an
tly

ef
fe
ct
iv
e
in

ca
se
s
of

ne
ga
tiv

e
em

ot
io
n

A
co
nd
uc
tiv

e
te
xt
ile

m
at
er
ia
la
s
th
e
el
ec
tr
od
es
fo
r

E
C
G
an
d
br
ea
th
in
g
ac
tiv

ity
;a

di
ff
er
en
tia
l

se
pa
ra
tio

n
fi
lte
r
an
d
a
co
m
m
on

si
gn
al

co
nd
iti
on
in
g

X
u
et
al
.2
01
6

[1
3]

T
re
at
m
en
t,
in
-c
om

m
un
ity

re
ha
bi
lit
at
io
n
an
d
at
hl
et
e

tr
ai
ni
ng

To
de
ve
lo
p
a
co
nt
ex
tu
al
on
lin

e
le
ar
ni
ng

m
et
ho
d

fo
r
ac
tiv

ity
cl
as
si
fi
ca
tio

n
ba
se
d
on

da
ta

ca
pt
ur
ed

by
lo
w
-c
os
t,
bo
dy
-w

or
n
in
er
tia
l

se
ns
or
s

R
ea
l-
tim

e
le
ar
ni
ng

sy
st
em

an
d
co
nt
ex
tu
al

m
ul
ti-
ar
m
ed

ba
nd
its

ap
pr
oa
ch

th
at
en
ab
le
s

ef
fi
ci
en
t,
pe
rs
on
al
iz
ed

ac
tiv

ity
cl
as
si
fi
ca
tio

n

C
on
te
xt

dr
iv
en

ac
tiv

ity
cl
as
si
fi
ca
tio

n
an
d

fe
ed
ba
ck
;a

se
to

f
se
ns
or
s
w
ith

a
sm

ar
td

ev
ic
e

at
ta
ch
ed

to
th
e
us
er
;a
ct
iv
ity

cl
as
si
fi
ca
tio

n
m
od
ul
e
an
d
th
e
co
nt
ex
tc
la
ss
if
ic
at
io
n
m
od
ul
e

Sa
rd
in
ie
ta
l.

20
15

[1
1]

Po
st
ur
e
m
on
ito

ri
ng

an
d

re
ha
bi
lit
at
io
n
ex
er
ci
se
s

To
de
ve
lo
p
a
w
ir
el
es
s
w
ea
ra
bl
e
T-
sh
ir
tf
or

po
st
ur
e
m
on
ito

ri
ng

du
ri
ng

re
ha
bi
lit
at
io
n
or

re
in
fo
rc
em

en
te
xe
rc
is
es

T
he

w
ir
el
es
s
w
ea
ra
bl
e
se
ns
or

pr
od
uc
ed

re
lia
bl
e

da
ta
co
m
pa
re
d
w
ith

th
e
da
ta
ob
ta
in
ed

w
ith

th
e

op
tic
al
sy
st
em

A
co
pp
er

w
ir
e
an
d
a
se
pa
ra
bl
e
ci
rc
ui
tb

oa
rd
;t
he

ac
tu
at
or

is
a
vi
br
at
io
n
m
ic
ro
m
ot
or

(P
ic
o
V
ib
e)

co
m
m
er
ci
al
iz
ed

by
P
re
ci
si
on

M
ic
ro
dr
iv
er
s

Sp
an
o
et
al
.2
01
6

[2
3]

R
em

ot
e
pa
tie
nt

m
on
ito

ri
ng
;

E
C
G
m
on
ito

ri
ng

To
de
ve
lo
p
an

E
C
G
re
m
ot
e
m
on
ito

ri
ng

sy
st
em

th
at
is
de
di
ca
te
d
to
no
n-
te
ch
ni
ca
lu
se
rs
in
ne
ed

of
lo
ng
-t
er
m

he
al
th

m
on
ito

ri
ng

in
re
si
de
nt
ia
l

en
vi
ro
nm

en
ts
an
d
is
in
te
gr
at
ed

in
a
br
oa
de
r

Io
T

T
he

re
se
ar
ch
er
s
de
ve
lo
pe
d
1)

in
te
gr
at
ed

E
C
G

pr
ot
ot
yp
e
se
ns
or
s
w
ith

re
co
rd
-l
ow

en
er
gy

pe
r

ef
fe
ct
iv
e
nu
m
be
r
of

qu
an
tiz
ed

le
ve
ls
;2

)
an

ar
ch
ite
ct
ur
e
pr
ov
id
in
g
lo
w
m
ar
gi
na
lc
os
tp

er
ad
de
d
se
ns
or
/u
se
r;
an
d
3)

th
e
po
ss
ib
ili
ty

of
se
am

le
ss

in
te
gr
at
io
n
w
ith

ot
he
r
sm

ar
th

om
e

sy
st
em

s
th
ro
ug
h
a
si
ng
le
Io
T
in
fr
as
tr
uc
tu
re

T
he

w
ea
ra
bl
e
E
C
G
se
ns
or

co
ns
is
ts
of

a
ba
tte
ry
-p
ow

er
ed

ch
es
tb

el
t;
tw
o
dr
y
pl
as
tic

el
ec
tr
od
es

an
d
th
e
el
ec
tr
on
ic
pr
in
te
d
ci
rc
ui
t

bo
ar
d.
T
he

ci
rc
ui
te
xt
ra
ct
s,
fi
lte
rs
,a
m
pl
if
ie
s

an
d
di
gi
tiz
es

th
e
E
C
G
si
gn
al
,w

hi
ch

is
th
en

ac
qu
ir
ed

by
th
e
m
ic
ro
co
nt
ro
lle
r

L
ee

et
al
.2
01
5

[2
4]

H
R
V
an
al
ys
is

To
de
ve
lo
p
a
sm

ar
tE

C
G
pa
tc
h
to
m
ea
su
re
s
E
C
G

us
in
g
th
re
e
el
ec
tr
od
es

in
te
gr
at
ed

in
to

th
e

pa
tc
h,
fi
lte
rs
th
e
m
ea
su
re
d
si
gn
al
s
to
m
in
im

iz
e

no
is
e,
pe
rf
or
m
s
an
al
og
-t
o-
di
gi
ta
lc
on
ve
rs
io
n,

an
d
de
te
ct
s
R
-p
ea
ks

T
he

R
-p
ea
k
de
te
ct
io
n
re
su
lts

ob
ta
in
ed

w
ith

th
e

de
vi
ce

ex
hi
bi
te
d
a
se
ns
iti
vi
ty

of
99
.2
9%

,a
po
si
tiv

e
pr
ed
ic
tiv

e
va
lu
e
of

10
0.
00
%
,a
nd

an
er
ro
r
of

0.
71
%
.T

he
de
vi
ce

al
so

ex
hi
bi
te
d
le
ss

m
ot
io
na
ln

oi
se

th
an

co
nv
en
tio

na
lE

C
G

re
co
rd
in
g,
be
in
g
st
ab
le
up

to
a
w
al
ki
ng

sp
ee
d

of
5
km

/h

T
he

m
at
er
ia
lu

se
d
fo
r
th
e
pa
tc
h
is
no
n-
w
ov
en

fa
br
ic
w
ith

hy
dr
og
el
an
d
ad
he
si
ve
.A

n
A
g−

/A
gC

l-
ba
se
d
el
ec
tr
od
e
ar
ra
y
is
pr
in
te
d

in
to

th
e
pa
tc
h
an
d
pr
ot
ec
te
d
by

an
in
su
la
tio

n
co
at
in
g

M
el
ill
o
et
al
.

20
15

[2
5]

R
is
k
as
se
ss
m
en
to

f
va
sc
ul
ar

ev
en
ts
an
d
fa
lls

in
hy
pe
rt
en
si
ve

pa
tie
nt
s

To
de
si
gn

an
d
de
ve
lo
p
a
fl
ex
ib
le
,e
xt
en
si
bl
e,
an
d

tr
an
sp
ar
en
t,
an
d
to

pr
ov
id
e
pr
oa
ct
iv
e
re
m
ot
e

m
on
ito

ri
ng

vi
a
da
ta
-m

in
in
g
fu
nc
tio

na
lit
ie
s

T
he

de
ve
lo
pe
d
sy
st
em

w
as

ab
le
to

pr
ed
ic
ta

fu
tu
re

va
sc
ul
ar

ev
en
tw

ith
in

th
e
ne
xt

12
m
on
th
s
w
ith

an
ac
cu
ra
cy

ra
te
of

84
%

an
d

to
id
en
tif
y
fa
lle
rs
w
ith

an
ac
cu
ra
cy

ra
te
of

72
%

T
he

S
ha
re
L
og
s
w
as

de
ve
lo
pe
d
by

us
in
g
th
e

B
io
H
ar
ne
ss

B
lu
et
oo
th

L
og
gi
ng

Sy
st
em

In
te
rf
ac
e
av
ai
la
bl
e
in

th
e
B
io
H
ar
ne
ss

B
lu
et
oo
th

D
ev
el
op
er

K
it
pr
ov
id
ed

by
Z
ep
hy
r

Te
ch
no
lo
gy

115 Page 4 of 9 J Med Syst (2017) 41: 115



[31]. In the future, classification of the data based on popula-
tion studies will typify disease-specific symptoms and their
progression, enabling precise treatment options for clinicians
to make informed decisions. The increasing usage of WPM
systems will lead to the generation of a huge streams of new
data sources, which will ultimately amplify the data-oriented
medical knowledge base and, will complement and improve
the electronic health record [32].

There appears to be three major wearable sensor modalities
with applications in healthcare. Firstly, biopotential-specific
sensor units, such as ECG, electromyography (EMG) and
electroencephalography (EEG) sensors. Secondly, motion
sensor units, such as accelerometers and gyroscopes. Finally,
environmental sensor units such as video cameras, vital signs
monitors (such as heart rate, pulse rate and temperature) and
pressure sensors [33]. WPM systems have the potential to
change the way healthcare is currently being managed.
Moreover, healthcare information exchange will make it eas-
ier for any service provider to access the relevant information
and provide better and informed point-of-care solutions [12].

Apart from the advancement in technology, many WPM
systems still face the most common challenge of signal quality
[34, 35] and particularly for one of the common issue (use-
case) of ECGmonitoring, electrodes drying out. In addressing
the issue of electrodes drying out, a textile integrated active
electrode as opposed to a commercial wet Ag/AgCl electrode
has been developed and tested with the signal integrity during
a five-cycle washing test [36].

Barriers to the clinical adoption of WPM systems

The next generation of WPM systems is likely to improve the
quality of human life by assuring high comfort while increas-
ing the intelligent use of limited resources. Further improve-
ments in textile sensors design, signal quality, miniaturization
and data acquisition techniques are required to fulfil these
expectations. Figure 3 shows the overview model of WPM
systems and lists four key areas which are currently limiting
the wider clinical adoption of wearable technology. The fol-
lowing sections elaborate the issues pertaining to these four
key areas.

Sensors and signals

The number of biosensors used in current WPM systems is
generally large and requires specific on-body placement or
body postures in order to provide reliable measurements
[37]. One of the technical barriers when using WPM systems
is the obstruction of feature extraction from the signal due to
motion artefacts. This is due to body movement or respiration
and needs to be resolved [38]. A study by Etemadi et al. [20]
utilized advanced signal processing to collect accurate and

reliable seismocardiography (SCG). To increase the quality
and accuracy of the SCG, linear filtering, detecting the R-
wave peak timings from the ECG, and using these timings
as a fiduciary for ensemble averaging the SCG were imple-
mented. In a similar study that investigated biofeedback train-
ing for emotion management and patient monitoring [22], the
signals collected were unreliable and disturbed by a variety of
noises. Most body-worn applications report that the system’s
accuracy is hampered by noises such as: electromagnetic in-
terference of power line, poor quality of contact between the
electrode and the skin, baseline wander caused by respiration,
electrosurgical instruments and movement of the patient’s
body. Most of these noises cannot be filtered out completely
over the hardware-processing unit due to the processing lim-
itations. Therefore, it is necessary to filter out these noises as
much as possible in the software platform. The researchers
from this study adopted the Butterworth Notch Filter (BNF)
and finite impulse response (FIR) band-pass filter to eliminate
power line interference and baseline wander, and a novel
multi-scale mathematical morphology (3 M) filter to reduce
the impact of the non-linear noises caused by poor electrode
contact and motion artefacts. Another study used a wireless
wearable T-shirt to monitored the patient’s posture during re-
habilitation exercise [11]. The researchers manually sewed an
enamelled copper wire of 1 mm diameter to a T-shirt and
constituted the sensor (about 9 cm long and 2.5 cm wide with
a total length of 50 cm). The copper wire was stitched with a
zigzag pattern on the back and the chest, thus allowing the
lengthening of the T-shirt and sensor in the sagittal plane. The
study achieved good outcome in a small setting, but the im-
pedance value of the sensor changed due to the different fac-
tors such as the relaxation of the T-shirt or skin conductivity
variation. The T-shirt with the sewn copper wire was washed
(expecting a relaxation) after it was used, but no variation was
observed [11].

Connectivity

One of the most common issues with wearable systems is the
delay in providing results and generating alerts due to data
loss, buffering, network communication, monitoring or pro-
cessing [21, 39, 40]. These systems were developed for spe-
cific setup and care settings in order to assist patients’ specific
need. WPM systems using 3G/4G data suffer connectivity
issues due to the remote network, low signal strength in re-
mote places, low battery life time, low transmission speed,
thus resulting in delay or low quality data for periods of short
time [39, 41]. To address these issues, a cross-layer framework
has been developed based on unequal resource allocation to
support secure wireless wearable data encryption and trans-
mission [42]. The low battery life issue occurs due to contin-
ued connectivity of device/sensor with the Bluetooth, WiFi or
3G/4G networks [43–45]. Moreover, if the power supply is
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not an issue then the mobility of the device may become
problematic, especially for older adults.

A portable ECG monitoring device developed by Lee et al.
[44] can easily measure the ECG by connecting the measuring
module to a patch with a minimized electrode array using a
snap button. The measuring module is small (38 mm wide,
38 mm long, and 7 mm thick). The weight of the module
including the battery is 10 g. The study reported that an
ECG signal was collated using a commercial device that was
similar to the conventional Holter monitor. The study reported
that even with the wires firmly fixed, the ECG signal quality
was often disturbed, as the wires moved depending on the
subject’s body movements. According to another study, the
ratio of motion peaks to normal peaks was estimated as being
about 10% when the ECG was taken from a freely moving
patient using the Holter monitor [43]. For this reason, ECGs
obtained using Holter monitors are limited, and algorithms
used to eliminate noise from the data have been actively de-
veloped. As important as it is to detect and exclude generated
noise from the analysis, it is evenmore important to reduce the
occurrence of noise itself in the first instance, and this is a
common issue with almost all sensor-based WPM systems
[44, 46]. Table 1 summaries the selected wearable systems.

In real-time scenarios, wearable data transmission often
requires some data processing and therefore network delays.
Some systems produced good results when tested offline but
reported delay when tested in real-time [39]. Prakash et al.
[47] demonstrated an efficient connectivity and communica-
tion framework in a real-time wireless hospital sensor net-
work, which could be adopted for acute care settings.

Data processing, integration and clinical decision support

Machine learning and artificial intelligence techniques have the
potential to transform healthcare services by improving diagnos-
tics and predictive modelling. The utilisation of these techniques
in healthcare is still emerging, as it requires considerable analysis
to provide reliable results that clinicians would actually use. The
raw data collected from wearable sensors would provide a data
source that did not exist before. These data would undergo fur-
ther analysis to be transformed into meaningful and actionable
information. This process would be supported by real-time ma-
chine learning processing techniques. Advanced signal process-
ing algorithms for faster processing, low power consumption,
low cost, and less complexity have been applied to healthcare
settings. However, such algorithms are often tested by simulation
or under fixed conditions. Implementation of these algorithms in
the wearablemonitoring in an acute care environment led to poor
results due to significant processing time and delay. A medical
grade remote monitoring system with a reliability exceeding
99% has been developed, but a 2.4 s initial buffering delay, as
well as a small processing and network delay were reported [48].

The current concern with the deployment of expert systems
in healthcare is accuracy and reliability. To achieve higher
accuracy in decision support, a complete data set must be
employed for different stages of training, testing and validat-
ing of expert systems. Currently, the majority of existing clin-
ical decision support models contain medical knowledge of a
specific or pre-defined task and therefore can analyse the col-
lected data from individual patients or from a small data sets
only. Thus, highlighting the issue of scalability and wider
integration is a challenge for future research and development.
Moreover, machine-learning approaches can be used to ana-
lyse the streaming of real-time clinical data and map it to
known/existing condition(s). The current state of wearable
monitoring systems can be further enhanced with the integra-
tion of such techniques into the hardware or in the cloud
computing platforms for real-time processing.

One of the bottlenecks to consider for third generation of
pervasive sensing platforms is to achieve rapid and scalable
processing for large datasets. From a software point-of-view,
processing big data is usually linked with programming para-
digms [49]. Several open-source frameworks such as Hadoop
[50] are being used to setup distributed database environments
via a scalable architecture. This provides a basis for further
usage via other tools (such as Cascading, Pig, Hive) [50] that
enable developing applications to process vast amounts of
data (by the order of terabytes) on commodity clusters.
However, when combined with continuous streams of perva-
sive heath monitoring, this also requires capacities for iterative
and low-latency computations, which depends on sophisticat-
ed models of data caching and in-memory computation. Thus,
other frameworks such as Storm and Spark have been created
to fulfil this gap [50].

Rich clinical decision support could be achieved by using
the insights gained by taking a machine-learning approach to
data collected via wearable sensors and/or wireless medical
devices [51]. A cloud-based clinical decision support system
embedded with machine learning techniques could include:
drug-drug allergies, individualised drug dosing, clinical risk
scores/ scales and gaps in care – alerts, reminders, warnings
and notifications [52–54].

Patient engagement and interaction

We believe that one of the core advantages ofWPM systems is
the patient’s (user’s) self-engagement with the treatment –
which is often missing. There is a shift in wider thinking of
WPM systems as ‘only data collectors’ to viewing them as
being self-engaging and motivating systems which allow rich
interactions between patients and clinicians [55–57]. Due to
WPM systems being traditionally regarded as data collectors
only, the majority of wearable systems lack user-engagement
and user-interaction aspects. The wearable systems are often
focused on providing real-time health data to clinicians for
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timely treatment and actions, but are missing user-acceptance
and engagement. User-engagement and user-interaction are
some of the key uptake factors among consumers (non-
clinical care settings) for wearable technologies [58–60].

An advanced WPM system named Hexoskin™ [61]
(ClinicalTrials.gov Identifier: NCT02591758) with a vest
and embedded sensors is being developed. It provides the
user with seamless and fully integrated information
regarding heart rate, breathing rate, minute ventilation, heart
rate maximum, resting heart rate, heart rate recovery, maximal
oxygen uptake and cadence. It uses textile-integrated sensors
for activity, respiration and heart rate and intelligently makes
use of the three-cardiac dry and textile electrodes. The cardiac
sensors for ECG uses 1 channel, 256 Hz, heart rate 30–220
beats/min, 1 Hz with QRS event detection, RR intervals and
heart rate variability analysis. For breathing monitoring, the
system uses two channels, 128Hz; breathing rate 3–80 breaths
per minute, 1 Hz; tidal volume (last inspiration) 80–
10,000 mL, 1 Hz; minute ventilation (inductance plethysmog-
raphy) 2–150 L/min, 1 Hz and inspiration and expiration
events: 8 ms resolution. Hexoskin™ provides users with
real-time and remote monitoring via secure Bluetooth con-
nected mobile app (iOS and Android), a web dashboard, up
to 14 h of battery life (rechargeable), free data storage in cloud
and secure access anytime [61, 62]. Hexoskin™ allows users
to download the raw data in machine readable format, as well
as provide users with raw, processed / meaningful data. The
access to the application programming interfaces (APIs) and
raw data in machine-readable format enables the healthcare
professionals and researchers to explore the data for wearable
solutions healthcare benefits.

BP = blood pressure; ECG = electrocardiogram;
IoT = Internet-of-Things; HRV = heart rate variability;
PPG = photoplethysmogram; SCG = seismocardiogram.

Discussion and conclusion

Most research in WPM systems has focused on applications
related to older adults (aged more than 60 years), as opposed
to younger adults. A study by Bergmann and McGregor re-
ported that 93% of patients in an elderly care facility accepted
a proposedWPM system, because of its low invasiveness and
its non-interference with their normal daily life activities [63].
However, Bergmann and McGregor’s overall quality of indi-
vidual studies was relatively low, with small participant num-
bers, limited details of methodology and a restricted reporting
of research processes [63].

In this paper, we reviewed 20 wearable monitoring systems
by selecting papers published from 2015 to 2017 in order to
evaluate their technological advancements and their employment
of advanced sensors and data collection techniques. We studied
the design concepts of wearable wireless WPM systems, identi-
fied key specifications and parameters such as sensors and sig-
nals, data processing, integration, signal quality and user-
engagement and user-interaction that require attention. In addi-
tion, we have highlighted the potential of deployment of such
technologies in the clinical environment [54, 64].

With the ever growing use ofWPM systems, end-user accept-
ability is becoming an important aspect of the design of such
systems. The acceptance of any system in the healthcare domain
depends on user-awareness, as well as clinician and patient ac-
ceptance. Moreover, this review indicates the heavy dependency
of wearable monitoring systems on communication technology
and some studies have reported cost problems when using mo-
bile data (3G/4G) for data communication for longer time and
multiple data collection. Data connectivity is one of the main
drawbacks of deployed WPM systems where patients are
‘constrained’ within fixed spaces fitted with monitoring devices
with small Bluetooth range [34, 35, 45, 56, 65].

Fig. 3 Overview model of WPM systems
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Amarked change in healthcare delivery is occurring which
has been made possible by the technological revolution in
WPM systems, the Internet of Things (IoT), and the potential
of employing machine learning and artificial intelligence. The
treatment of many medical conditions are guaranteed to ben-
efit from the use of wearable technology [41].

Validation of clinical and scientific findings is an important
task to take on in this new context. The determination of
repeatability and reliability of the new assessment tools based
on wearable technologies and the IoT remains challenging.
Likewise, the extent to which these new methods of diagnos-
ing and treating will replace or complement the existing as-
sessment and therapeutic tools is wide open to experimenta-
tion and debate in the global healthcare community [40, 45].

In conclusion, the advancement of wearable technology
and possibilities of using machine learning and artificial intel-
ligence in healthcare is a concept that has been investigated by
many studies. We believe future patient monitoring and med-
ical treatments will build upon efficient and affordable solu-
tions of wearable technology.
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