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A B S T R A C T

Learning requires the traversal of inherently distinct cognitive states to produce behavioral adaptation. Yet, tools
to explicitly measure these states with non-invasive imaging – and to assess their dynamics during learning –

remain limited. Here, we describe an approach based on a distinct application of graph theory in which points in
time are represented by network nodes, and similarities in brain states between two different time points are
represented as network edges. We use a graph-based clustering technique to identify clusters of time points
representing canonical brain states, and to assess the manner in which the brain moves from one state to another
as learning progresses. We observe the presence of two primary states characterized by either high activation in
sensorimotor cortex or high activation in a frontal-subcortical system. Flexible switching among these primary
states and other less common states becomes more frequent as learning progresses, and is inversely correlated
with individual differences in learning rate. These results are consistent with the notion that the development of
automaticity is associated with a greater freedom to use cognitive resources for other processes. Taken together,
our work offers new insights into the constrained, low dimensional nature of brain dynamics characteristic of
early learning, which give way to less constrained, high-dimensional dynamics in later learning.
Introduction

The human brain is an inherently adaptive (Mattar et al., 2016),
plastic (Della-Maggiore et al., 2015) organ. Its fundamental malleability
supports changes to its architecture and function that are advantageous
to human survival. Importantly, such changes can occur on multiple time
scales: from the long time scales of evolution (Kirschner and Gerhart,
1998; Clune et al., 2013) to the shorter time scales of multi-year devel-
opment (Gu et al., 2015b), or even short-term learning (Ellefsen et al.,
2015; Hermundstad et al., 2011). Notably, even in the shortest time
scales of learning, adaptation can occur over multiple spatial scales
(Mattar and Bassett, 2016), from the level of single neurons (Richardson
et al., 2012) to the level of large-scale systems (Tunik et al., 2007).
Moreover, this adaptation can affect functional dynamics (Heitger et al.,
2012; Krakauer et al., 2005, 2004; Grefkes et al., 2004) or can evoke a
direct change in the structure of neuroanatomy, driving new dendritic
nich Hall, Philadelphia, PA 19104-63
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spines (Xu et al., 2009), axon collaterals (Chklovskii et al., 2004), and
myelination (Sampaio-Baptista et al., 2013).

Malleability, adaptability, and plasticity often manifest as a vari-
ability in quantitative statistics that describe the structure or function of a
system. In the large-scale human brain, such statistics can include mea-
sures of neurophysiological noise (Garrett et al., 2014, 2013; Breakspear
and McIntosh, 2011) or changes in patterns of resting state functional
connectivity (Deco et al., 2009, 2011, 2013). More recently, dynamic
reconfiguration of putative functional modules in the brain – groups of
functionally connected areas identified using community detection al-
gorithms (Porter et al., 2009; Fortunato, 2010) – has been used to define
a notion of network flexibility (Bassett et al., 2011b), which differs across
individuals and is correlated with individual differences in learning
(Bassett et al., 2011b), cognitive flexibility (Braun et al., 2015b), and
executive function (Braun et al., 2015b).

Indeed, in the context of motor skill learning, dynamic network
21, USA.
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Fig. 1. Schematic Depicting Construction of Adjacency Matrices. (a)
Blood-oxygen-level-dependent (BOLD) signal from functional magnetic reso-
nance imaging (fMRI) data was acquired from healthy adult subjects. (b) We
calculated the mean BOLD magnitudes in each of 112 cortical and subcortical
regions as a function of time. (c) The regional time series is represented in
matrix format, and (d) the correlation between matrix columns (TRs) is used
to create a time-by-time adjacency matrix. The ijth element of this matrix
measures the similarity between the regional pattern of BOLD magnitude
between TR i and TR j. Adjacency matrices representing time-by-time net-
works form the fundamental data structure on which community detection
algorithms function. We maximize a modularity quality function informed by
these matrices to extract network communities: groups of TRs that show
similar regional patterns of BOLD magnitudes. (e) Due to the near-degeneracy
of the modularity landscape, this procedure is repeated 100 times per matrix.
(f) Across these 100 partitions of TRs (nodes) into groups (communities), we
construct a representative or “consensus” partition (g) that summarizes the
significant structure in the original matrix.
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techniques have proven to be particularly advantageous for longitudinal
designs, where data is collected from the same participants at multiple
time points interspersed throughout the learning process (Bassett et al.,
2013b, 2015; Wymbs and Grafton, 2015). Using a 6-week longitudinal
design where participants trained motor sequences while undergoing
functional magnetic resonance imaging, motor sequence learning was
found to be associated with both increasing and decreasing motor system
activity, with sequence-specific representations varying across multiple
distinct timescales (Wymbs and Grafton, 2015). With a network
modeling approach based on coherent activity between brain regions, the
same dataset revealed the existence of a core-periphery structure that
changes over the course of training and predicts individual differences in
learning success (Bassett et al., 2013b). More recently, these changes
were shown to reflect a growing autonomy between sensory and motor
cortices, and the release of cognitive control hubs in frontal and cingulate
cortices (Bassett et al., 2015). Yet despite these promising advances,
dynamic network reconfiguration metrics are fundamentally unable to
assess changes in the patterns of activity that are characteristic of brain
dynamics, as they require the computation of functional connectivity
estimates over extended time windows (Telesford et al., 2016; Bassett et
al., 2013a).

To overcome this weakness, we use an alternative technique inspired
by network science to identify temporal activation patterns and to assess
their flexibility (Medaglia et al., 2018; Chen et al., 2016). Leveraging the
same longitudinal dataset from the above studies, we begin by defining a
brain state as a pattern of regional activity – for instance, estimated from
functional magnetic resonance imaging (fMRI) – at a single time point
(Gu et al., 2015a; Liu et al., 2013; Liu and Duyn, 2013) (see Fig. 1). Time
points with similar activity patterns are then algorithmically clustered
using a graph-based clustering technique (Porter et al., 2009; Fortunato,
2010), producing sets of similar brain states. Finally, by focusing on the
transitions from one state to another, we estimate the rate of switching
between states. This approach is similar to techniques being concurrently
developed in the graph signal processing literature (Huang et al., 2016;
Goldsberry et al., 2016), and it allows us to ask how activation patterns in
the brain change as a function of learning. We address this question in the
context of the explicit acquisition of a novel motor-visual skill, which is a
quintessential learning process studied in both humans and animal
models. As participants practice the task, we hypothesize that the brain
traverses canonical states differently, that characteristics of this traversal
predict individual differences in learning, and that the canonical states
themselves are inherently different in early versus late learning.

To test these hypotheses, 20 healthy adult human participants prac-
ticed a set of ten-element motor sequences. To assess the change in brain
activity related to behavioral change, we acquired BOLD time series and
defined a brain state to be a pattern of BOLDmagnitudes across regions at
each time point. We then quantified the similarities in brain states across
time and used network-based clustering algorithms to find recurrent
brain states independent of their temporal order (Fig. 1e–f). We observed
three to five "brain states", with two anti-correlated "primary states"
occurring more frequently than the rest. We also observed that "state
flexibility" – the flexible switching among all brain states – increases with
task practice, being largely driven by contributions from brain regions
traditionally associated with task learning and memory. Moreover, in-
dividuals with higher state flexibility learned faster than individuals with
less switching between brain states. These results demonstrate that the
global pattern of brain activity offers important insights into neuro-
physiological dynamics supporting adaptive behavior, underscoring the
utility of a state-based assessment of whole brain dynamics in under-
standing higher order cognitive functions such as learning.

Materials and methods

Experiment and data collection

Ethics statement. In accordance with the guidelines set out by the
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Institutional Review Board of the University of California, Santa Barbara,
twenty-two right-handed participants (13 females and 9 males) vol-
unteered to participate and provided informed consent in writing.
Separate analyses of the data acquired in this study are reported else-
where (Bassett et al., 2013b, 2015; Wymbs and Grafton, 2015).

Experimental Setup and Procedure. Head motion was calculated for
each subject as mean relative volume-to-volume displacement. Two
participants were excluded from the following analyses: one failed to
complete the entirety of the experiment and the other had persistent head
motion greater than 5mm during MRI scanning. The 20 remaining par-
ticipants all had normal or corrected vision and none had any history of
neurological disease or psychiatric disorders. In total, each participant
completed at least 30 behavioral training sessions over the course of 6
weeks, a pre-training fMRI session, and three test fMRI sessions. The
training used amodule that was installed on the participant's laptop by an
experimenter. Participants were given instructions on how to use the
module and were required to train at minimum ten days out of each of 3
fourteen day periods. Training began immediately after the pre-training
fMRI session and test scans were conducted approximately fourteen days
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after each previous scan (during which training also took place). Thus a
total of 4 scans were acquired over the approximately 6 weeks of
training.

Training and trial procedure. Participants practiced a set of ten-element
sequences in a discrete sequence-production (DSP) task, which required
participants to generate these responses to visual stimuli by pressing a
button on a laptop keyboard with their right hand (see Fig. 2). Sequences
were represented by a horizontal array of five square stimuli, where the
thumb corresponded to the leftmost stimuli and the pinky corresponded
to the rightmost stimuli. The imperative stimulus was highlighted in red
and the next square to be pressed in the sequence was highlighted
immediately after a correct key press. The sequence only continued once
the appropriate key was pressed. Participants had an unlimited amount
of time to complete each trial, and were encouraged to remain accurate
rather than swift.

Each participant trained on the same set of six different ten element
sequences, with three different levels of exposure: extensively trained
(EXT) sequences that were practiced for 64 trials each, moderately
trained (MOD) sequences that were practiced for 10 trials each, and
minimally trained (MIN) sequences that were practiced for 1 trial each.
Sequences included neither repetitions ("11", for example) nor patterns
such as trills ("121", for example) or runs ("123", for example). All trials
began with a sequence-identity cue, which informed participants which
sequence they would have to type. Each identity cue was associated with
only a single sequence and was composed of a unique shape and color
combination. EXT sequences, for example, were indicated by a cyan or
magenta circle, MOD sequences by a red or green triangle, and MIN se-
quences by orange or white stars. Participants reported no difficulty
viewing the identity cues. After every set of ten trials, participants were
sequence identity cue

DSP task production

Feedback

2000 ms

S-R mapping
ringmiddleindex

thumb

pinky

b

2000 ms
+ variable ITI

a

Fig. 2. Trial Structure. (a) Each trial began with the presentation of a
sequence-identity cue that remained on the screen for 2 s. Each of the six
trained sequences was paired with a unique identity cue. A discrete sequence-
production (DSP) event structure was used to guide sequence production. The
onset of the initial DSP stimulus (thick square, colored red in the task) served
as the imperative to produce the sequence. A correct key press led to the
immediate presentation of the next DSP stimulus (and so on) until the ten-
element sequence was correctly executed. Participants received a "þ" as
feedback to signal that a sequence was completed and to wait (approximately
0–6 s) for the start of the next trial. This waiting period was called the
"intertrial interval" (ITI). At any point, if an incorrect key was hit, a partici-
pant would receive an error signal (not shown in the figure), and the DSP
sequence would pause until the correct response was received. (b) There was
direct S-R mapping between a conventional keyboard or an MRI-compatible
button box (lower left) and a participant's right hand, so that the leftmost
DSP stimulus cued the thumb and the rightmost stimulus cued the pinky
finger. Note that the button location for the thumb was positioned to the lower
left for maximum comfort and ease of motion.
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given feedback about the number of error-free sequences produced and
the mean time to produce an error-free sequence.

Each test session in a laboratory environment was completed after
approximately ten home training sessions (over the course of fourteen
days) and each participant took part in three test sessions, not including
the pre-training session, which was identical to the training sessions. To
familiarize the participants with the task, we introduced the mapping
between the fingers and DSP stimuli and explained each of the identity
cues prior to the pre-training session.

As each participant's training environment at home was different than
the testing environment, arrangements were made to ease the transition
to the testing environment (see Fig. 2 for the key layout during testing).
Padding was placed under the participants' knees for comfort and par-
ticipants were given a fiber optic response box with a configuration of
buttons resembling that of the typical laptop used in training. For
example, the distance between the centers of buttons in the top row was
20mm (similar to the 20mm between the "G" and "H" keys on a Mac-
Book Pro) and the distance between the top row and lower left button
was 32mm (similar to the 37mm between the "G" and spacebar keys on a
MacBook Pro). The position of the box itself was adjustable to accom-
modate participants' different reaches and hand sizes. In addition,
padding was placed both under the right forearm to reduce strain during
the task and also between the participant and head coil of the MRI
scanner to minimize head motion.

Participants were tested on the same DSP task that they practiced at
home, and, as in the training sessions, participants were given unlimited
time to complete the trials with a focus on maintaining accuracy and
responding quickly. Once a trial was completed, participants were noti-
fied with a "þ" which remained on their screen until the next sequence-
identity cue was presented. All sequences were presented with the same
frequency to ensure a sufficient number of events for each type. Partic-
ipants were given the same feedback after every ten trials as they were in
training sessions. Each set of ten trials (referred to hereafter as trial
blocks) belonged to a single exposure type (EXT, MOD, or MIN) and had
five trials for each sequence, which were separated by an inter-trial in-
terval that lasted between 0 s and 6 s. Each epoch was composed of six
blocks (60 trials) with 20 trials for each exposure and each test session
contained five epochs and thus 300 trials. Participants had a variable
number of brain scans depending on how quickly they completed the
tasks. However, the number of trials performed was the same for all
participants, with the exception of two abbreviated sessions resulting
from technical problems. In both cases, participants had only completed
four out of five scan runs for that session when scanning was stopped.
Data from these sessions are included in this study.

Behavioral apparatus. The modules on participants’ laptop computers
were used to control stimulus presentation. These laptops were running
Octave 3.2.4 along with the Psychtoolbox version 3. Test sessions were
controlled using a laptop running MATLAB version 7.1 (Mathworks,
Natick, MA). Key-press responses and response times were measured
using a custom fiber optic button box and transducer connected via a
serial port (button box, HHSC-1�4-l; transducer, fORP932; Current De-
signs, Philadelphia, PA).

Behavioral estimates of learning. We defined movement time (MT) as
the time between the first button press and the last button press for any
single sequence. For the sequences of a single type, we fit a double
exponential function to the MT (Schmidt and Lee, 1988; Rosenbaum,
2009) data in order to estimate learning rate. We used robust outlier
correction in MATLAB (through the "fit.m" function in the Curve Fitting
Toolbox with option "Robust" and type "Lar"): MT ¼ D1e�tκ þ D2e�tλ,
where t is time, κ is the exponential drop-off parameter used to describe
the fast rate of improvement (which we called the learning rate), λ is the
exponential drop-off parameter used to describe the slow, sustained rate
of improvement, and D1 and D2 are real and positive constants. The
magnitude of κ determines the shape of the learning curve, where in-
dividuals with larger κ values have a steeper drop-off in MT and thus are
thought to be quicker learners (see Fig. 3) (Dayan and Cohen, 2011;
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Fig. 3. Exemplar Learning Curves. To quantify learning rate, we fit a double
exponential function to the movement time, defined as the time between the
first button press and the last button press of a given sequence, as a function of
trial number (see Methods). Fits are shown for the median learner, the fastest
learner, and the slowest learner in the cohort.
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Snoddy, 1926). This decrease in MT has been an accepted indicator of
learning for several decades (Heathcote et al., 2000) and various forms
have been tried for the fit of MT (Newell and Rosenbloom, 1981;
Heathcote et al., 2000), with variants of an exponential model being the
most statistically robust choices. Importantly, this approach is also not
dependent on an individual's initial performance or performance ceiling.

fMRI imaging

Imaging procedures. Signals were acquired using a 3.0 T Siemens
Trio with a 12-channel phased-array head coil. Each whole-brain scan
epoch was created using a single-shot echo planar imaging sequence
that was sensitive to BOLD contrast to acquire 37 slices per repetition
time (repetition time (TR) of 2000ms, 3 mm thickness, 0.5 mm gap)
with an echo time of 30 ms, a flip angle of 90�, a field of view of
192 mm, and a 64�64 acquisition matrix. Before the first round of
data collection, we acquired a high-resolution T1-weighted sagittal
sequence image of the whole brain (TR of 15.0 ms, echo time of
4.2 ms, flip angle of 90�, 3D acquisition, field of view of 256 mm, slice
thickness of 0.89 mm, and 256�256 acquisition matrix).

fMRI data preprocessing. Imaging data was processed and analyzed
using Statistic Parametric Mapping (SPM8, Wellcome Trust Center for
Neuroimaging and University College London, UK). We first realigned
raw functional data, then coregistered it to the native T1 (normalized to
the MNI-152 template with a resliced resolution of 3�3�3mm), and
then smoothed it with an isotropic Gaussian kernel of 8-mm full width at
half-maximum. To control for fluctuations in signal intensity, we
normalized the global intensity across all functional volumes. Using this
pipeline of standard realignment, coregistration, normalization, and
smoothing, we were able to correct for motion effects due to volume-to-
volume fluctuations relative to the first volume in a scan run. The global
signal was not regressed out of the voxel time series, given its contro-
versial application to resting-state fMRI data (Murphy et al., 2009; Saad
et al., 2012; Chai et al., 2012) and the lack of evidence of its utility in
analysis of task-based fMRI data. Furthermore, the functional connec-
tivity matrices that we produce showed no evidence of strong global
functional correlations but instead showed discrete organization in
motor, visual and non-motor, non-visual areas (Bassett et al., 2015).
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General linear model

We performed a standard GLM analysis to quantify the degree to
which brain regions showed a linear decrease in activity over the course
of training. For each subject, the BOLD response was modeled using a
single design matrix with parameters estimated using the GLM. We used
an event-related design to model the expression of sequence-specific
representations, with trial onset corresponding to the presentation of
the sequence identity cue, 2 s before the presentation of the initial DSP
target stimulus. This approach included both the preparation and the
production of learned sequences. We constructed the design matrix for
each subject using separate factors for each scan session (pretraining
session and training sessions 13), exposure condition (MIN, MOD and
EXT) and repetition (new or repeated trial). For a trial to be coded as a
repeated event, the previous trial had to have been (i) of the exact same
sequence and (ii) performed correctly. Repeated trials that followed error
trials, as well as the error trials themselves, were modeled using a
separate column in the design matrix. To account for nonspecific effects
of sessions, blocking variables were included for each scan run. Potential
differences in BOLD values due to MT-related kinematics were accounted
for by using the MT from each trial as the trial duration for modeled
events (Grinband et al., 2008). To control for the potential influence of
the time between trials, we weighted each event by the time elapsed
since the previous trial. Following center mean normalization, this col-
umn was added to the model as a covariate of non-interest. Events were
convolved using the canonical hemodynamic response function and
temporal derivative in SPM8. Using freely available software (Steffener
et al., 2010), we then combined corresponding beta image pairs for each
event type (hemodynamic response function and temporal derivative) at
the voxel level to form a magnitude image (Calhoun et al., 2004). To
generate linear contrast images at the individual-subject level, we
multiplied magnitude images corresponding to conditions of interest by
the appropriate contrast weight and then combined them through addi-
tion. We then averaged the beta weights of all voxels within a given
region.

Network construction and analysis

Partitioning into regions of interest. We divided the brain into regions
based on a standardized atlas (Bassett and Bullmore, 2006; Braun et al.,
2015a; Bullmore and Sporns, 2009). There exist a number of atlases and
the decision of which to use has been the topic of several recent studies
on structural (Bassett et al., 2011a; Zalesky et al., 2010), resting-state
(Wang et al., 2009), and task-based network architectures (Power et
al., 2011). Consistent with prior graph-based studies of task-based fMRI
(Bassett et al., 2011b, 2013b, 2014; Mantzaris et al., 2013), we divided
the brain into 112 cortical and subcortical regions using the
Harvard-Oxford (HO) atlas of the FMRIB (Oxford Centre for Functional
Magnetic Resonance Imaging of the Brain) Software Library (Macke et
al., 2011; Woolrich et al., 2009). For each participant and for each of the
112 regions, the regional mean BOLD was computed by separately
averaging across all voxels in that area (see Fig. 1a and b).

Wavelet decomposition. Historically, wavelet decomposition has been
applied to fMRI data (Bullmore et al., 2004, 2003) to detect small signal
changes in nonstationary time series with noisy backgrounds (Brammer,
1998). Here, we use the maximum-overlap discrete wavelet transform,
which has been used extensively (Achard et al., 2006, 2008; Bassett et
al., 2006; Achard and Bullmore, 2007; Bassett et al., 2009; Lynall et al.,
2010) to decompose regional time series into wavelet scales corre-
sponding to specific frequency bands (Percival and Walden, 2006).
Because our sampling frequency was 2 s (1 TR), wavelet scale 1 corre-
sponded to 0.125–0.25 Hz, and scale 2 to 0.06–0.125Hz. To enhance
sensitivity to task-related changes in BOLD magnitudes (Sun et al.,
2004), we examined wavelet scale 2, consistent with our previous work
(Braun et al., 2015b; Bassett et al., 2013b, 2014). For a lengthier dis-
cussion of methodological considerations, see (Zhang et al., 2016).
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Constructing Time-by-Time Networks. We were interested in studying the
similarities between brain states as individuals learn. We defined a brain
state as a pattern of BOLD activity across brain regions at a single instant in
time (Gu et al., 2015a; Liu et al., 2013; Liu and Duyn, 2013). Using the
wavelet decomposition as the input signal, we measured the similarities
between these states in each trial block which was comprised of approxi-
mately 40–60 repetition times (TRs). We calculated the Spearman corre-
lation of regional BOLD magnitudes between all possible pairs of time
points (TRs). This procedure creates an undirected, weighted graph or
network in which nodes represent time points and edges between nodes
represent the correlation between brain states at different time points (see
Fig. 1 c& d). Intuitively, this matrix –which we refer to as a “time-by-time”
network provides the necessary information to uncover common brain
states (Medaglia et al., 2018; Chen et al., 2016), and to study transitions
between brain states, as a participant learns.

Isolating Brain States Using Community Detection. To uncover common
brain states in the “time-by-time” network, we used a network-based
clustering technique known as community detection (Fortunato, 2010;
Porter et al., 2009). In particular, we chose a common community
detection approach known as modularity maximization, where we opti-
mize the following modularity quality function (Newman, 2006) using a
Louvain-like (Blondel et al., 2008) locally greedy heuristic algorithm
(Bassett et al., 2013a):

Q0 ¼
X

ij

�
Aij � γPij

�
δ
�
gi; gj

�
;

where A is the time-by-time matrix, times i and j are assigned, respec-
tively, to community gi and gj, the Kronecker delta δðgi; gjÞ ¼ 1 if gi ¼ gj
(and zero otherwise), γ is the structural resolution parameter, and Pij is
the expected weight of the edge between regions i and j under some null
model. Consistent with prior work (Mattar et al., 2015; Bassett et al.,
2011b, 2013b, 2015; Braun et al., 2015b; Cole et al., 2014; Mantzaris et
al., 2013), we used the Newman-Girvan null model (Girvan and New-
man, 2002):

Pij ¼ kikj
2m

;

where ki ¼
P
j
Aij is the strength of region i and m ¼ 1

2

P
ij
Aij. Importantly,

the algorithm we use is a heuristic that implements a non-deterministic
optimization (Good et al., 2010). Consequently we repeated the opti-
mization 100 times (Bassett et al., 2013a), and we report results sum-
marized over those iterations by building what are known as consensus
partitions (Bassett et al., 2015) (see Fig. 1). In order to do this, we
construct a nodal association matrix A from a set of N partitions, where
Ai;j is equal to the number of times in the N partitions that node i and
node j are in the same community. Furthermore, we construct a null
nodal association matrix An, constructed from random permutations of
the N partitions. This null association matrix indicates the number of
times any two nodes will be assigned to the same community by chance.
We then create the thresholded matrix AT by setting any element Ai;j that
is less than the corresponding null element An

i;j to 0. This procedure
removes random noise from the nodal association matrix A. Subse-
quently, we use a Louvain-like method to obtain N new partitions of AT

into communities, where each of the N partitions is typically identical,
and each of which is a consensus partition of the N original partitions.

Recurrent Brain States. Each community obtained in the aforemen-
tioned pipeline includes a set of TRs that show similar patterns of
regional BOLDmagnitudes, and could thus be interpreted as representing
a single, repeated brain state in a single trial bock. We first sought to
aggregate these brain states over trial blocks. To this end, we average the
pattern of regional BOLD magnitudes across all TRs assigned to that
community in that trial block. We then repeat community detection
across all representative brain states found in the trial blocks to find sets
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of representative brain states for each subject at each scan. By averaging
the pattern of BOLD magnitudes of the brain states in each set, we find a
group of representative brain state for every subject at every scan.

Second, we sought to aggregate these subject-scan representative
brain states over all scans to identify a group of representative brain
states for each scan. We thus repeat community detection over the set of
all subject-scan representative brain states, separated by scan, and we
again average the pattern of regional BOLDmagnitudes across all subject-
scan representative brain states assigned to the same community. This
final set of brain-states we consider to be scan-representative brain states
for each scan of learning.

Finally, we sought to find analogous communities in each scan.
Therefore, we repeated the community detection algorithm for these
communities and interpreted two scan-representative brain states assigned
to the same community as analogous. In summary, we repeatedly use this
brain state isolation procedure hierarchically to first isolate representative
brain states for each subject-scan combination, then for each scan, and
finally to find brain states in each scan that are similar to one another.

State Flexibility Calculation. To examine how the pattern of traversals
through brain states changed, we define a "state flexibility" metric
(Medaglia et al., 2018). We specified state flexibility ðFÞ to be the number
of state transitions ðTÞ observed relative to the number of states ðSÞ, or
F ¼ T

S. Intuitively, state flexibility is a measure of the volatility versus ri-
gidity in brain dynamics, directly representing the frequency of dynamic
state changes.

Results

Time by time network analysis identifies frontal and motor states

Our first goal was to characterize the average anatomical distribution
of BOLD magnitudes across all subjects and scans, to better understand
the whole-brain activation patterns accompanying motor skill learning.
To achieve this goal, we create a time-by-time network where nodes
represent individual time points, and edges represent the Spearman
correlation coefficient between the vector of regional BOLD magnitudes
at time point i and at time point j (see Fig. 1). We represented the time-by-
time network as a graph. From these graphs, we were able to find 3
recurrent brain states, of which, two were strongly anti-correlated
(Pearson correlation coefficient rð446Þ ¼ �0:4291,
p ¼ 1:6951� 10�21). These anti-correlated states make up 95.67% of all
time subjects spent learning, and are also the only states to be present in
all scans. We therefore refer to these states as "primary states" and focus
our analysis upon them. We refer to the first state as the "motor state,"
characterized by strong activation of the extended motor system and
anterior cingulate, as well as simultaneous deactivation of the medial
primary visual cortex (see Fig. 4 A, Table 1). We refer to the second state
as the "frontal state," characterized by strong activation of a distributed
set of regions in frontal and temporal cortices, as well as subcortical
structures (see Fig. 4 B, Table 1).

While these two states were statistically present across the entire
experiment, we did observe small fluctuations in the magnitudes of the
regional activity of both states. Thus, natural questions to ask are (i) did
either state became stronger or weaker with training? and (ii) did the
frequency of primary states change with learning? To address the first
question, we calculated the mean BOLD magnitude among all brain re-
gions for each state. Using a repeated measures ANOVA, we found no
significant differences among scans in either state
ðFð3; 669Þ ¼ 1:17; p ¼ 0:3221, see Fig. 4). This suggests that the acti-
vation of these two states did not significantly change – on average –with
the level of training. To address the second question, we calculated the
proportion of time spent in primary states in each scan. Using a repeated
measures ANOVA, we found no significant differences among scans
ðFð3; 57Þ ¼ 0:17; p ¼ 0:9163 Þ. This suggests that the frequency of pri-
mary states remained the same during learning.
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Fig. 4. Brain States Common Across Learning. We show the average activation magnitude of brain areas of the primary states. We refer to the first state shown
in panel a as the "motor state" due to the strong activation of the extended motor system. In this state, we also observe high activity magnitudes in anterior
cingulate, and low activity magnitudes in primary visual cortex along the medial wall. We refer to the second state shown in panel b as the "frontal state" due to
the strong activation of frontal areas. In this state, we also observe high activation magnitudes in temporal cortex and subcortical structures, and low activity
magnitudes in the extended sensorimotor system. In panel (c), we show the average BOLD signal across all regions in each scan and note that it does not
significantly change ðFð3;669Þ ¼ 1:17; p ¼ 0:3221 Þ. In d we show that the primary state proportion does not significantly change across scans
ðFð3;57Þ ¼ 0:17; p ¼ 0:9163 Þ. See the supplement for subcortical slices of both the motor and frontal state.
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State flexibility increases with task practice

How does the brain traverse these states? Do individuals’ traversals
Table 1
Twenty regions with the greatest BOLD activity magnitude in the two primary brain states with

Motor State Fron

Name X Y Z Nam

R, supplementary motor area 7 �2 58 L, fr
L, supplementary motor area �7 �2 56 L, c
L, postcentral gyrus �37 �28 53 R, f
L, superior parietal lobule �29 �50 57 L, p
R, planum temporale 51 �26 12 L, h
L, supramarginal gyrus, anterior �56 �33 37 L, su
L, precentral gyrus 34 �10 49 R, c
R, supramarginal gyrus, anterior 58 �27 37 R, p
R, precentral gyrus 34 �10 49 R, s
R, superior parietal lobule 29 �48 59 R, h
R, parietal operculum cortex 46 �28 23 R, p
L, Heschl's gyrus �45 �21 6 R, n
L, parietal operculum cortex �45 �33 22 L, m
L, globus pallidus �19 �5 �1 L, p
R, central opercular cortex 48 �6 13 L, p
R, supramarginal gyrus, posterior 53 �41 33 R, li
R, Heschl's gyrus 46 �18 6 L, in
L, central opercular cortex �46 �8 14 L, p
L, planum temporale �49 �31 11 L, n
R, postcentral gyrus 37 �27 53 R, m
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change with learning? To examine how the pattern of traversals through
brain states changes during learning, we defined a "state flexibility"
metric. Following (Medaglia et al., 2018), we specified state flexibility
corresponding MNI coordinates.

tal State

e X Y Z

ontal medial cortex �6 42 �18
audate �13 9 10
rontal medial cortex 7 42 �18
arahippocampal gyrus, posterior �22 �34 �15
ippocampus �22 �5 �18
bcallosal cortex �5 19 �14
audate 13 10 11
arahippocampal gyrus, posterior 23 �31 �16
ubcallosal cortex 6 19 �14
ippocampus 21 �4 18
arahippocampal gyrus, anterior 21 �7 �31
ucleus accumbens 9 12 �7
iddle temporal gyrus, anterior �59 �4 �22
arahippocampal gyrus, anterior �22 �9 �30
aracingulate gyrus �8 36 22
ngual gyrus 14 �63 �7
ferior frontal gryus, pars triangularis �48 28 9
arahippocampal gyrus (superior to 34,35) �24 �23 �14
ucleus accumbens �9 11 �7
iddle temporal gyrus, anterior 59 �1 �26
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ðFÞ to be the number of state transitions ðTÞ observed relative to the
number of states ðSÞ, or F ¼ T

S. Intuitively, state flexibility is a measure of
the volatility versus rigidity in brain dynamics, directly representing the
frequency of dynamic state changes. We observed that state flexibility
increased monotonically with the number of trials practiced (repeated
measures ANOVA: Fð9; 171Þ ¼ 9:97; p ¼ 3:04� 10�12; see Fig. 5 right
panels) and that differences between the sequences did not exist in the
pre-training session (repeated measures ANOVA: Fð2;59Þ ¼ 0:03; p ¼
0:97; see Fig. 5 left panels). This suggests that as subjects learned the
sequences, regional patterns of BOLD magnitudes became more variable,
indicating more frequent transitions between different brain states.

An important question to consider is whether this change in state
flexibility is related to the length of time that participants take to com-
plete the practice trials. Specifically, because the experiment is self-
paced, the length of time to complete the sequences decreased as par-
ticipants practiced; subjects became quicker with experience. To ensure
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Fig. 5. Whole-Brain State Flexibility. (a) Right Panel: State flexibility shows
a clear increasing trend as subjects complete more trials of the experiment
ðFð9;171Þ ¼ 9:97; p ¼ 3:04� 10�12 using a repeated measures ANOVA). The
50 trial box corresponds to the pre-training session for each of the three types
while all other boxes correspond to a single scan from each of the three
training sets. Left Panel: State flexibility in pre-training scans for sequences
that would become extensively trained (EXT), sequences that would become
moderately trained (MOD), and sequences that would become minimally
trained (MIN). There was no effect of sequence type on state flexibility. (b)
Right Panel: State flexibility shows a mild decreasing trend in the null model
due to the reduced number of TRs ðFð9;171Þ ¼ 2:6; p ¼ 0:0078; null model
was created by permuting the adjacency matrix while maintaining symmetry).
The 50 trial box corresponds to the pre-training session for each of the three
types while all other boxes correspond to a single scan from each of the three
training sets. Left Panel: State flexibility in pre-training scans for sequences
that would become extensively trained (EXT), sequences that would become
moderately trained (MOD), and sequences that would become minimally
trained (MIN). These results indicate that we find no effect of sequence type
prior to training.
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that the length of time to complete a sequence was not driving the
observed changes in state flexibility, we constructed a non-parametric
permutation-based null model by permuting the adjacency matrix A
uniformly at random while maintaining symmetry. Critically, this null
model displayed a decrease in state flexibility with number of trials
practiced ðFð9; 171Þ ¼ 2:6; p ¼ 0:0078; Fig. 5), suggesting that neither
the reduced length of time nor the correlation values themselves can
explain the observed increase in state flexibility, but rather that the
temporal structure of the data is required for the observed increase in
state flexibility.
Regional contributions to state flexibility vary by function

Do regions contribute differentially to state flexibility? To answer this
question we conducted a "lesioning" analysis, where we calculated state
flexibility for each subject and scan while "lesioning out," or excluding, a
single region.We then calculated the average difference between the true
state flexibility for that subject and scan, and the lesioned state flexibility
for each region across all trial groups. We normalized these values by
subtracting off the mean effect of lesioning on flexibility.

To assess statistical significance, we created a matrix of the contri-
butions to state flexibility for all regions and subjects. We found the
contribution from seven regions to be significant (p < 0:05 for each re-
gion, df ¼ 19) by computing a t-test between the ablated state flexibil-
ities and the true state flexibility, while correcting for multiple
comparisons across the 112 brain regions using a false discovery rate
(α¼0.05). By calculating the average of these contributions for each re-
gion, we identify (i) negative contributors, the removal of which in-
creases state flexibility, and (ii) positive contributors, the removal of
which decreases state flexibility. We find that the significant negative
contributors to state flexibility are associated generally with motor and
visual function (supplementary motor area, cuneus cortex, and the
postcentral gyrus). In contrast, the significant positive contributors to
state flexibility are associated with more integrative processing in
hetermodal association areas (temporal occipital fusiform cortex, and
planum polare on the temporoparietal junction) (see Fig. 6, Table 2).
State flexibility is correlated with learning rate

The results thus far indicate that state flexibility is an important
global feature of brain dynamics that significantly changes as individuals
learn a new motor-visual skill. Yet, they do not address the question of
how such brain dynamics relate directly to changes in behavior. There-
fore, we next asked the question: Are individual differences in state
flexibility related to individual differences in learning rate? Here, we
estimate the correlation of the learning rate (see Methods for definition)
with the differences in state flexibility between sessions. All correlations
are estimated using a linear mixed effects model that accounts for the
effect of both subject and scan.

We observe a significant positive correlation between state flexibility
and learning rate ðρ ¼ 0:24; p ¼ 0:041, Fig. 7), accounting for the effects
of subject. That is, subjects will tend to be inherently better or worse at
learning than other subjects. Therefore, we normalize for inter-subject
differences in learning rate, and we find a significant correlation be-
tween state flexibility difference and learning rate. State flexibility dif-
ference is positively correlated with learning rate: intuitively, larger
decreases in flexibility are associated with better learning. Furthermore,
we observe a significant correlation between state flexibility difference
and learning rate (p ¼ 0:045) when accounting for the effects of scan.
Learning rate tends to decrease as the number of scans increases.
Therefore, we build this trend into our model, and find a significant
correlation between state flexibility and learning rate. Extending our
previous assertion, these results suggest that both the individual differ-
ences and the larger patterns of change are correlated with learning rate.
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Fig. 6. Schematic Depicting Ablasion Calculation
and Regional Contribution to State Flexibility. (a)
Blood-oxygen-level-dependent (BOLD) signal from
functional magnetic resonance imaging (fMRI) data
was acquired from healthy adult subjects. (b) Single
regions were selected and "ablated" or ignored in the
BOLD time-series. (c) State flexibility was recalcu-
lated for these new matrices and the difference be-
tween true state flexibility and the ablated state
flexibility is defined to be the regional contribution to
state flexibility for the ablated region. (d) We show
the difference between the true state flexibility and
ablated state flexibility for each region. We note that
regions in the motor and visual cortex tend to have
negative contributions to state flexibility while re-
gions in the hetermodal association areas tend to have
positive contributions to state flexibility.
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Comparison to traditional and other network analyses

Next, we were curious how our hierarchical clustering based
approach compared to more traditional GLM univariate analysis. To
answer this question, we calculate the mean BOLD magnitude in each of
the primary states and compute the Pearson correlation with GLM β
weights. We find that both the motor (ρ ¼ �0:75, p ¼ 7:83� 10�22, see
Fig. 8a) and frontal (ρ ¼ 0:67, p ¼ 6:29� 10�16, see Fig. 8a) states are
strongly correlated with the GLM β weights, but interestingly in the
opposite direction. Motor regions that decrease in their task-related ac-
tivity most had higher average BOLD signal, while frontal regions that
decrease in their task-related activity most had lower average BOLD
signal. These results demonstrate that the GLM β-weight is not directly
related to the BOLD signal magnitudes driving the time-by-time network
structure, as the relationship between these two variables can change
drastically in magnitude and sign in different brain regions.

We were then curious how our ablation analysis, which identified
individual regions’ contribution to state flexibility, compared to the same
GLM beta weights. We again find a significant correlation between GLM
beta weights and contribution to state flexibility
ðρ ¼ 0:32; p ¼ 4:86� 10�4, see Fig. 8b), suggesting that regions whose
activity decreased most with training also showed greatest contributions
to brain state flexibility.

Finally, we sought to compare this new analysis with previous-
defined network flexibility measures derived frommultilayer community
Table 2
Significant contributors to state flexibility with corresponding MNI coordinates.

Most Negative Contributors Most Positive Contributors

Name X Y Z Name X Y Z

R, supplementary
motor area

7 �2 58 L, planum
polare

�45 �8 �9

L, superior
parietal lobule

�29 �50 57 R, planum
polare

46 �6 �8

L, postcentral
gyrus

�37 �28 53 R, temporal
occipital
fusiform
cortex

36 �50 �18

L, supramarginal
gyrus anterior

�56 �33 37
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detection, which have been estimated on this dataset in prior studies
(Bassett et al., 2013a,b; 2015). We find a significant correlation
(ρ ¼ 0:27, p ¼ 2:69� 10�19, see Fig. 9) between our defined state flex-
ibility and this previously-defined network flexibility measure. This
suggests, intuitively, that the global flexibility is related to (but not
exactly the same as) the average regional flexibility. Our state flexibility
measure explains 7:28% of the variance in previously-defined network
flexibility, suggesting that state flexibility also captures some unique
characteristic of network dynamics. In the context of this study, these
results provide insight into changes in patterns of activity at the TR level
(brain state flexibility) that can accompany changes in patterns of func-
tional connectivity at the level of 2-min windows (network flexibility). It
could be interesting in future to use the higher temporal specificity of the
brain state flexibility measure to understand fine-scale temporal varia-
tions in other tasks in which network flexibility has been implicated in
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Fig. 7. Individual Differences in Learning Rate Correlated with State
Flexibility. State flexibility difference refers to the difference in state flexi-
bility between consecutive trial sets, ordered by the number of trials prac-
ticed). State flexibility differences for all regions were computed and were
found to be significantly positively correlated with individual differences in
learning rate ðρ ¼ 0:24; p ¼ 0:041Þ, suggesting that the observed increase in
flexibility is associated with the learning rate of subjects.
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behavior, including attention (Shine et al., 2016), linguistic processing
(Chai et al., 2016), and working memory (Braun et al., 2015b).

Discussion

In this work, we studied task-based fMRI data collected at 4 time
points separated by about 2 weeks during which healthy adult partici-
pants learned a set of six 10-note finger sequences. During learning, we
hypothesized that the brain would show a change in the manner in which
it traversed brain states. We defined a state as a pattern of BOLD
magnitude across 112 anatomically-defined brain regions. We identified
two canonical states characteristic of the entire period of task perfor-
mance, which showed high activation of motor cortex and frontal cortex,
respectively. Interestingly, we observed that the flexibility with which
participants switched among these canonical states and other less com-
mon states was lowest early in training and highest late in training,
indicating the emergence of state flexibility. We find that the positive
contributors to state flexibility are associated with integrative processing
while the negative contributors are associated with motor and visual
function. Finally, we observe that changes in state flexibility were
correlated with learning rate: increasing state flexibility was correlated
with higher learning rates.

Extensions of graph theoretical tools to the temporal domain

Over the past decade, tools from graph theory have offered important
insights into the structure and function of the human and animal brain,
both at rest and during cognitively demanding tasks (Sporns, 2010). In
these applications, the nodes of the graph are traditionally thought of as
neurons or brain areas, and the edges of the graph are defined by either
anatomical tracts (Hagmann et al., 2008; Bassett et al., 2011a) or by
functional connections (Achard et al., 2006; Bassett et al., 2006). Yet, the
tools of graph theory are in fact much more general than these initial
applications (Bollobas, 1979, 1985). Indeed, recent extensions have
brought these tools to other domains – from genetics (Fulcher and For-
nito, 2016; Conaco et al., 2012; Arcila et al., 2014) to orthopedics
(Murphy et al., 2018) – by carefully defining alternative graph repre-
sentations of relational data. As a concrete example, a graph can be used
to encode the relationships betweenmovements or behaviors, by treating
a movement as a node, and by linking subsequent movements (or ac-
tions) by the inter-movement interval (Wymbs et al., 2012). Similarly, a
graph can be used to code the temporal dependencies between stimuli, by
treating a stimulus as a node, and by linking pairs of stimuli by their
temporal transition probabilities (Schapiro et al., 2013; Karuza et al.,
2016).

While these applications may initially seem vastly different, they in
fact all share a common property: that entities are related to one another
by some facet of time. Here, by contrast, we construct the edge-vertex
dual of this more common form. We ask: How are times related to one
another by some other entity? Specifically, we study how the brain state
in one time point is related to the brain state in another time point, and
we define a brain state as the vector of activation magnitudes across all
regions of interest (Medaglia et al., 2018; Chen et al., 2016). The notion
that a pattern of activation reflects a brain state is certainly not a new one
(Gu et al., 2015a). In the context of fMRI data, a common approach is to
study the multi-voxel pattern of activation in a region of interest to better
understand the representation of a stimulus (Kubilius et al., 2015;
Chadwick et al., 2012). In the context of EEG and MEG data, the pattern
of power or amplitude in a set of sensors or a set of reconstructed sources
is frequently referred to as a microstate (von Wegner et al., 2016). The
composition and dynamics of these microstates have shown interesting
cognitive and clinical utility, predicting working memory (Muthuk-
rishnan et al., 2016) and disease (Geschwind et al., 2016). Yet, while
patterns of activation are acknowledged as an important representation
of a brain or cognitive state, little is known about how these states evolve
into one another. Recent advances have made this possible by coding the
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relationships between brain states in a graph (Medaglia et al., 2018).
Here we capitalize on these advances to extract the community structure
in such a graph, to identify canonical states, and to quantify the transi-
tions between them during task performance. It will be interesting in
future to broaden the analytical framework applied here to study other
properties of the graph – including local clustering and global efficiency –
to better understand how the brain traverses states over time.

Brain states characteristic of discrete sequence production

Using this unusual graph theory approach in which network nodes
represent time points and network edges represent similarities in brain
states across two time points, we were able to identify two canonical
brain states that characterized the task-evoked activity dynamics across
the entire experiment, extending across 6 weeks of intensive training.
The most common state, perhaps unsurprisingly, was characterized by
high BOLD magnitudes in regions of the extended motor cortex,
including the bilateral precentral gyrus, left postcentral gyrus, bilateral
superior parietal lobule, bilateral supramarginal gyrus, bilateral supple-
mentary motor area, bilateral parietal operculum cortex, and bilateral
Heschl's gyrus (Dayan and Cohen, 2011). This map is consistent with the
fact that this is an intensive motor-learning paradigm (Bassett et al.,
2015; Wymbs and Grafton, 2015) in which participants acquire the skill
necessary to perform a sequence of 10 finger movements over a short
period of time. The second most common state was composed of a
frontal-temporal-subcortical system, containing the anterior middle
temporal gyrus, medial frontal cortex, parahippocampal gyrus, caudate,
nucleus accumbens, planum temporale, and hippocamus. These areas are
thought to play critical roles in sequence learning (Exner et al., 2002;
Vakil et al., 2000; Bischoff-Grethe et al., 2000) facilitated by higher-order
cognitive processes including reward learning (Hikosaka et al., 2014;
Kim and Hikosaka, 2015), cognitive control and executive function
(Stuss, 2011; Alvarez and Emory, 2006), predicting nature and timing of
action outcomes (Brown, 2011; Grinband et al., 2011; Rushworth et al.,
2005), and subcortical storage of motor sequence information (Lehericy
et al., 2005). This system is particularly interesting because it displayed a
competitive relationship with the motor state, with a strongly anti-
correlated activation profile, suggesting that frontal-subcortical circuitry
affects control by transient, desynchronized interactions.

State flexibility, task practice, and learning rate

Beyond the anatomy of the states that characterize extended training
on a discrete sequence production task, it is also useful to study the de-
gree to which those states are expressed, and the manner in which one
state moves into another state. The two primary states that we observed
characterized 95:67% of all time points, indicating their canonical na-
ture. Temporally, the brain frequently switched back and forth between
these two states, with less frequent traversal of other non-primary states.
We quantified this switching using a brain state flexibility measure
(Medaglia et al., 2018), and observed that flexibility increased signifi-
cantly over the course of the 6 weeks of training. Moreover, brain state
flexibility was negatively correlated with learning rate, being lowest
early in training when behavioral adaptivity was greatest. These results
suggest that consistent activation patterns characterize early training,
when participants must learn the mapping of visual cues to motor re-
sponses, the use of the button box, and the patterns of finger movements.
Later in learning, when the skill has become relatively automatic, par-
ticipants display more varied progressions of activation patterns (higher
brain state flexibility), potentially mirroring the greater freedom of their
cognitive resources for other processes (Shamloo and Helie, 2016).

Importantly, these results offer a complement to prior efforts to
quantify network flexibility based on estimates of functional connectivity
(Bassett et al., 2011b) where the nodes are brain regions and the edges
are temporally defined correlations between those regions. Network
flexibility appears to peak early in finger sequence training (Bassett et
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al., 2011b), followed by a growing autonomy of motor and visual systems
(Bassett et al., 2015). In combination with our results, these prior data
suggest that there may be distinct time scales associated with brain
variability at the level of activity (where variability may peak late) in
comparison to the level of connectivity (where variability may peak
early). Such a hypothesis could be directly validated in additional studies
that reproduce the results we present here. The apparent separation in
time scales of these processes over learning also supports the growing
notion that the information housed in patterns of activity can be quite
independent from information housed in patterns of connectivity (Bassett
et al., 2015; Cao et al., 2016; Siebenhuhner et al., 2013). For example,
earlier studies have demonstrated that patterns of beta weights from a
GLM do not necessarily map onto patterns of strong or weak functional
connectivity (Bassett et al., 2015), the temporal dynamics of an activity
time trace do not necessarily map onto patterns of functional connectivity
(Siebenhuhner et al., 2013), and phenotypes indicative of psychiatric
disease can be identified in functional connectivity while being invisible
to methods focused on activity (Esslinger et al., 2009). Together, these
studies indicate that activity and connectivity can provide distinct infor-
mation regarding the neurophysiological processes relevant for cognition
and disease. They also in principle support the possibility of differential
time scales of flexibility in activity and connectivity as a function of
learning.
State Flexibility
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Fig. 9. Time-by-Time Network Analysis Compared to Network Flexibility
From Multilayer Community Detection. State flexibility, as defined through
our time-by-time network analysis, is shown to be correlated (ρ ¼ 0:24,
p ¼ 2:69� 10�19) with measures of network flexibility, accounting for 7.28%
of its variance.
Comparison to traditional analyses

Our unique time-based clustering approach to identify brain states
also offers additional information beyond traditional analysis methods
while remaining consistent with previous results on the same dataset. We
found that across-subject mean BOLD signal during the motor and frontal
states was strongly correlated with the across-subject mean beta-weights
from a more traditional GLM univariate analysis. That is, regions with
high across-subject mean BOLD signal in the frontal state tended to show
high across-subject mean beta-weights, while the opposite was true for
the motor state. These observations suggest a strong relationship be-
tween the two measures of brain function, where the directionality of
that relationship is significantly dependent on which state (frontal or
motor) the brain is in. Due to the state dependence of this relationship,
we cannot claim that beta weights drive state flexibility. The differences
between the two measures become intuitive when one considers the fact
that the two measures capture information on different temporal and
spatial scales of the experiment. Specifically, regions switch relatively
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Fig. 8. Time-by-Time Network Analysis Compared to GLM. (a) GLM weights a
frontal (ρ ¼ 0:67, p ¼ 6:29� 10�16) states as defiend through hierarchical clusterin
BOLD expression (x-axis) or GLM beta-weight (y-axis) averaged over subjects. (b
tributions to state flexibility as defined through state flexibility ablation analysis.
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rapidly between the motor and frontal states, which remain fairly
conserved throughout learning, whereas the GLM beta weights measure
decreases in task-related activity over the entire time course. Addition-
ally, we find that our state flexibility results are consistent with previous
network flexibility results from more traditional multilayer community
detection, but that there still exists a large amount of variance that re-
mains unexplained by either statistic, an observation that is consistent
with the notion that there exists some unique information in both. State
flexibility and network flexibility intuitively operationalize quite
different concepts; while network flexibility measures regional allegiance
to functional modules (measuring functional stability), state flexibility
quantifies brain state allegiance to canonical brain states (measuring
temporal stability). Leveraging both measures simultaneously in the
future may allow for a more holistic understanding of brain dynamics.
Such an approach would draw information from regional activity and
interregional connectivity; both well established metrics of brain dy-
namics that are rarely used in concert.
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re strongly correlated with both the motor (ρ ¼ �0:75, p ¼ 7:83� 10�22) and
g. Each data point represents a single brain region, with values of state-specific
) GLM weights are strongly correlated (ρ ¼ 0:32, p ¼ 4:86� 10�4) with con-
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Methodological considerations

There are several important methodological and conceptual consid-
erations pertinent to this work. The first consideration we would like to
discuss is a relatively philosophical one. It pertains to our use of the term
"brain state". It is important to disambiguate the use of brain state as a
quantifiable and quantified object, defined as the pattern of activation
magnitudes over all brain areas (strung out in a vector (Gu et al.,
2015a)), and other more conceptual notions of mental state or cognitive
state. These latter notions can be difficult to quantify directly from im-
aging data, even if they may have relatively specific definitions from both
psychological and clinical perspectives (Richman and Unoka, 2015;
Martin and Santos, 2016; Eddy et al., 2016). It will be important in future
uses of our brain state detection and characterization technique to
maintain clarity in the use of these terms.

The second important consideration relevant to this work is that the
data that we study here was collected with a traditional 2 s TR. It would
be very interesting to test for similar phenomena in the high-resolution
BOLD imaging techniques available now, for example using multiband
acquisitions. Such higher sampling could offer heightened sensitivity to
changes in brain state flexibility related to individual differences in
learning. Moreover, they could provide enhanced sensitivity to variations
in brain state flexibility across different frequency bands, particularly
higher frequency bands that have been shown to be sensitive to shared
genetic variance (Fornito et al., 2011).

Finally, on a computational note, it is important to emphasize that the
results described here are obtained via the application of a clustering
technique (Porter et al., 2009; Fortunato, 2010) to identify brain states
from the temporal graph. Importantly, the technique that we use – based
on modularity maximization (Newman, 2006) – is a hard partitioning
algorithm that seeks to solve an NP-hard problem using a clever heuristic
(Blondel et al., 2008). Although modularity maximization can accurately
recover planted network modules in synthetic tests (Lancichinetti and
Fortunato, 2009; Bassett et al., 2013a), it does have important limitations
(Lancichinetti and Fortunato, 2011; Good et al., 2010). Therefore it
would be interesting in future to examine the sensitivity of results to
other clustering techniques available in the literature.

Conclusion

In summary, in this study we seek to better understand the changes in
brain state that accompany the acquisition of a new motor skill over the
course of extended practice. We treat the brain as a dynamical system
whose states are characterized by a recognizable pattern of activation
across anatomicaly defined cortical and subcortical regions. We apply
tools from graph theory to study the temporal transitions (network
edges) between brain states (network nodes). Our data suggest that the
emergence of automaticity is accompanied by an increase in brain state
flexibility, or the frequency with which the brain switches between ac-
tivity states. Broadly, our work offers a unique perspective on brain
variability, noise, and dynamics (Deco et al., 2009; Breakspear and
McIntosh, 2011; Garrett et al., 2013, 2014), and its role in human
learning.
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Bullmore, E., Fadili, J., Maxim, V., Şendur, L., Whitcher, B., Suckling, J., Brammer, M.,
Breakspear, M., 2004. Wavelets and functional magnetic resonance imaging of the
human brain. Neuroimage 23, S234–S249.

Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10 (3), 186–198.

Calhoun, V., Stevens, M., Pearlson, G., Kiehl, K., 2004. fmri analysis with the general
linear model: removal of latency-induced amplitude bias by incorporation of
hemodynamic derivative terms. Neuroimage 22 (1), 252–257.

Cao, H., Dixson, L., Meyer-Lindenberg, A., Tost, H., 2016. Functional connectivity
measures as schizophrenia intermediate phenotypes: advances, limitations, and
future directions. Curr. Opin. Neurobiol. 36, 7–14.

Chadwick, M.J., Bonnici, H.M., Maguire, E.A., 2012. Decoding information in the human
hippocampus: a user's guide. Neuropsychologia 50 (13), 3107–3121.

Chai, L.R., Mattar, M.G., Blank, I.A., Fedorenko, E., Bassett, D.S., 2016. Functional
network dynamics of the language system. Cereb Cortex 26 (11), 4148–4159.

Chai, X.J., Casta~n�on, A.N., €Ongür, D., Whitfield-Gabrieli, S., 2012. Anticorrelations in
resting state networks without global signal regression. Neuroimage 59 (2),
1420–1428.

https://doi.org/10.1016/j.neuroimage.2017.12.093
https://doi.org/10.1016/j.neuroimage.2017.12.093
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref1
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref1
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref2
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref2
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref3
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref3
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref3
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref3
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref4
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref4
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref4
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref5
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref5
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref5
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref5
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref5
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref6
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref6
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref6
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref6
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref7
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref7
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref7
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref8
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref8
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref8
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref8
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref9
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref9
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref9
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref9
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref10
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref10
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref10
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref11
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref11
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref11
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref11
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref12
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref12
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref13
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref13
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref13
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref14
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref14
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref14
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref15
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref15
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref15
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref15
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref16
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref16
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref17
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref18
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref19
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref19
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref19
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref19
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref20
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref20
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref20
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref21
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref21
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref21
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref21
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref21
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref22
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref22
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref22
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref23
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref23
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref23
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref24
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref24
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref24
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref24
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref25
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref25
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref25
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref25
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref25
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref26
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref26
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref26
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref27
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref27
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref27
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref27
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref28
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref28
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref28
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref28
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref29
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref29
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref29
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref30
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref30
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref30
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref31
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref31
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref31
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref31
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref31
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref31


P.G. Reddy et al. NeuroImage 171 (2018) 135–147
Chen, R.H., Ito, T., Kulkarni, K.R., Cole, M.W., 2016. Large-scale Multivariate Activation
States of the Human Brain. bioRxiv. https://doi.org/10.1101:068221.

Chklovskii, D.B., Mel, B.W., Svoboda, K., 2004. Cortical rewiring and information storage.
Nature 431, 782–788.

Clune, J., Mouret, J.B., Lipson, H., 2013. The evolutionary origins of modularity. Proc.
Biol. Sci. 280 (1755), 20122863.

Cole, M.W., Bassett, D.S., Power, J.D., Braver, T.S., Petersen, S.E., 2014. Intrinsic and
task-evoked network architectures of the human brain. Neuron 83 (1), 238–251.

Conaco, C., Bassett, D.S., Zhou, H., Arcila, M.L., Degnan, S.M., Degnan, B.M., Kosik, K.S.,
2012. Functionalization of a protosynaptic gene expression network. Proc. Natl.
Acad. Sci. Unit. States Am. 109 (Suppl. 1), 10612–10618.

Dayan, E., Cohen, L.G., 2011. Neuroplasticity subserving motor skill learning. Neuron 72
(3), 443–454.

Deco, G., Jirsa, V., McIntosh, A.R., Sporns, O., Kotter, R., 2009. Key role of coupling,
delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. Unit. States Am.
106 (25), 10302–10307.

Deco, G., Jirsa, V.K., McIntosh, A.R., 2011. Emerging concepts for the dynamical
organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12 (1), 43–56.

Deco, G., Jirsa, V.K., McIntosh, A.R., 2013. Resting brains never rest: computational
insights into potential cognitive architectures. Trends Neurosci. 36 (5), 268–274.

Della-Maggiore, V., Landi, S.M., Villalta, J.I., 2015. Sensorimotor adaptation: multiple
forms of plasticity in motor circuits. Neuroscientist 21 (2), 109–125.

Eddy, C.M., Parkinson, E.G., Rickards, H.E., 2016. Changes in mental state and behaviour
in Huntington's disease. Lancet Psychiatr. Psychiatry 16, 30144–30144.

Ellefsen, K.O., Mouret, J.B., Clune, J., 2015. Neural modularity helps organisms evolve to
learn new skills without forgetting old skills. PLoS Comput. Biol. 11 (4), e1004128.

Esslinger, C., Walter, H., Kirsch, P., Erk, S., Schnell, K., Arnold, C., Haddad, L., Mier, D.,
Opitz von Boberfeld, C., Raab, K., Witt, S.H., Rietschel, M., Cichon, S., Meyer-
Lindenberg, A., 2009. Neural mechanisms of a genome-wide supported psychosis
variant. Science 324 (5927), 605.

Exner, C., Koschack, J., Irle, E., 2002. The differential role of premotor frontal cortex and
basal ganglia in motor sequence learning: evidence from focal basal ganglia lesions.
Learn. Mem. 9 (6), 376–386.

Fornito, A., Zalesky, A., Bassett, D.S., Meunier, D., Ellison-Wright, I., Yucel, M.,
Wood, S.J., Shaw, K., O'Connor, J., Nertney, D., Mowry, B.J., Pantelis, C.,
Bullmore, E.T., 2011. Genetic influences on cost-efficient organization of human
cortical functional networks. J. Neurosci. 31 (9), 3261–3270.

Fortunato, S., 2010. Community detection in graphs. Phys. Rep. 486, 75–174.
Fulcher, B.D., Fornito, A., 2016. A transcriptional signature of hub connectivity in the

mouse connectome. Proc. Natl. Acad. Sci. U. S. A. 113 (5), 1435–1440.
Garrett, D.D., McIntosh, A.R., Grady, C.L., 2014. Brain signal variability is parametrically

modifiable. Cereb Cortex 24 (11), 2931–2940.
Garrett, D.D., Samanez-Larkin, G.R., MacDonald, S.W., Lindenberger, U., McIntosh, A.R.,

Grady, C.L., 2013. Moment-to-moment brain signal variability: a next frontier in
human brain mapping? Neurosci. Biobehav. Rev. 37 (4), 610–624.

Girvan, M., Newman, M.E.J., 2002. Community structure in social and biological
networks. Proc. Natl. Acad. Sci. Unit. States Am. 99, 7821–7826.

Goldsberry, L., Huang, W., Wymbs, N.F., Grafton, S.T., Bassett, D.S., Ribeiro, A., 2016.
Brain signal analytics from graph signal processing perspective. In: IEEE International
Conference on Acoustics, Speech, and Signal Processing (Submitted).

Good, B.H., de Montjoye, Y.A., Clauset, A., 2010. Performance of modularity
maximization in practical contexts. Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. 81
(4 Pt 2), 046106.

Grefkes, C., Ritzl, A., Zilles, K., Fink, G.R., 2004. Human medial intraparietal cortex
subserves visuomotor coordinate transformation. Neuroimage 23, 1494–1506.

Grinband, J., Savitskaya, J., Wager, T.D., Teichert, T., Ferrera, V.P., Hirsch, J., 2011. The
dorsal medial frontal cortex is sensitive to time on task, not response conflict or error
likelihood. Neuroimage 57 (2), 303–311.

Grinband, J., Wager, T.D., Lindquist, M., Ferrera, V.P., Hirsch, J., 2008. Detection of time-
varying signals in event-related fmri designs. Neuroimage 43 (3), 509–520.

Geschwind, M., Hardmeier, M., Van De Ville, D., Tomescu, M.I., Penner, I.K., Naegelin, Y.,
Fuhr, P., Michel, C.M., Seeck, M., 2016. Fluctuations of spontaneous EEG
topographies predict disease state in relapsing-remitting multiple sclerosis.
Neuroimage Clin 12, 466–477.

Gu, S., Pasqualetti, F., Cieslak, M., Telesford, Q.K., Yu, A.B., Kahn, A.E., Medaglia, J.D.,
Vettel, J.M., Miller, M.B., Grafton, S.T., Bassett, D.S., 2015a. Controllability of
structural brain networks. Nat. Commun. 6, 8414.

Gu, S., Satterthwaite, T.D., Medaglia, J.D., Yang, M., Gur, R.E., Gur, R.C., Bassett, D.S.,
2015b. Emergence of system roles in normative neurodevelopment. Proc. Natl. Acad.
Sci. Unit. States Am. 112 (44), 13681–13686.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J.,
Sporns, O., 2008. Mapping the structural core of human cerebral cortex. PLoS Biol. 6
(7), e159.

Heathcote, A., Brown, S., Mewhort, D.J., 2000. The power law repealed: the case for an
exponential law of practice. Psychonomic Bull. Rev. 7 (2), 185–207.

Heitger, M., Ronsse, R., Dhollander, T., Dupont, P., Caeyenberghs, K., Swinnen, S.P.,
2012. Motor learning-induced changes in functional brain connectivity as revealed by
means of graph-theoretical network analysis. Neuroimage 61 (3), 633–650.

Hermundstad, A.M., Brown, K.S., Bassett, D.S., Carlson, J.M., 2011. Learning, memory,
and the role of neural network architecture. PLoS Comput. Biol. 7 (6), e1002063.

Hikosaka, O., Kim, H.F., Yasuda, M., Yamamoto, S., 2014. Basal ganglia circuits for
reward value-guided behavior. Annu. Rev. Neurosci. 37, 289–306.

Huang, W., Goldsberry, L., Wymbs, N.F., Grafton, S.T., Bassett, D.S., Ribeiro, A., 2016.
Graph frequency analysis of brain signals. J. Sel. Top. Signal Process. 10 (7),
1189–1203.
146
Karuza, E.A., Kahn, A.E., Thompson-Schill, S.L., Bassett, D.S., 2017 Oct 6. Process Reveals
Structure: How a Network Is Traversed Mediates Expectations about its Architecture.
Sci Rep. 7 (1), 12733.

Kim, H.F., Hikosaka, O., 2015. Parallel basal ganglia circuits for voluntary and automatic
behaviour to reach rewards. Brain 138 (Pt 7), 1776–1800.

Kirschner, M., Gerhart, J., 1998. Evolvability. Proc. Natl. Acad. Sci. Unit. States Am. 95
(15), 8420–8427.

Krakauer, J.W., Ghez, C., Ghilardi, M.F., 2005. Adaptation to visuomotor transformations:
consolidation, interference, and forgetting. J. Neurosci. 25, 473–478.

Krakauer, J.W., Ghilardi, M.F., Mentis, M., Barnes, A., Veytsman, M., Eidelberg, D.,
Ghez, C., 2004. Differential cortical and subcortical activations in learning rotations
and gains for reaching: a PET study. J. Neurophysiol. 91, 924–933.

Kubilius, J., Baeck, A., Wagemans, J., Op de Beeck, H.P., 2015. Brain-decoding fMRI
reveals how wholes relate to the sum of parts. Cortex 72, 5–14.

Lancichinetti, A., Fortunato, S., 2009. Community detection algorithms: a comparative
analysis. Phys. Rev. 80 (5), 056117.

Lancichinetti, A., Fortunato, S., 2011. Limits of modularity maximization in community
detection. Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. 84 (6 Pt 2), 066122.

Lehericy, S., Benali, H., Van de Moortele, P.F., Pelegrini-Issac, M., Waechter, T.,
Ugurbil, K., Doyon, J., 2005. Distinct basal ganglia territories are engaged in early
and advanced motor sequence learning. Proc. Natl. Acad. Sci. Unit. States Am. 102
(35), 12566–12571.

Liu, X., Chang, C., Duyn, J.H., 2013. Decomposition of spontaneous brain activity into
distinct fmri co-activation patterns. Front. Syst. Neurosci. 7.

Liu, X., Duyn, J.H., 2013. Time-varying functional network information extracted from
brief instances of spontaneous brain activity. Proc. Natl. Acad. Sci. Unit. States Am.
110 (11), 4392–4397.

Lynall, M.-E., Bassett, D.S., Kerwin, R., McKenna, P.J., Kitzbichler, M., Muller, U.,
Bullmore, E., 2010. Functional connectivity and brain networks in schizophrenia.
J. Neurosci. 30 (28), 9477–9487.

Macke, J.H., Murray, I., Latham, P.E., 2011. How biased are maximum entropy models?
In Advances in Neural Information Processing Systems, pp. 2034–2042.

Mantzaris, A.V., Bassett, D.S., Wymbs, N.F., Estrada, E., Porter, M.A., Mucha, P.J.,
Grafton, S.T., Higham, D.J., 2013. Dynamic network centrality summarizes learning
in the human brain. J. Comp. Neurol. 1 (1), 83–92.

Martin, A., Santos, L.R., 2016. What cognitive representations support primate theory of
mind? Trends Cogn Sci 20 (5), 375–382.

Mattar, M.G., Bassett, D.S., 2016. Brain network architecture: implications for human
learning. In: Network Science in Cognitive Psychology. Routledge (in press).

Mattar, M.G., Cole, M.W., Thompson-Schill, S.L., Bassett, D.S., 2015. A functional
cartography of cognitive systems. PLoS Comput. Biol. 11 (12), e1004533.

Mattar, M.G., Kahn, D.A., Thompson-Schill, S.L., Aguirre, G.K., 2016. Varying timescales
of stimulus integration unite neural adaptation and prototype formation. Curr. Biol.
26 (13), 1669–1676.

Medaglia, J.D., Satterthwaite, T.D., Kelkar, A, Ciric, R, Moore, T.M., Ruparel, K.,
Gur, R.C., Gur, R.E., Bassett, D.S., 2018 Feb 1. Brain state expression and transitions
are related to complex executive cognition in normative neurodevelopment.
Neuroimage 166, 293–306.

Murphy, A.C., Muldoon, S.F., Baker, D., Lastowka, A., Bennett, B., Yang, M., Bassett, D.S.,
2018. Structure, Function, and Control of the Human Musculoskeletal Network. PLoS
Biology. In Press.

Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B., Bandettini, P.A., 2009. The impact
of global signal regression on resting state correlations: are anti-correlated networks
introduced? Neuroimage 44 (3), 893–905.

Muthukrishnan, S.P., Ahuja, N., Mehta, N., Sharma, R., 2016. Functional brain microstate
predicts the outcome in a visuospatial working memory task. Behav. Brain Res. 314,
134–142.

Newell, A., Rosenbloom, P.S., 1981. Mechanisms of skill acquisition and the law of
practice. Cognit. skills Acquis. 1, 1–55.

Newman, M.E.J., 2006. Modularity and community structure in networks. Proc. Natl.
Acad. Sci. Unit. States Am. 103 (23), 8577–8696.

Percival, D.B., Walden, A.T., 2006. Wavelet Methods for Time Series Analysis, vol. 4.
Cambridge University Press.

Porter, M.A., Onnela, J.-P., Mucha, P.J., 2009. Communities in networks. Not. AMS 56
(9), 1082–1097, 1164–1166.

Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, A.C.,
Laumann, T.O., Miezin, F.M., Schlaggar, B.L., et al., 2011. Functional network
organization of the human brain. Neuron 72 (4), 665–678.

Richardson, A.G., Borghi, T., Bizzi, E., 2012. Activity of the same motor cortex neurons
during repeated experience with perturbed movement dynamics. J. Neurophysiol.
107, 3144–3154.

Richman, M.J., Unoka, Z., 2015. Mental state decoding impairment in major depression
and borderline personality disorder: meta-analysis. Br. J. Psychiatr. 207 (6),
483–489.

Rosenbaum, D.A., 2009. Human Motor Control. Academic press.
Rushworth, M.F., Kennerley, S.W., Walton, M.E., 2005. Cognitive neuroscience: resolving

conflict in and over the medial frontal cortex. Curr. Biol. 15 (2), R54–R56.
Saad, Z.S., Gotts, S.J., Murphy, K., Chen, G., Jo, H.J., Martin, A., Cox, R.W., 2012. Trouble

at rest: how correlation patterns and group differences become distorted after global
signal regression. Brain Connect. 2 (1), 25–32.

Sampaio-Baptista, C., Khrapitchev, A.A., Foxley, S., Schlagheck, T., Scholz, J., Jbabdi, S.,
DeLuca, G.C., Miller, K.L., Taylor, A., Thomas, N., Kleim, J., Sibson, N.R.,
Bannerman, D., Johansen-Berg, H., 2013. Motor skill learning induces changes in
white matter microstructure and myelination. J. Neurosci. 33, 19499–19503.

https://doi.org/10.1101:068221
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref33
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref33
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref33
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref34
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref34
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref35
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref35
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref35
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref36
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref36
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref36
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref36
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref37
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref37
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref37
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref38
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref38
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref38
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref38
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref39
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref39
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref39
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref40
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref40
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref40
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref41
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref41
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref41
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref42
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref42
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref42
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref43
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref43
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref44
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref44
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref44
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref44
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref45
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref45
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref45
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref45
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref46
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref46
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref46
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref46
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref46
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref47
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref47
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref48
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref48
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref48
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref49
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref49
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref49
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref50
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref50
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref50
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref50
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref51
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref51
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref51
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref52
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref52
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref52
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref53
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref53
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref53
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref54
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref54
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref54
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref55
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref55
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref55
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref55
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref56
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref56
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref56
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref57
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref57
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref57
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref57
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref57
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref58
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref58
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref58
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref59
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref59
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref59
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref59
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref60
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref60
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref60
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref61
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref61
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref61
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref62
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref62
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref62
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref62
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref63
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref63
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref64
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref64
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref64
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref65
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref65
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref65
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref65
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref66
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref66
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref66
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref67
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref67
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref67
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref68
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref68
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref68
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref69
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref69
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref69
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref70
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref70
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref70
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref70
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref71
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref71
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref71
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref73
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref73
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref74
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref74
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref75
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref75
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref75
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref75
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref75
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref76
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref76
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref77
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref77
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref77
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref77
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref78
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref78
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref78
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref78
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref79
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref79
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref79
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref80
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref80
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref80
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref80
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref81
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref81
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref81
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref82
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref82
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref83
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref83
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref84
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref84
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref84
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref84
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref85
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref85
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref85
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref85
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref85
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref86
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref86
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref86
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref87
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref87
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref87
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref87
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref88
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref88
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref88
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref88
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref89
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref89
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref89
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref90
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref90
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref90
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref91
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref91
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref92
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref92
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref92
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref92
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref94
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref94
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref94
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref94
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref95
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref95
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref95
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref95
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref96
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref96
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref96
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref96
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref97
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref98
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref98
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref98
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref99
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref99
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref99
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref99
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref100
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref100
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref100
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref100
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref100


P.G. Reddy et al. NeuroImage 171 (2018) 135–147
Schapiro, A.C., Rogers, T.T., Cordova, N.I., Turk-Browne, N.B., Botvinick, M.M., 2013.
Neural representations of events arise from temporal community structure. Nat.
Neurosci. 16 (4), 486–492.

Schmidt, R.A., Lee, T., 1988. Motor control and learning. Human kinetics.
Shamloo, F., Helie, S., 2016. Changes in default mode network as automaticity develops

in a categorization task. Behav. Brain Res. 313, 324–333.
Shine, J.M., Koyejo, O., Poldrack, R.A., 2016. Temporal metastates are associated with

differential patterns of time-resolved connectivity, network topology, and attention.
Proc. Natl. Acad. Sci. Unit. States Am. 113 (35), 9888–9891.

Siebenhuhner, F., Weiss, S.A., Coppola, R., Weinberger, D.R., Bassett, D.S., 2013. Intra-
and inter-frequency brain network structure in health and schizophrenia. PLoS One 8
(8), e72351.

Snoddy, G.S., 1926. Learning and stability: a psychophysiological analysis of a case of
motor learning with clinical applications. J. Appl. Psychol. 10 (1), 1–36.

Sporns, O., 2010. Networks of the Brain. MIT Press.
Steffener, J., Tabert, M., Reuben, A., Stern, Y., 2010. Investigating hemodynamic response

variability at the group level using basis functions. Neuroimage 49 (3), 2113–2122.
Stuss, D.T., 2011. Functions of the frontal lobes: relation to executive functions. J. Int.

Neuropsychol. Soc. 17 (5), 759–765.
Sun, F.T., Miller, L.M., D'Esposito, M., 2004. Measuring interregional functional

connectivity using coherence and partial coherence analyses of fmri data.
Neuroimage 21 (2), 647–658.

Telesford, Q.K., Lynall, M.E., Vettel, J., Miller, M.B., Grafton, S.T., Bassett, D.S., 2016.
Detection of functional brain network reconfiguration during task-driven cognitive
states. Neuroimage S1053–8119 (16), 30198–30197.

Tunik, E., Rice, N.J., Hamilton, A., Grafton, S.T., 2007. Beyond grasping: representation of
action in human anterior intraparietal sulcus. Neuroimage 36, T77–T86.
147
Vakil, E., Kahan, S., Huberman, M., Osimani, A., 2000. Motor and non-motor sequence
learning in patients with basal ganglia lesions: the case of serial reaction time (SRT).
Neuropsychologia 38 (1), 1–10.

von Wegner, F., Tagliazucchi, E., Brodbeck, V., Laufs, H., 2016. Analytical and empirical
fluctuation functions of the EEG microstate random walk - short-range vs. long-range
correlations. Neuroimage 141, 442–451.

Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., Chen, Z., Zhu, C., He, Y., 2009.
Parcellation-dependent small-world brain functional networks: a resting-state fmri
study. Hum. Brain Mapp. 30 (5), 1511–1523.

Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T.,
Beckmann, C., Jenkinson, M., Smith, S.M., 2009. Bayesian analysis of neuroimaging
data in FSL. Neuroimage 45 (1), S173–S186.

Wymbs, N.F., Bassett, D.S., Mucha, P.J., Porter, M.A., Grafton, S.T., 2012. Differential
recruitment of the sensorimotor putamen and frontoparietal cortex during motor
chunking in humans. Neuron 74 (5), 936–946.

Wymbs, N.F., Grafton, S.T., 2015. The human motor system supports sequence-specific
representations over multiple training-dependent timescales. Cereb Cortex 25 (11),
4213–4225.

Xu, T., Yu, X., Perlik, A.J., Tobin, W.F., Zweig, J.A., Tennant, K., Jones, T., Zuo, Y., 2009.
Rapid formation and selective stabilization of synapses for enduring motor memories.
Nature 462, 915–919.

Zalesky, A., Fornito, A., Harding, I.H., Cocchi, L., Yücel, M., Pantelis, C., Bullmore, E.T.,
2010. Whole-brain anatomical networks: does the choice of nodes matter?
Neuroimage 50 (3), 970–983.

Zhang, Z., Telesford, Q.K., Giusti, C., Lim, K.O., Bassett, D.S., 2016. Choosing wavelet
methods, filters, and lengths for functional brain network construction. PLoS One 11
(6), e0157243.

http://refhub.elsevier.com/S1053-8119(17)31117-5/sref101
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref101
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref101
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref101
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref102
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref103
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref103
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref103
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref104
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref104
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref104
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref104
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref105
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref105
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref105
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref106
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref106
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref106
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref107
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref108
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref108
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref108
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref109
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref109
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref109
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref110
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref110
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref110
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref110
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref111
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref111
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref111
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref111
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref111
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref112
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref112
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref112
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref113
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref113
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref113
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref113
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref114
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref114
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref114
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref114
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref115
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref115
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref115
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref115
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref116
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref116
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref116
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref116
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref117
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref117
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref117
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref117
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref118
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref118
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref118
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref118
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref119
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref119
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref119
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref119
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref120
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref120
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref120
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref120
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref121
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref121
http://refhub.elsevier.com/S1053-8119(17)31117-5/sref121

	Brain state flexibility accompanies motor-skill acquisition
	Introduction
	Materials and methods
	Experiment and data collection
	fMRI imaging
	General linear model
	Network construction and analysis

	Results
	Time by time network analysis identifies frontal and motor states
	State flexibility increases with task practice
	Regional contributions to state flexibility vary by function
	State flexibility is correlated with learning rate
	Comparison to traditional and other network analyses

	Discussion
	Extensions of graph theoretical tools to the temporal domain
	Brain states characteristic of discrete sequence production
	State flexibility, task practice, and learning rate
	Comparison to traditional analyses
	Methodological considerations

	Conclusion
	Acknowledgments
	Appendix A. Supplementary data
	References


