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A pre-stressed stayed steel column (PSSC) can effectively enhance the buckling behaviour of compression col-
umns. In the past, researchers have primarily concentrated on examining the behaviour of PSSCs with single-
bay crossarms. However, research focused on PSSCswithmultiple crossarms is limited. This article aims to inves-
tigate the stability behaviour of PSSCs stiffened with multiple crossarms according to geometric analysis in con-
junction with finite element (FE) studies. The results show that the critical buckling modes can be complicated
due to the introduction of multiple crossarms. Critical buckling deformation similar to three half sine waves
can be observed. It has also been demonstrated that interactive buckling can be ignored when determining the
actual buckling strength of PSSCs stiffened by multiple crossarms, though it must be considered for PSSCs with
single-bay crossarms. The effects of stay diameter and pretension in the stay have been separately investigated,
and the results show that the buckling strength of a steel column can be obviously enhanced even if the preten-
sion in stays is quite small, because the stiffness of the stays can be automatically activated by column
deformation.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

Global buckling tends to occur in compressed steel columns when
they are slender. However, the buckling resistance can bedrastically im-
proved by introducing stays and crossarms. The compressed steel col-
umn, which is equipped with stays and crossarms, has been named
prestressed stayed steel columns (PSSC). In the PSSC shown in Fig. 1,
an additional restraint can be placed on the main column by the
crossarms in conjunction with pre-tensioned stays.

Research on PSSC has been conducted since the 1960s, in which Chu
and Berge first investigated the critical buckling loads in PSSCs [1]. Fol-
lowing the work of Chu and Berge, Hafez quantitatively examined the
effect of pretension on the buckling load by theoretical derivation
based on the assumption of small deformations [2]. With the develop-
ment of computer technology, particularly over the last twenty years,
nonlinear buckling analysis in PSSCs by finite element (FE) software be-
came possible. Thus, geometric imperfections governing nonlinear
buckling [3–5], evaluate the post-buckling behaviour [6,7], and investi-
gate the optimum design method can be conducted numerically [8,9].
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Experimental studies have also been conducted in parallel with FE anal-
yses on PSSCs [10–14].

For practical application of PSSCs, the compressed steel columns are
generally stiffened by spatial crossarm systems (see Fig. 2) around the
main column and multiple crossarms along the main column length
(see Fig. 2(b)). Unfortunately,most of the previous studies concentrated
on investigating PSSCs with crossarms only set at the mid-span of the
main column (see Fig. 2(a)), which are not typically found in practice.
As far as the authors are aware, references [15, 16] are the only studies
aimed at investigating the stability of PSSCs with multiple crossarms.
However, the interactive buckling behaviour of PSSCs with multiple
crossarms has not been investigated. In fact, research on PSSCswith sin-
gle-bay crossarms shows that interactive buckling may become domi-
nant when determining the actual buckling strength.

Based on the background information introduced above, this current
work focuses on investigating the stability of PSSCs stiffened with mul-
tiple crossarms along themain column length. First, pretension was de-
rived by geometric analysis, which corresponds to themaximumcritical
buckling load. This pretension level was used as the benchmark preten-
sion value in the FE simulation. Subsequently, critical and nonlinear
buckling analyses were conducted to explore the buckling strength of
PSSCs stiffened with multiple crossarms. In addition, a discussion
based on parametric analysis resultswas presented to quantitatively ex-
amine the effect of cross-sectional area of the stays and pretension in
stays.
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Fig. 1. Composition of PSSC.

Fig. 3. Structural configuration of PSSCs.
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2. Structural configuration and analytical methodology

2.1. Structural configuration

The number of crossarms along the column length can be different in
PSSCs with multiple crossarms. As the simplest case of a steel column
with multiple crossarms, the current work aims to investigate steel col-
umns stiffened with two-bay crossarms along the column length (see
Fig. 3). In this model, all crossarms have equal lengths and are set at
the trisection points along the main column. Note that the crosssarms
can be pinned or rigidly connected to themain column in practice. How-
ever, the pin-connected case is outside the scope of this study. In other
words, the connections between the crossarms and main column are
thought to be ideally rigid in this work. As for the boundary condition,
it is assumed that the column is pin-supported at both ends.

It has been proven that the critical buckling mode is a crucial factor
determining the post-buckling behaviour of PSSCs. Thus, the structural
parameters, including the crossarm length and stay diameter, should
be varied to activate different critical buckling modes in a systematic
analysis. To achieve this, a series of different crossarm lengths and stay
diameters (see Table 1) was selected in the following FE analysis.
(a) Single-bay stayed column (b) Three-bay stayed column

Fig. 2. Different spatial crossarm layouts along the main column length.
However, it must be noted that the column length was fixed at
5100 mm during the numerical analysis performed in this study. Circu-
lar steel tubes with outer and inner diameters of 38.1mm and 25.4mm,
respectively, were adopted for both the main column and crossarms.
Thus, the Young's modulus of the main column and crossarms are
201,000 N/mm2. Note that the stays in this work are bars, which are
the same as those in Hafez's model [2]. Thus, the Young's modulus is as-
sumed to be 202,000 N/mm2.

2.2. Analytical methodology

As mentioned above, this study focuses on investigating the behav-
iour of two-bay stayed PSSCs. For the PSSCs stiffened with single-bay
crossarms (see Fig. 2(a)), it has been demonstrated that interactive
buckling could dominant the buckling strength in some cases. This
study would check whether interactive buckling can determine the ac-
tual buckling strength for two-bay stayed PSSCs using nonlinear buck-
ling analysis. Note that the initial geometric imperfection must be
considered in the nonlinear buckling analysis. Thus, linear buckling
analysis should be conducted to obtain the buckling modes, which can
be used to construct an imperfectmodel for nonlinear buckling analysis.
It should also be noted that the initial pretension in stays is another cru-
cial factor that can affect the buckling behaviour of PSSCs. To make the
numerical analytical results comparable, a benchmark must be defined
for the initial pretensions in stays. In this work, pretension corresponds
to the maximum critical buckling load is adopted as the benchmark for
pretension in stays. Based on these statements, the analytical process in
this study can be summarised as follows:
Table 1
Analytical parameters.

Crossarm length (mm) 255 382.5 510 637.5 765

Stay diameter (mm) 1.6 3.2 4.8 6.4 8.0



Fig. 4. Deformation of the PSSCs.

(a)Half sine wave (Mode I)   (b)Full sine wave (Mode II)  (c)Three half sine wave (Mode III) 

Fig. 5. Critical buckling modes for PSSCs.
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(1) Pre-buckling analysis: Pre-buckling analysis was conducted by
analysing geometric deformation of the PSSCs in order to derive
themathematical formula used to calculate the initial pretension
in stays.

(2) Linear buckling analysis: Linear buckling analysis is based on the
un-deformed configuration of the PSSCs and aims to obtain the
critical buckling load and the corresponding buckling mode.

(3) Nonlinear buckling analysis: Nonlinear buckling analysis focuses
on examining the actual buckling strength of PSSCs and checking
whether interactive buckling should be consideredwhen design-
ing this type of column. Moreover, a parametric study has also
been conducted by nonlinear buckling analysis to investigate
the influencing factors of the buckling strength of PSSCs.

ABAQUS software was selected for numerical analysis in this work,
and the arc lengthmethodwas adopted to obtain the full load-displace-
ment curve used for nonlinear buckling analysis. As for the element type
used in linear and nonlinear buckling analyses, shell elements (element
type S4R) were selected to simulate both the main column and
crossarms, and tension-only truss elements (element type T3D2) were
used to model the stays. It should be noted that beam elements have
been shown to be appropriate for simulating the column [3,8,11]. How-
ever, local buckling cannot be considered based on the beam elements.
Based on this consideration, shell elements were adopted to model the
column and crossarms, although local buckling has not been observed
in the following analyses.

3. Pre-buckling analysis

To establish the relationship between the critical buckling load and
pretension in stays by geometric analysis. The following assumptions
are made during the derivation:

(1) Displacements are so small that the formulas can be derived
based on the un-deformed geometric configuration.

(2) Bending deformations of the crossarms can be ignored.

As shown in Fig. 3, the crossarms are set symmetrically around the
main column. Thus, a quarter of this PSSC was taken out as a free-
body in this section to perform the derivation (see Fig. 4). Recalling
the description of the analytical model for a PSSC in Section 2.1, the
crossarms are set at the trisection points along the main column length.
Thus, the main column can be divided into three parts, which were
numbered by “Part I”, “Part II”, and “Part III”, from top to bottom (see
Fig. 4). Similarly, the stay which linked the crossarm and the upper
end of the columnwas denoted as “Stay I”. To distinguish deformations
of the PSSC under axial compression load, the deformed and un-de-
formed configurations are depicted by the dotted and solid lines in
Fig. 4, respectively.

For small deformations, the length change of stay I Δs1 can be
expressed by:

Δs1 ¼ Δc11 cosα−Δa1 sinα ð1Þ

where Δc11 is the end-shortening of Part I, Δa1 is the elongation of the
crossarm due to the decrease of the pretension in stays, and α is the
angle between the main column and stay I.

The initial axial force Pi in Part I, which results from pretension in the
stays, can be calculated by:

Pi ¼ 4Ti cosα ð2Þ

in which Ti is the initial pretension in stays.
Similarly, the initial axial force Fi in the crossarm resulting from pre-

tension is:

Fi ¼ Ti sinα ð3Þ

The final axial force Pf in Part I after applying the axial compression
load P is:

P f ¼ P þ 4T f cosα ð4Þ

where Tf is the final axial force in the stay.
The final axial force in the crossarm after applying an external load P

is:

F f ¼ T f sinα ð5Þ

Considering the initial and final axial forces in Part I (see Eqs. (2) and
(4)), the end-shortening of Part I Δc11 can be calculated by:

Δc11 ¼ P f−Pi

Kc1
¼ P−4 Ti−T f

� �
cosα

Kc1
ð6Þ

where Kc1 is the axial stiffness of Part I, which can be also expressed as
the axial stiffness of the main column Kc, as shown in Eq. (7):

Kc1 ¼ 3Kc ¼ 3EcAc

L
ð7Þ

where L is the main column length, and Ec and Ac are the Young's mod-
ulus and cross-sectional area of the main column, respectively.



Table 2
Comparison between the capacities obtained from experimental and numerical studies.

Column Main column (mm) Crossarm (mm) Stay dimeter (mm) Pretension
(kN)

Pexp
Pnum

Section Length Section Length

C08 CHS 139.7 × 6.3 18,000 CHS 101.6 × 8.0 600 10 5.5 0.93
CHS 139.7 × 6.3 18,000 CHS 101.6 × 8.0 600 13 7.5 0.91

C11 CHS 177.8 × 6.3 18,000 CHS 101.6 × 8.0 600 10 5.5 1.03
CHS 177.8 × 6.3 18,000 CHS 101.6 × 8.0 600 13 7.5 1.03
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Fig. 6. Variety of critical buckling loads with different crossarm lengths and stay diameters.

Table 3
Constructed imperfections.

Shape
function

Buckling modes Weight coefficient

W1(x) Mode I and Mode II μ11 0.0000 0.2500 0.5000 0.7500 1.0000
μ12 0.5000 0.4841 0.4330 0.3307 0.0000

W2(x) Mode II and Mode III μ22 0.0000 0.1250 0.2500 0.3750 0.5000
μ23 0.3333 0.3227 0.2887 0.2205 0.0000
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Similarly, elongation of the crossarm Δa can be expressed by the fol-
lowing:

Δa1 ¼ Fi−F f

Ka
¼ Ti−T f
� �

sinα
Ka

ð8Þ

where Ka is the axial stiffness of the crossarms.
The shortening of stay I can be expressed by axial forces in the stays,

as shown in Eq. (9):

Δs1 ¼ Ti−T f

Ks
ð9Þ

where Ks is the stay stiffness.
Substituting Eqs. (6), (8), and (9) into eq. (1), the shortening of stay I

can be also expressed by:

Δs1 ¼ Ti−T f

Ks
¼ P−4 Ti−T f

� �
cosα

� �
cosα

Kc1
−

Ti−T f
� �

sinα
� �

sinα
Ka

ð10Þ

Thus, the change in axial force in the stay can be obtained by comb-
ing Eqs. (9) and (10):

Ti−T f ¼ P
cosα

Kc1
1
Ks

þ sin2α
Ka

þ 4 cos2α
Kc1

 ! ð11Þ

As for the final axial force in the stay, Tf can be obtained by substitut-
ing Eqs. (4), (6), (8), and (9) to eq. (1):

T f ¼ Ti−
P f−4Ti cosα
� �

cosα

Kc1
1
Ks

þ sin2α
Ka

 ! ð12Þ
Recalling the expression used to calculate Pf in eq. (4), the external
load P can be expressed using eq. (13) by combining Eqs. (4) and (12):

P ¼ P f−4Ti cosα
� �

1þ 4 cos2α

Kc1
1
Ks

þ sin2α
Ka

 !
8>>>><
>>>>:

9>>>>=
>>>>;

ð13Þ

The optimal initial pretension Topt corresponds to the maximum
buckling load. Thus, the stays slack at the instant when buckling occurs.
By simplifying Eq. (11), the optimal pretension Topt can be expressed by
Eq. (14):

Topt ¼ P
cosα

Kc1
1
Ks

þ sin2α
Ka

þ 4 cos2α
Kc1

 ! ð14Þ

The relationship between P and Pf can be established from eq. (13).
Based on this, Topt can be calculated using Eqs. (15) and (16):

Topt ¼ CPc
T¼0 ð15Þ
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C ¼

1
Ks

þ sin2α
Ka

 !
cosα

1
Ks

þ sin2α
Ka

þ 4 cos2α
Kc1

 !
Kc1

1
Ks

þ sin2α
Ka

 !
þ 4 cos2α

 ! ð16Þ

where PT=0
c is the buckling load calculated from FE analysis when the

initial pretension is zero.

4. Linear buckling analysis

For a PSSCwith single-bay crossarm, it has been shown that the crit-
ical buckling modes of the main column are approximately a half sine
wave and full sine wave. However, whether these critical buckling
modes can be changed by the two-bay crossarm is unknown. Thus,
investigating the buckling modes is the primary focus of this section.
Apart from the buckling mode, the critical buckling load is another
focus of this section. To make the analytical results more convincing,
PSSCs with different crossarm lengths and stay diameters shown in
Table 1 were analysed. According to the linear buckling analysis, it has
been found that the critical buckling modes of the two-bay stayed
PSSCs can be approximately taken as half sine wave, full sine wave,
and three half sine waves, as depicted in Fig. 5. In other words, the crit-
ical buckling mode becomes more complicated for PSSCs with two-bay
crossarms. For convenience, these three buckling modes are named
“Mode I”, “Mode II”, and “Mode III”, respectively.

Fig. 6 shows the various critical buckling loads in a PSSC with differ-
ent crossarm lengths and stay diameters. Note that the lowest mode
Euler load on the main column PE has also been indicated in Fig. 6 to il-
lustrate the effect of pre-tensioned stays on the buckling load in the
PSSC. Obviously, the buckling load on the main column PE can be
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Table 4
Initial pretension Topt with stay diameter varying (a = 510 mm).

Stay diameter (mm) 1.6 3.2 4.8 6.4 8.0

Topt (MPa) 66.368 79.223 74.754 66.886 57.947
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significantly improved by using pre-tensioned stays. When the stay di-
ameter is 4.8 mm, the lowest buckling load on the PSSC could reach
around 10 times the value of PE.

5. Nonlinear buckling analysis

5.1. Validation of the numerical analysis

In order to validate the accuracy of the numerical buckling analysis,
experimental buckling results for the two-bay PSSCs denoted “C08” and
“C11” in reference [16] were selected for verification. Note that the
nominal length of these PSSCs was 18,000 mm, and the main column
and crossarms were fabricated from S355 steel and S690 steel, respec-
tively. More details regarding the PSSCs are presented in Table 2. In
Table 2, the symbols Pexp and Pnum represent the load capacities
obtained from experimental and numerical analyses, respectively. Obvi-
ously, the maximum difference between the experimental and numer-
ical results is less than 10%, implying that buckling analysis is accurate
enough to estimate the load carrying capacities of PSSCs.

5.2. Imperfection construction

Having validated the accuracy of the numerical analysis, it is essen-
tial to carry out nonlinear buckling analysis to investigate the post
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Table 5
Crossarm lengths corresponding to the maximum load carrying capacities.

Stay diameters (mm) 1.6 3.2 4.8 6.4 8.0

Crossarm lengths (mm) T = 0 765 765 637.5 510 510
T = Topt 765 765 637.5 510 510
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buckling behaviour of PSSCs. However, it should also be noted that geo-
metric imperfection is one of the most important factors that can affect
the stability of steel columns. Thus, geometric imperfection must be
taken into account in a nonlinear buckling analysis [17,18]. For PSSCs
with single-bay crossarms (see Fig. 2(a)), interactive buckling may be-
come the dominant case for determining the actual buckling strength
[3]. Considering the effect of interactive buckling, an asymmetric geo-
metric imperfection distribution was established by combining differ-
ent critical buckling modes. Unfortunately, the analysis in Section 4
shows that the critical buckling modes in two-bay stayed PSSCs are dif-
ferent from those of single-bay PSSCs. This situationmakes it impossible
to directly adopt the aforementioned method to analyse the two-bay
PSSCs in this study. Therefore, it is essential to reconstruct geometric
imperfections to examine whether interactive buckling could become
the dominant case by determining the actual load carrying
capacities of PSSCs. This issue would be resolved by extending the
method in [3].

As shown in Fig. 5, the critical buckling modes of two-bay PSSCs can
be Mode I, Mode II, and Mode III. There are two possible combinations
for the first two buckling mode shapes, i.e. Mode I and Mode II, or
Mode II and Mode III. In this study, the first two buckling mode shapes
were adopted to construct a newgeometric imperfection for use in non-
linear buckling analysis. Thus, two different functionsW1(x) andW2(x)
(see Eqs. (17) and (18), respectively) were established to describe
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W1 xð Þ ¼ Δw μ11 sin
πx
L
þ μ12 sin

2πx
L

� �
ð17Þ

W2 xð Þ ¼ Δw μ22 sin
2πx
L

þ μ23 sin
3πx
L

� �
ð18Þ

In the above equations, Δw is the maximum magnitude of the con-
structed imperfection, and μ11, μ12, μ22, and μ23 are coefficients, which
will be explained in the next paragraph.

The first and second terms on the right side of Eq. (17) are adopted to
simulate the buckling shapes of Mode I and Mode II, respectively. There-
fore, μ11 and μ12 can be taken as weight coefficients for Mode I and
Mode II in the shape function W1(x), respectively. Similarly, μ22 and μ23
are the weight coefficients of Mode II and Mode III in the shape function
W2(x), respectively. In other words, the imperfection shape of W1(x) or
W2(x) is constructed from Mode I and Mode II or Mode II and Mode III
with different weight coefficients. Thus, the values of μ11, μ12, μ22, and
μ23 must be determined in order to define the imperfection shapes. In
this work, it is assumed that shortening is the same in all main columns,
regardless of whether bending follows purely Mode I or the constructed
imperfection shapes. Basedon this assumption, the relationships between
μ11 and μ12, or μ22 and μ23 can be expressed using eqs. (19) and (20), re-
spectively:

μ2
11 þ 4μ2

12 ¼ 1 ð19Þ

4μ2
22 þ 9μ2

23 ¼ 1 ð20Þ

Typical values of μ11 and μ12, or μ22 and μ23were selected in the follow-
ing numerical analyses (see Table 3). According to the geometric con-
struction method stated above, one can conclude that different weight
coefficient values intrinsically correspond to different imperfection
shapes.

Except for the imperfection shape, the imperfection magnitude is
also an important factor affecting the stability of PSSCs. In this study,
the imperfection magnitude is assumed to be L/300 (L is the main col-
umn length) in numerical analysis.
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5.3. Post-buckling analysis

Having constructed the geometric imperfections in Section 5.2,
nonlinear buckling analysis can be conducted by adopting different
geometric imperfections to examine whether interactive buckling
could dominate in regards to the actual buckling load. In this section,
it is worth noting that the imperfection shape W1(x) is adopted
when the shapes of the first two buckling modes are Mode I and
Mode II. In contrast, the imperfection shape W2(x) is introduced
when the shapes of the first two buckling modes are Mode II and
Mode III. Thus, linear buckling analysis must be conducted prior to
nonlinear buckling analysis in order to determine the appropriate
imperfection shape. Figs. 7 and 8 present nonlinear buckling analysis
results, which are represented by the axial load to end-shortening
curves with different stay diameters and crossarm lengths. For the
analyses in this section, the pretension in stays is assumed to be
Topt. Comparing Figs. 6, 7, and 8, it is interesting to note that the im-
perfection corresponding to the actual buckling load is generally de-
termined by distinct buckling modes, with the exceptions of Figs. 7
(b) and 8(b). As shown in Figs. 7(b) and 8(b), the load carrying ca-
pacities correspond to μ22 = 0.375 are slightly lower than those cor-
responding to the distinct buckling mode (μ22 = 0.500). This implies
that the actual load carrying capacity of a PSSC is determined by
interactive buckling. However, it should also be noted that
discrepancies between the load carrying capacities corresponding
to μ22 = 0.375 and μ22 = 0.500 are negligible in these two cases.
Thus, one can conclude that the effect of interactive buckling on
the load-carrying capacities of two-bay PSSCs can be ignored, i.e.,
the geometric imperfection following the lowest buckling mode
can be used to determine the buckling strength using nonlinear
buckling analysis. This is the most notable difference between sin-
gle-bay and two-bay PSSCs when selecting the initial geometric im-
perfections used in nonlinear buckling analysis.
5.4. Discussion

Linear and nonlinear buckling analysis of the two-bay PSSCs were
conducted in the above sections. This section aims to discuss how
pretension in stays and stay diameter affect the buckling strength
of PSSCs. In this section, the imposed geometric imperfection follows
the distinct buckling mode in the nonlinear buckling analysis. In
other words, interactive buckling is ignored when introducing
imperfections.

5.4.1. Effect of stay diameter
The load carrying capacities are enhanced by the pre-tensioned

stays. Thus, buckling could certainly be affected by the stay diame-
ters. To investigate the effect of stay diameters, nonlinear buckling
analysis was conducted in this section. Fig. 9 shows the axial load
to end-shortening curves with different stay diameters when T = 0
and T = Topt. Recalling Eqs. (15) and (16), the pretension Topt corre-
sponding to the parameters shown in Fig. 9 can be calculated (see
Table 4).

In order to investigate the effect of stay diameter, the load to end-
shortening curve of an ordinary un-stiffened column has also been
shown in Fig. 9. Obviously, the load carrying capacity of the steel col-
umn can be significantly enhanced by increasing the stay diameter,
especially when the stay diameter is less than 4.8 mm. Recalling
the critical buckling mode shown in Fig. 6, it is interesting to note
that the critical buckling mode is Mode II when the stay diameter is
larger than 3.2 mm. Thus, it can be concluded that increasing the
stay diameter could effectively improve the load carrying capacity
of a PSSC when the critical buckling mode is Mode I. However, in-
creasing the stay diameter becomes less effective when the critical
buckling mode is Mode II.

It should be noted that the differences between Figs. 9(a) and 9(b)
are quite minor. To discuss the differences between these two figures,
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a parameter λ defined in eq. (21) is introduced:

λ ¼ PT¼Topt−PT¼0

PT¼0
ð21Þ

PT=Topt and PT=0 are the nonlinear buckling loads when T= Topt and
T = 0, respectively. Fig. 10 shows the relationship between λ and ϕs

when the crossarm length is 510 mm. Obviously, the load carrying ca-
pacity can be improved by approximately 2% when the initial preten-
sion is increased from T = 0 to T = Topt. More details regarding the
effect of pretension in stays will be discussed in the next section.

Fig. 11 summarises the load carrying capacities of PSSCs with
crossarm length varying from 255mm to 765mmwhen the pretension
is zero and Topt. Similar results to Fig. 9 can be observed, and the load
carrying capacities are generally improved with increased stay diame-
ter. However, it should also be noted that the load carrying capacity
can be decreased by increasing the crossarm length when the stay di-
ameter is large, because the axial stiffness becomes much smaller
when the crossarm length is increasing.

Table 5 shows the crossarm lengths corresponding to themaximum
load carrying capacities when the stay diameters are fixed. When the
stay diameter is 1.6 mm or 3.2 mm, the maximum load carrying capac-
ities correspond to the maximum crossarm length (765 mm). In other
words, the capacity can always be increased by increasing the crossarm
length in these two cases. However, when the stay diameter is larger
than 3.2 mm, the maximum capacity does not correspond to the maxi-
mum crossarm length. Thus, one can conclude that the effect of
crossarm length on load capacity becomes adverse when the stay diam-
eter is large.

5.4.2. Effect of pretension in stays
The effect of stay diameter on the stability of PSSCs was discussed in

the above section. However, whether stay diameter and pretension
have the same contributions to improved buckling strength is unknown
and should be studied. This issue could be resolved by conducting non-
linear buckling analysis on PSSCs with T=0 and T= Topt. Similarly, the
un-stiffened ordinary column has also been studied for comparison. Fig.
12 presents the axial load-to-end shortening curves of PSSCs with dif-
ferent stay diameters when the crossarm length is 510 mm. In Fig. 12,
the load carrying capacity of an ordinary steel column is denoted by
P0
u, and the capacities of PSSCs with pretension T = 0 and T = Topt are

represented by PT=0
u and PT=Topt

u , respectively. Thus, the effect of stay
and pretension in stays can be respectively obtained by comparing P0

u,
PT=0
u and PT=0

u , PT=Topt
u . Obviously, the load carrying capacity of an ordi-

nary steel column can be significantly enhancedby the stay even though
thepretension in stays is zero, because the stay stiffness can be activated
automatically due to column deformation.

6. Conclusions

The stability behaviour of the two-bay prestressed stayed steel col-
umn was geometrically and numerically investigated in this study.
Both linear and nonlinear buckling analyses were performed. The influ-
ence of the crossarm length and pretension in the stays were studied.
Conclusions drawn from this study are as follows:

(1) According to the geometric analysis, it has been demonstrated
that the relationship between pretension in stays and the linear
buckling load can be described by a single equation. Moreover,
the equation used to determine pretension in stays which corre-
sponds to the maximum buckling load has been proposed.

(2) The critical buckling modes of two-bay PSSCs are more compli-
cated than the single-bay PSSCs. The critical buckling mode in
this structure can be observed to have a shape that is similar of
three halves of a sine curve. However, this bucklingmode cannot
be observed as the lowest buckling mode in single-bay PSSCs.

(3) Based on the nonlinear buckling analysis results, it has been
found that the effect of interactive buckling can be ignored
when determining the actual buckling load of two-bay PSSCs.
In other words, it is safe enough to introduce geometric imper-
fections following the lowest buckling mode when designing
this structure. In contrast, an asymmetric imperfection must be
constructed to determine the actual buckling strength of single-
bay PSSCs in some cases.

(4) The effects of stay diameter and pretension in stays on the buck-
ling strength of PSSCs have been investigated. It has been found
that a stay without pretension can effectively improve the load-
carrying capacity of ordinary steel columns, because the stay
stiffness can be automatically activated by deformation of the
steel column. Thus, the effect is limited when adopting high pre-
tensions to increase the buckling strength of PSSCs.
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