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 An integer programming model is established to minimize the total cost.
 A hierarchical hybrid approach is proposed to solve the model formulation.
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ABSTRACT
A collaborative multiple-center vehicle routing problem (CMCVRP) is a multi-
constraint combinatorial and game optimization issue containing both vehicle routing 
optimization and profit distribution procedures. The CMCVRP is generally used to 
study the logistics network structure adjustment from a non-optimal network structure 
to a collaborative multiple DCs network optimization structure. The optimization of 
CMCVR can effectively improve vehicle loading rate and reduce the crisscross 
transportation phenomenon. Designing a reasonable profit distribution mechanism is a 
critical step of CMCVR optimization. Collaboration can be organized through a 
negotiation process by a logistics service provider. This paper establishes an integer-
programming model that contains transportation costs among distribution centers (DCs) 
and vehicle routing costs in each DC to minimize the total costs of CMCVRP. A multi-
phase hybrid approach with clustering, dynamic programming, and heuristic algorithm 
is presented to solve the model formulation. The clustering procedure increases the 
likelihood that the solution will converge to an optimal value, between-route operations 
(relocate, 2-opt* exchange, and swap move) in the heuristic algorithm will improve the 
initial solution, and the within-route (dynamic programming) procedure will calculate a 
good feasible solution for each vehicle route. Both between- and within-route 
operations are recursively executed to find the best solution. Profit distribution plans 
are then established using the improved Shapley value model. Optimal sequential 
coalitions are selected based on strictly monotonic path, cost reduction model, and best 
strategy of sequential coalition selection in cooperative game theory. An empirical 
study in Chongqing, China suggests that the proposed approach outperforms other 
algorithms, and the best sequential coalition can be selected and adjusted to increase 
the negotiation power for network optimization of logistics distribution.
Keywords: Multiple-center vehicle routing optimization; Profit distribution; Integer-
programming model; Multi-phase hybrid approach;  Improved Shapley value model
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1 Introduction

The traditional vehicle routing problem (VRP) seeks to find a set of routes that serve a 
series of customers (Allahyari et al. 2015). Each route can be performed by a single 
vehicle, which starts and returns to its own depot, and fulfills all customer requirements 
with minimized global transportation costs (Cordeau and Maischberger 2012; Fikar and 
Hirsch 2015). A collaborative multiple-center vehicle routing problem (CMCVRP) is 
the relaxed type of traditional VRP that is usually studied as a multiple-depot VRP 
(MDVRP) and a collaborative problem among multiple distribution centers (DCs). 
CMCVRP occurs when more than one DC is utilized in the network. Each vehicle 
departs from a DC to serve a series of customers by following a certain route plan and 
finally returns to the same DC. Each customer is reasonably assigned to its adjacent 
DC, where merged and transshipped goods are transported by a fleet of semitrailer 
trucks. Each customer should be also served by one vehicle on one occasion, whereas 
the loading of each vehicle should not exceed the vehicle capacity (Cattaruzza et al. 
2014; Allahyari et al. 2015). Properly optimizing MCVR not only mitigates city-wide 
traffic congestion and alleviates negative environmental effects, but also reduces 
individual operating costs for profit maximization (Dai and Chen 2012).

Different from conventional MDVRP, CMCVRP incorporates the cooperation 
mechanism among depots and increases modeling difficulty. CMCVR optimization is 
achieved through the negotiation-facilitated collaboration among multiple participants. 
The ultimate objective is to minimize the total costs of MCVR optimization, including 
vehicle routing costs in each DC and transportation costs among DCs, which may 
involve a transformative process from an original, non-optimal network structure to an 
optimized one. This process is organized by a logistics service provider (LSP) that 
performs corresponding logistics operations and strategies for participants in logistics 
distribution networks (Zäpfel and Bögl 2008; Braekers et al. 2014). Third-party LSPs 
can perform logistics activities better, including transportation, warehousing, 
information system, and value-added service, all of which integrate transportation, 
storage, and information into the LSP market.

The mutually beneficial situation among different logistics companies can be achieved 
through outsourcing non-core logistics activities by LSPs. LSPs have the capability to 
persuade more participants to join the coalition and save more from an original non-
optimal network structure to a newly optimized one in the logistics network 
optimization process. Determining a reasonable profit distribution strategy with 
collaboration among its participants is the critical issue during a negotiation and 
optimization procedure. The robustness of collaboration relies on the rationality of 
profit distribution. Conventional MCVRP studies neglect the collaboration mechanism 
in the optimization procedure and assume that any two depots are willing to share their 
customer resources, delivery facilities without costs and the need for third-party 
logistics; such an assumption is not true in reality, and a series of value-added services 
including warehousing, negotiation, and transportation require third-party logistics 
providers (i.e., LSPs) to manage certain costs. 
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Although the aforementioned collaboration mechanism widely exists in the MCVR 
optimization procedure, little research effort has been made to investigate the 
cooperative process, including profit distribution plans, strategies of sequential 
coalition selection, and so forth (Dai and Chen 2012), especially in the context of 
MCVRP. To fill this research gap, the current study proposes to incorporate the 
collaboration mechanism into traditional MCVRP as CMCVRP. Therefore, a 
hierarchical hybrid approach should be proposed to find near-optimal vehicle routes 
(Dondo and Cerdá 2007). To reduce the computational complexity of this problem and 
improve calculation accuracy, customer clustering procedure, dynamic programming 
procedure, and heuristic algorithm are consecutively applied. Next, a profit distribution 
strategy based on the Shapley value model (Shapley, 1953) is developed to study 
collaborative sequences and analyze the negotiation process.

The rest of this paper is organized as follows. Relevant studies are first discussed in 
Section 2, and CMCVRP is further illustrated. Model formulation with related 
definitions is developed in Section 4. The multi-phase hybrid approach, including 
clustering procedure, dynamic programming procedure, and heuristic algorithm, is 
proposed and described thoroughly in Section 5. An improved Shapley value model is 
then utilized to distribute gained profit among different logistics participants. To 
evaluate the effectiveness of the established model and proposed approach, a case study 
of allocating benefits in collaborative CMCVRP from Chongqing, China is presented in 
Section 6, followed by a thorough analysis with collaborative sequences and 
negotiation power. Finally, conclusions are summarized at the end of this paper.

2 Literature Review

With the advent of new technology such as electronic commerce, the collaboration 
among multiple participants in the large-scale logistics distribution network has 
become much easier. Collaboration among multiple participants reduces logistics costs, 
increases profits for large-scale industrial companies, and can benefit the overall 
economy. Given the potential importance that collaboration can provide, many 
researchers have begun studying different collaboration methods with the goal of 
maximizing the overall benefits such methods can provide. An innovative clustering 
approach is a critical issue used to alleviate computational complexity for the network 
optimization of large-scale logistics (Bosona and Gebresenbet 2011; Ng and Lam 2014; 
Wang et al. 2014a). Dondo and Cerdá (2007) developed a cluster-based three-phase 
optimization approach for routing problems of multi-depot heterogeneous fleet vehicles 
with time windows. This algorithm first groups customers into multiple clusters, and 
then assigns each cluster to a depot using mixed-integer linear programming (MILP) 
model. The third-phase approach allocates border and non-border customers to depots 
to construct solutions for globally optimized MDVRP. Miranda et al. (2009) proposed a 
collaborative e-work-based optimization approach, including fleet design and customer 
clustering decisions, to assist in the design problem of strategy logistics networks. 
Bosona and Gebresenbet (2011) studied the logistics network integration and cluster 
building of local food supply chain in Sweden, and found that most clusters can be 
integrated into food distribution channels and improve the delivery routes including 
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time and distance. Yücenur and Demirel (2011) developed a genetic algorithm based on 
genetic clustering algorithm for the MDVRP solution process. Mehrjerdi and 
Nadizadeh (2013) proposed a greedy clustering method combined with stochastic 
simulation to study capacitated location-routing problems with fuzzy demands. Wang 
et al. (2014a) presented a fuzzy clustering algorithm to divide the customers into 
multiple clusters for further logistics network optimization. Tu et al. (2014) introduced 
a bi-level Voronoi diagram-based metaheuristic to solve large-scale MDVRP. The 
upper-level algorithm is used to assign customers to depots, and the lower level is used 
to reallocate customers among depots and rearrange them among routes from each 
depot to its neighbors.

Customer clustering can be considered an important step during the MCVR 
optimization procedure (Özdamar and Demir 2012; Ng and Lam 2014), while 
mathematical programming model and heuristic algorithms can be further improved to 
study CMCVRP within each DC and among DCs (Luo and Chen 2014). Ho et al. 
(2008) developed two hybrid genetic algorithms, including Clarke and Wright saving 
methods and nearest-neighbor heuristic algorithms, to deal with MDVRP. Tatarakis 
and Minis (2009) presented suitable dynamic programming algorithms to study vehicle 
routing problem with multiple depot returns. Dondo and Cerdá (2009) presented 
manageable MILP formulations and a hybrid local improvement algorithm for large-
scale MDVRP with time windows. Bettinelli et al. (2011) established an integer linear 
programming model and proposed a branch-and-cut-and-price algorithm to study the 
routing problems of multi-depot heterogeneous vehicles with time windows. Kuo and 
Wang (2012) presented a variable neighborhood search method that is similar to the 
simulated annealing algorithm for solving MDVRP with loading costs. Ng and Lam 
(2014) proposed a supply network optimization model based on a functional clustering 
approach for reducing the transportation cost. Contardo and Martinelli (2014) modeled 
MDVRP with the constraints of capacity and route length as a vehicle-flow and set-
partitioning formulation, and developed an exact multi-stage algorithm to solve the 
formulation. Allahyari et al. (2015) proposed a hybrid metaheuristic algorithm for 
routing problems of multi-depot covering tour vehicles. A brief comparative summary 
of relevant literature involving solution methods and objective functions of MDVRP is 
presented in Table 1. 

In summary, the necessary definition of the abbreviations in Table 1 can be shown as 
follows:

MDVRPPD: Multiple Depot Vehicle Routing Problem with Pickups and Deliveries.
MDHVRPTW: Multiple Depot Heterogeneous Vehicle Routing Problem with Time 
Windows.
MPVRCSOO: Multiple Period Vehicle Routing and Crew Scheduling with 
Outsourcing Options.
BOMDLRP: Bi-Objective Multiple Depot Location Routing Problem.
FTMDCVRP: Full Truckloads Multiple Depot Capacitated Vehicle Routing Problem.

MDHVRPTW: Multiple Depot Heterogeneous Vehicle Routing Problem with Time Windows.
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MDVRPLC: Multiple Depot Vehicle Routing Problem with Loading Cost.
CCPD: Carrier Collaboration in Pickup and Delivery.
GLNC: GLobal Network Configurations.
LSDRLP: Large Scale Disaster Relief Logistics Planning.
MTVRP: Multiple Trip Vehicle Routing Problem.
2E-LRPTW: Two-echelon Location Routing Problem with Time Windows.
MD-H-DARP: Heterogeneous Dial-A-Ride Problems with Multiple Depots.
VRPSDPSLTW: Vehicle Routing Problem: Simultaneous Deliveries and Pickups with 
Split Loads and Time Windows.
MDCTVRP: Multiple Depot Covering Tour Vehicle Routing Problem.
MAVRP: Multiple Attribute Vehicle Routing Problem.

Table 1. Comparative literature summary of relevant solution methods and objective 
functions of MDVRP

References in temporal 
order

Acronym of 
problem studied Solution method Objective function

Nagy and Salhi (2005) MDVRPPD Heuristic algorithm
Minimize total routing 
costs and computational 
times

Crevier et al. (2007) MDVRP Heuristic and tabu search 
method

Minimize total routing 
costs and computational 
times

Dondo and Cerdá (2007) MDHVRPTW Three-phase heuristic 
algorithm

Minimize overall 
service expenses

Ho et al. (2008) MDVRP Two hybrid genetic 
algorithms (HGAs)

Maximize delivery time 
spent among n depots

Zäpfel and Bögl (2008) MPVRCSOO Hybrid metaheuristic Minimize total costs of 
all tours

Moghaddam et al. (2010) BOMDLRP Multi-objective scatter 
search algorithm

Maximize total demand 
services and minimize 
total costs

Liu et al. (2010b) FTMDCVRP Two-phase heuristic 
algorithm

Minimize empty 
vehicle movements

Bettinelli et al. (2011) MDHVRPTW Branch-and cut-and-
price algorithm

Minimize the sum of 
vehicles fixed and 
routing costs

Kuo and Wang (2012) MDVRPLC Variable neighborhood 
search 

Minimize total 
transportation costs

Dai and Chen (2012) CCPD
Three-profit allocation 
mechanisms based on 
Shapley value

Maximize post-
collaboration total 
profit of carrier alliance

Sheu and Lin (2012) GLNC
Integer programming 
and hierarchical cluster 
analysis method

Minimize network 
configuration costs and 
maximize both 
operational profit and 
customer satisfaction

Özdamar and Demir 
(2012) LSDRLP

A hierarchical cluster 
and route procedure 
approach

Minimize estimated 
total travel times and 
efficient vehicle 
utilization

Cattaruzza et al. (2014) MTVRP HGA Minimize total travel 
times



ACCEPTED MANUSCRIPT
6

Govindan et al. (2014) 2E-LRPTW MHPV algorithm
Best designs in SSCN 
and minimize costs and 
environmental effects

Braekers et al. (2014) MD-H-DARP
Exact branch-and-cut 
algorithm and 
deterministic annealing 
meta-heuristic

Minimize total routing 
costs

Wang et al. (2013) VRPSDPSLTW Hybrid heuristic 
algorithm

Minimize total travel 
costs, number of 
vehicles, and loading 
rate

Luo and Chen (2014) MDVRP Improved shuffled frog-
leaping algorithm

Minimize total costs 
and computational 
times

Allahyari et al. (2015) MDCTVRP Hybrid metaheuristic 
algorithm

Minimize total routing 
and allocation costs

Dayarian et al. (2015) MAVRP Branch-and-price 
algorithm

Minimize total arc costs 
of route

Integrated transportation services among multiple depots should be also considered in 
the collaborative MDVRP, which usually appears in two-echelon VRP (Baldacci et al. 
2013; Wang et al. 2015a). The cooperation process can be implemented between first-
and second-level facilities (Hemmelmayr et al. 2012; Govindan et al. 2014; Ahmadizar 
et al. 2015). Other approaches, including collaboration model, centralized and 
decentralized approaches, were also used to solve the planning problems of 
collaborative logistics. Berger and Bierwirth (2010) developed two decentralized 
approaches to study problems of request reassignment in collaborative carrier networks. 
Hernández et al. (2011) developed a branch-and-cut algorithm to solve deterministic 
planning problems of dynamic single-carrier collaboration for less-than-truckload 
industry. Hemmelmayr et al. (2012) presented an adaptive large neighborhood search 
heuristic approach to solve the Two-Echelon Vehicle Routing Problem (2E-VRP). 
Hernández and Peeta (2014) presented a collaboration model to tackle carrier 
collaboration problems for less-than-truckload carriers. Wang et al. (2015a) proposed a 
hybrid particle swarm optimization-genetic algorithm for studying the two-echelon 
logistics distribution region partitioning problem. Ahmadizar et al. (2015) presented a 
hybrid genetic algorithm to optimize two-level vehicle routing with cross-docking in a 
three-echelon supply chain. Hafezalkotob and Makui (2015) developed a stochastic 
mathematical programming model for cooperative maximum-flow problems under 
uncertainty in logistics networks. Generally, the mathematical programming model 
based on MDVRP can be established with accurate and intelligent algorithms. 
However, only a few studies can be found to investigate collaborative strategy design 
among the same-level logistics facilities in the MDVRP context.

The MCVR optimization process usually contains vehicle routing optimization and the 
problem of collaborative strategy design (Govindan et al. 2014; Allahyari et al. 2015). 
The problem of collaborative strategy design belongs to the category of cooperative 
game theory, which can be used to analyze the cooperative behavior and benefit 
allocation relationship among participants (Frisk et al. 2010; Hellström et al. 2015). 
Krajewska et al. (2008) presented a feature combination of routing and scheduling 
problems and cooperative game theory. Shapley value methods were used to determine 
the fair allocation of cost reductions. Nagarajan and Sošić (2008) presents the game-
theoretic analysis review and extensions of cooperation among supply chain agents. 
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Özener and Ergun (2008) developed a cost allocation mechanism based on cooperative 
game theory and proposed several cost allocation schemes to study the transportation 
network of collaborative logistics. Cruijssen et al. (2010) proposed a new procedure 
that outsources initiative to LSPs. The Shapley value method was utilized to allocate 
cost reduction, and a practical example was demonstrated to study collaboration and 
cost reduction allocation among participants. Frisk et al. (2010) presented a new cost 
allocation method based on Shapley value, nucleolus, separable and non-separable 
costs, shadow prices, and volume weights for collaborative forest transportation. 
Lozano et al. (2013) proposed a linear model to study the profit distribution process 
among different companies when their transportation requirements are merged. 
Hellström et al. (2015) proposed three cases from distributed energy ecosystems to 
study the collaboration mechanisms for business models around renewables and 
sustainability. However, the above studies suffer from the following issues: (1) MCVR 
optimization procedure rarely considers how to optimize vehicle routes and allocate 
benefits when goods between different depots are transshipped. (2) Transportation costs 
are usually not considered among multiple centers, whereas costs are an important 
factor during the MCVR optimization procedure. (3) Most studies focus on designing a 
profit distribution mechanism based on cooperative game theory and centralized and 
decentralized approaches, but ignore the interaction between vehicle routing 
optimization and profit distribution. Therefore, a reasonable profit distribution 
approach based on cooperative game theory should be properly designed for 
CMCVRP.

3 Problem Statements and Model Formulation

3.1 MCVRP

The MCVRP can be regarded as an extension of MDVRP. MCVRP optimization can 
be achieved through collaboration among multiple DCs, and the collaborative process 
can be organized by LSPs (Nagurney 2009; Manzini 2012; Wang et al. 2015b). 
MCVRP optimization can effectively improve vehicle loading rate, reduce crisscross 
transportation phenomenon, and enhance the efficiency of logistics network operation. 
In our study, CMCVRP contains multiple DCs and a large number of customers to be 
served. Figure 1 shows the structural change before and after MCVRP optimization. 
DCs are independent with each other before optimization. Through optimization, DCs 
can mutually cooperate for achieving the centralized transportation.
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Distribution center
Customer

(b)  After multi-center vehicle routing optimization

Semitrailer truck transport

(a)  Before multi-center vehicle routing optimization

Vehicle delivery

Fig. 1 Comparison Diagram of MCVRP Optimization

As shown in Fig. 1(a), a non-optimal network structure can be observed before MCVR 
optimization, where several DCs serve long-distance customers, even though these 
customers are fairly adjacent to other peer DCs due to customer loyalty and the 
conditions of market competition. Certain customers are more likely to receive logistics 
service from those previous DCs even though these DCs are far away from them. In 
addition, because of competition among multiple DCs, some later-established DCs can 
provide more favorable service (e.g., discount service, door-to-door service, etc.) to 
attract new customers, leading to long-distance and crisscross deliveries. Therefore, 
optimizing a non-optimal network structure is important.

To optimize this non-optimal network structure, the network structure adjustment 
through collaboration among multiple DCs is required. The generated benefit from the 
new optimized network structure must be also allocated fairly among the multiple DCs. 
Therefore, MCVRP is a three-part problem: 1) how to redesign the multiple-center 
network structure, 2) how to collaborate among multiple DCs, and 3) how to allocate 
the benefits among multiple DCs. These are both critical issues in the MCVRP 
optimization procedure.

As shown in Fig. 1(b), the adjusted network structure through collaboration among 
DCs, each customer is reasonably assigned to its adjacent DC. The merged and 
transshipped goods can be transported among DCs by a fleet of semitrailer trucks, and 
each DC can serve the adjacent customers by a fleet of vehicles. Therefore, MCVRP 
optimization can be regarded as a multi-constraint combinatorial and game 
optimization issue. MCVRP optimization aims to serve customers and minimize the 
total logistics costs of the entire network system. Three key research issues should be 
addressed: 1) redesign the non-optimal network structure, 2) select a collaborative 
mechanism, and 3) distribute the cost savings from a non-optimal to an optimal 
network. A three-stage procedure is proposed in this study. Multi-phase hybrid 
approach is initially developed to solve CMCVRP, an improved Shapley value model is 
utilized to split the gained profit based on cost savings as a result of the optimized 
logistic network through CMCVRP, and finally, a collaborative mechanism is 
presented with a real-world numerical experiment.
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3.1.1 Related Definitions and Notations 

Related notations and definitions (Li, et al. 2016) used in MCVR optimization 
formulation are listed in Table 2.

Table 2. Notations and definitions in CMCVRP
Symbol Definition

I Set of all DC sites; if , and h represents a DC that is different from i, ,i h I
then h i

J Set of customers; j J

K Expresses vehicle set; , where K is a predetermined set based on the k K
initial non-optimized logistic network

Di Delivery quantity of DC i within one working day
Lih Distance from DC i to h
Lij Distance between customers i and j; ,i j I J 
qj Demand quantity of customer j; j J
B Capacity of semitrailer truck
Qv Vehicle capacity
 Number of working periods
W Number of days in one working period
Cv Average fuel consumption per 100 miles of vehicle
Cs Average fuel consumption per 100 miles of semitrailer truck
 Gasoline price (USD/gallon)
A Average annual maintenance costs of semitrailer truck
Fv Average annual maintenance costs of vehicle

i Variable cost coefficient of each DC i

L Maximum delivery distance

dih

Delivery quantity from DC i to h; a variable related to the change of 

decision variable c
ijhz

zij
zij=1; customer j is served by DC i, otherwise set zij=0, ,  in the the i I j J
initial non-optimized logistic network

Ni Number of vehicles for serving customers in DC i

Gi
Fixed costs (Unit: USD) of DC  in a working period; LSP covers the fixed i
costs when DC agrees to cooperate

Pi
Service costs (e.g., personnel, maintenance, etc.) of LSP for DC i when 
cooperation is achieved within one working period (Unit: USD)

In addition, several decision variables are listed in Table 3.

Table 3. Decision variables in CMCVRP
Decision variable Definition

xijk
xijk=1; vehicle k travels directly from i to j ( ); ,i I J j J  
otherwise set xijk=0, k K

yi
Coalition relation between DCs and LSP. If DC i agrees to 
cooperate in vehicle routing optimization, then set yi=1; otherwise 
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set yi=0

c
ijhz

Change of service relation from DC i to h, if customer j is served 

from DC i to DC h, then set ; otherwise set , , 1c
ijhz 0c

ijhz ,i h I

j J

k
; vehicle k serves the number of customers greater than 0; 1k 

otherwise set , 0k  k K

3.2 Model Formulation

Model formulation is composed of , , and  and can be described as follows.1T 2T 3T

 is transportation and maintenance costs from DC i to h (if collaboration occurs) in a 1T

working period. It can be calculated as

                (1)1
, ,

( )ih ih
s ih

i h I h i

d d AT C L W
B B 

       


 is the sum of fixed, dispatching, and maintenance costs for assigned vehicles within 2T

a working period. It can be calculated as

             (2)2 [(1 ) ( ) ( )]


        v
i i i i i i i

i I

FT y G y P D W N

 is the delivery costs for assigned vehicles within a working period and can be 3T

calculated as follows:
                  (3)3 ( )ij ijk k v

i I J j I J k K
T L x C W

    

         

The mathematical model can be expressed as follows:
   T=min T1+T2+T3                                  (4)

Subject to
,                                   (5)1ijk

k K i I J
x

  

  j J

         ,                              (6)( )j ijk v
j J i I J

q x Q
  

  k K

, ,                    (7)0ijk jik
j I J j I J

x x
   

   k K i I J 

         ,                                    (8)1ijk
i I j J

x
 

 k K
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, , ,                (9)( ) 1iuk ujk ij
u I J

x x z
 

   i I j J k K

,                                        (10)ijL L ,i j I J 

, ,                           (11)


  c
ih ijh j

j J
d z q ,i h I j J

, ,                        (12)0,1ijkx  ,i I J j J   k K

,                                        (13)0,1iy  i I

, ,                               (14)0,1c
ijhz  ,i h I j J

,                                      (15)0,1k  k K

Model Equation (1) is used to calculate the transportation and maintenance costs from 
semitrailer trucks among DCs. Model Equation (2) is utilized to calculate the sum of 
fixed costs of DCs, service costs of cooperation process, and maintenance costs from 
vehicles. Model Equation (3) expresses the delivery costs for assigned vehicles. 
Objective Function (4) minimizes the total network costs. Constraint (5) ensures that 
each customer can be served by a single vehicle. Constraint (6) assures that the sum of 
customer demands for a single route does not exceed the delivery vehicle’s capacity. 
Constraint (7) guarantees that flow conservation is achieved. Constraint (8) specifies 
that a vehicle starts only from one DC. In other words, the total number of trips that 

vehicle k travels directly from i to j ( ) should be less than or equal to 1. ,i I j J 

Constraint (9) ensures that a customer can be served by DC only if there is a vehicle 
from DC serving the customer. Constraint (10) regulates that distance between i and j 
should not exceed the maximum delivery distance. Constraint (11) stipulates the 
delivery quantity from DC i to h,  which is equal to the total change of customer 
quantities from DC i to h. Constraints (12), (13), (14), and (15) are binary decision 
variables.

4 Multi-phase Hybrid Approach Solving Procedure

As presented in Section 3.3, Objective Function (4) is different from the traditional 
MDVRP (multiple-center vehicle routing problem) objective function, because the 
cooperation process is considered in Model Equations (1), (2), and (3). That is, Model 
Equations (1), (2), and (3) demonstrate the calculation process for costs, including 
transportation, maintenance, and service, among DCs (Distribution Centers) from a 
non-optimal network structure to a collaborative multiple-center optimal network 
structure. Therefore, Objective (4) is used to calculate the total minimum costs of 
Model Equations (1), (2), and (3). Designing a reasonable approach to solve the above 
objective function is critical. During CMCVRP (collaborative multiple-center vehicle 
routing problem) optimization, some customers that were originally delivered to by one 
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DC may be assigned to another DC, which will lead to concentrated transportation 
services among DCs at the beginning of cooperation. The process is the prerequisite in 
the practical cooperation process, while traditional MDVRP models tend to ignore 
these costs.
An unreasonable distribution network structure is known in advance as well. Our 
approach aims to optimize the unreasonable network. Optimization is based on a three-
step process with a multi-phase hybrid solution approach in an optimization framework 
(see Fig. 2). First, customer clusters in the heuristic clustering procedure can be 
generated. Then, an initial feasible solution is yield based on the dynamic programming 
method and the mathematical programming process. Next, a heuristic algorithm 
process is presented to further improve the initial solution, and a cycle operation is 
performed based on optimal mathematical model T. In the proposed multi-phase hybrid 
approach, the clustering procedure is presented to obtain customer clustering units 
based on Constraints (5)–(10) in Section 3.3, the dynamic programming method 
procedure can be used to obtain initial routes based on Constraints (5)–(9) in Section 
3.3, and the heuristic algorithm procedure contains between-route operations (relocate, 
2-opt* exchange, and swap move) and within-route operations (dynamic 
programming).

Clustering procedure

Node location and 
loads

Stage 1: Cluster generation and 
assignment

Dynamic programming 
procedure Stage 2: Routes sequencing

Heuristic algorithm 
procedures

Stage 3: Optimal routes and 
sequencing

Vehicle routes

Mathematical programming 
procedure

Initial nodes-vehicles 
assignment relations

Clusters, loads, and 
vehicles

Fig. 2. Schematic of CMCVRP multi-phase hybrid approach

4.1 Clustering procedure

The clustering procedure is necessary to be performed prior to the initial route 
construction procedure, which is illustrated in this section. Several notations are 
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introduced as follows: C is a cluster set, , and is the total { | 1,2, , }kC C k m   m

number of vehicles from DCs, ;  is the set of unvisited customers; and  is the k K 'J n
number of DCs. The number of clusters is equal to the number of vehicles for each DC. 
Therefore, the initial number of clusters is a fixed value. The clustering procedure 
based on previous research (Mitra 2008; Özdamar and Demir 2012; Wang et al. 2014b) 
can be designed as follows:

Step 1: For each DC, set the first and last elements as DC in each cluster. 
Step 2: Choose the second element in each cluster of each DC as the customer with the 
minimum distance to DC from the unvisited customers.
Step 3: Choose the third element in each cluster of each DC as the customer with the 
minimum sum of distances from the existing elements within the cluster.
Step 4: Obtain remaining elements with the minimum sum of distances from existing 
elements within each cluster. The clustering procedure ends when cumulative delivery 
demands exceed the vehicle capacity or all customers are assigned.
Step 5: Find those clusters whose delivery demands are less than half of the vehicle 
capacity and merge every two clusters into one. 
Constraints (5)–(10) will be used to check the unqualified element inserting into 
clustering routes in each of the above steps. If the chosen element is unqualified, the 
next element will be chosen. Once clusters are formed, vehicle routing is scheduled 
within each cluster and cross-optimization is conducted among clusters. Customer 
clustering is a fundamental step for the procedure of initial route construction. Dynamic 
programming procedure is presented below to further enhance the procedure of initial 
solution seeking.

4.2 Dynamic programming procedure

Dynamic programming method (Boyer et al. 2011; Desai and Lim, 2013; Arokhlo et al. 
2014) is used to adjust customer orders within each cluster gained from the above 
clustering procedure. Relevant notations can be predefined as follows. 

 is the set of customers in each cluster;  is the { | 1,2, , }kV V k m   ( , , )G V E H

urban road network;  is the set of edges of urban road network; is the set of edge E H

lengths of urban road network;  is the visited customers before customer ; ;  jv j kv V

;  is the shortest distance between customers  and ;  is the DC in kV  | |ijp iv jv 0v

cluster; and  is the optimal index function of  stage. Suppose that cluster contains f
th

 customers, and then the dynamic programming procedure within an arbitrary cluster 

 is detailed below.kV

Step 1: Divide the procedure of dynamic programming optimization into  stages 
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based on the number of customers in cluster.

Step 2: Select all state variables , , where  is the visited customers ( , )jv  j kv V 

before , .jv kV 

Step 3: Find customer , and calculate the route from customer  to  as follows: iV iv jv

construct the optimal index function , 1( , ) min{ ( , /{ }) | |}j i i iji
f v f v v p 

 
 

, where  is the set of customers excluding customer ; and 1,2, ,   / { }iv iv

,  is the boundary condition.0 0( , ) | |j jf v p  1,2, ,j  

The initial routes can be obtained with the above dynamic programming procedure.

4.3 Heuristic algorithm to improve the initial solution

Heuristic algorithms are effective in solving MCVR (multiple-center vehicle routing) 
problems (Nagy and Salhi 2005; Lin and Kwok 2006; Liu et al. 2010b). Several local 
search approaches from heuristics algorithm are 2-opt* exchange, swap move, shift 
move, and relocate operator (Dondo and Cerdá 2007; Cordeau and Maischberger 2012; 
Tlili et al. 2014). The heuristic algorithm is illustrated as follows:

Step1: Calculate the initial solution based on dynamic programming method and record 
the total transportation costs. Set iteration number as . 1l 
Step 2: Randomly select one route from each DC, and then select two routes in turn 

from  combinations. Repeat the relocate operator until no more improvement can be 2
nC

found over the best known solution within  consecutive iterations.

Step 3: Repeat 2-opt* exchange procedure until no more improvement can be found 

over the best known solution within  consecutive iterations.

Step 4: Perform (2, 0), (1, 1), (2, 1), and (2, 2) swap moves recursively until no more 

improvement can be found over the best known solution within  consecutive 

iterations.
Step 5: Select two routes in turn from all possible combinations within each DC. Apply 
the relocate operator, 2-opt* exchange, and (2, 0), (1, 1), (2, 1), and (2, 2) swap moves 
recursively until no more improvement can be found over the best known solution 

within  consecutive iterations.

Step 6: Apply the dynamic programming procedure in each cluster within each DC and 
record the best total transportation costs. In set , determine whether  reaches 1l l  l

maximum iteration number ; if not, return to Step 2. Otherwise, the heuristic  m
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algorithm procedure will be terminated.
Constraints (5)–(10) will also be used to check unqualified routes in each of the above 
steps. In the above heuristic algorithm procedure, between-route operations (relocate, 
2-opt* exchange, and swap move) can be also used to improve the sequence of visited 
customers between different routes. The within-route (dynamic programming) 
procedure is used to acquire the optimal solution in each route. In the heuristic 
algorithm procedure, if the updated total transportation costs are lower than the one in 
the previous iteration, then the adjusted route will be accepted; otherwise, the previous 
route will be kept. Both between-route and within-route operations are recursively 
executed until the best solution is found.

5 Improved Shapley Value Model and Application

When the vehicle routing optimization is achieved, each customer is adequately 
assigned to a vehicle, and an optimized route is generated. Consequently, LSP is 
required to estimate and allocate cost savings as a result of change in the distribution 
network structure. The improved Shapley value model is a unique solution to the costs 
and profit distribution problem.

5.1 Improved Shapley value model

Shapley value model is a part of cooperative game theory, which is utilized to analyze 
collaborative behavior in a negotiation process within a group of participants to set up a 
contract or cooperative plan of activities, including generated profit allocation 
(Krajewska et al. 2008; Nagarajan and Sošić 2008; Frisk et al. 2010). Allocating profit 
properly is critical to each participant of a logistics cooperation process (Liu et al. 
2010a; Özener and Ergun 2013; Wang et al. 2015b).

Let N be a set of players (each player is a DC in the context of our study), and  2 1N 
can be expressed as the collection of all subsets of N, excluding null set. The elements 
of all subsets are called coalitions. N is the grand coalition, T is a coalition from set N, 

and all . The Shapley value (Shapley 1953) model can be denoted by  T N ( , )N v

and used to calculate the average marginal revenue of participants when they enter the 
coalition in a completely random order.

If sub-game  of coalition T is given by the restriction of v to , then marginal ( , )T v 2 1T 

revenue is denoted by  for all . The improved Shapley value ( ) ( { })v S v S i  S T

model can be expressed as  and recalculated as follows:( , )T v

           (16) 
;

( , ) ( 1)!( )! ! ( ) ( { })i
T S i T

T v S T S T v S v S i
 

       

Four fairness properties are preferred in the improved Shapley value model. These 
properties are efficiency, symmetry, dummy property, and monotonicity, and are 
considered useful in profit distribution calculation (Shapley 1953; Cruijssen et al. 2010; 
Frisk et al. 2010). Efficiency assures that the total value of grand coalition is distributed 
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among all participants. Symmetric means that if two arbitrary participants create the 
same marginal revenue to all coalitions, both participants should receive the same share 
of total value. Dummy property ensures that if a participant is a dummy player, this 
participant will not have any contribution to any joined coalitions, and allocated profit 
should be zero. Monotonicity establishes that if all participants’ marginal contributions 
increase, profit will also increase. These four properties can guarantee the rationality 
and stability of profit distribution from a practical perspective.

5.2 Cost reductions

To study the cost reduction based on the improved Shapley value model, related 
notations are introduced as follows:

           LSP’s synergy requirement

       Costs of player i without coalition  0 ( )C i

       Total costs in T by LSP( )C T

          Set of possible sequential coalitions in grand coalition N

        Rank of player i in sequence ( )i 

     Cost reduction percentages to player i on step t along sequence ( , , )i t  

To cover the extra overhead costs of collaboration service (i.e., warehousing, 
transportation management, negotiation, etc.) for participants in the synergy process, 
LSP needs a pre-determined percentage of profit as the synergy result. This share is 
called synergy requirement and is denoted as . LSP will gain a higher [0,1] 
prospected profit by setting a higher , while participants are more likely to accept 
cooperation by setting  as a lower value. The value  of coalition T can be  ( )v T
calculated by means of Formula (17).                  

         (17)
  0 01 ( ) ( ) ( ) ( ) 0

( )
0

i T i T
C i C T if C i C T

v T
otherwise


 

          



 

where  are the total costs when transportation plans are executed with LSP in ( )C T
coalition T; and  are the costs when participant i performs individual 0 ( )C i
transportation plan. In addition, whenever  occurs, participants in T 0 ( ) ( )

i T
C i C T




will not accept LSP’s service, and  becomes zero in Formula (17). If N is the ( )v T
grand coalition, the possible sequential coalition set  contains  different  !N
combinations. The  is rank of player i in sequence . Cost reduction percentages ( )i 

 can be calculated as follows:( , , )i t 

,                   (18)0
( ) ,

( , , ) , ( )i
t N

i t v C i
 

   
 


  

    ( )t i

In Formula (18), the cost reduction percentages  can be used to explain the ( , , )i t 

strictly monotonic path (SMP) (Cruijssen et al. 2010; Wang et al. 2015b). In game 
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theory, if all  satisfy the  condition, then , ,S T M N \S T N M 

, which is called strictly convex. Suppose that  is ( ) ( ) ( ) ( )v S M v S v T M v T     ( , )N v

strictly convex, it must satisfy a certain requirement, which is expressed as each   
being an SMP. Based on the above assumption, we can further demonstrate the 
corresponding theorem and proof:

Theorem 1.  is strictly convex if, and only if, every  is an SMP.( , )N v  

Proof. Let  be strictly convex and consider two coalitions  and . A single ( , )N v  T

 and  occurs, and then for all :\j N T { }j    i T
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Through the above proof procedure, the SMP can be considered as a sequence where 
cost reduction percentages for all committed participants are monotonically increasing 
as each participant joins the coalition. The selection process for choosing the best 
sequential coalition based on SMP is detailed as follows:

Step 1: Select diagonal values from the cost reduction percentage matrix in possible 
sequential coalitions based on SMP. 
Step 2: Find the participant with the maximal lowest cost reduction percentage in 
selected diagonal values. If the cost reduction percentage is equal for all possible 
sequential coalitions, then find another participant with the maximal second lowest cost 
reduction percentage. The above procedure is iteratively executed until at least one 
participant can be found or all participants have been searched.
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Step 3: The selected sequential coalition is chosen as the candidate for profit 
distribution strategy. If all participants have been searched, select any sequential 
coalition as candidate for profit distribution strategy.

6 Implementation and Analysis

6.1 Data source

An empirical study in Chongqing, China is utilized to evaluate the applicability of the 
proposed approach in MCVRP optimization. Chongiqng City, the municipality, is a 
critical transportation hub in southwest China. It is therefore selected as an ideal test 
location for this study. For each DC, the delivery demand data is provided by the local 
government. Four DC locations (D1, D2, D3, and D4) and 55 representative customers 
(C1, C2…C55) in Industry I are displayed in Fig. 3. The four DCs are independent 
from each other, meaning that collaborations exist among them. Customers in triangle 
are assigned to D1, circular customers are assigned to D2, solid x customers are 
assigned to D3, and square customers are assigned to D4. Three DC locations (D1, D2, 
and D3) and 44 representative customers (C1, C2…C44) in Industry Π are displayed in 
Fig. 4. Similarly, five DC locations (D1, D2, D3, D4, and D5) and 77 representative 
customers (C1, C2…C77) in Industry Ш are displayed in Fig. 5. Initial vehicle routes 
from the three industries are shown in Tables 6–8. According to Figs. 3–5 and Tables 
6–8, significant overlapping regions of logistics services can be found in logistics 
distribution networks; therefore, the cooperation mechanism provided by LSP is 
necessary.

Fig. 3. Spatial distribution of logistics centers and customers in Industry I
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Fig. 4. Spatial distribution of logistics centers and customers in Industry Π

Fig. 5. Spatial distribution of logistics centers and customers in Industry Ш
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Table 6. Initial vehicle routes from four DCs in Industry I
DC Initial vehicle routes

D1
D1→C1→C2→C3→C4→C6→C5→D1
D1→C7→C11→C12→C8→C9→C10→D1

D2
D2→C17→C16→C15→C14→C13→D2
D2→C18→C19→C20→C21→C22→D2
D2→C23→C24→C25→C26→C27→D2

D3
D3→C30→C31→C32→C33→C34→D3
D3→C35→C36→C37→C28→C29→D3
D3→C39→C40→C41→C43→C42→C38→D3

D4
D4→C44→C45→C46→D4
D4→C50→C49→C48→C47→D4
D4→C51→C52→C53→C54→C55→D4

Table 7. Initial vehicle routes from four DCs in Industry Π
DC Initial vehicle routes

D1
D1→C14→C1→C2→C3→D1
D1→C6→C7→C8→D1
D1→C15→C30→C33→C16→C24→D1

D2
D2→C20→C18→C5→C4→C13→D2
D2→C22→C21→C10→C12→C9→C11→D2
D2→C37→C41→C42→C44→C43→D2

D3

D3→C36→C32→C26→C31→D3
D3→C34→C29→C25→C23→D3
D3→C28→C17→C19→C27→D3
D3→C35→C39→C40→C38→D3

Table 8. Initial vehicle routes from four DCs in Industry Ш
DC Initial vehicle routes

D1
D1→C1→C2→C3→C4→D1
D1→ C11→C15→C17→C19→C13→D1
D1→C51→C59→C56→C63→C55→D1

D2
D2→C14→C5→C6→C7→C8→D2
D2→C22→C21→C20→C35→C41→C25→D2
D2→C33→C44→C42→C30→C26→C49→D2

D3

D3→C16→C10→C12→C18→D3
D3→C27→C28→C29→C31→C32→C43→D3
D3→C45→C39→C23→C24→C9→D3
D3→C67→C65→C70→C73→D3

D4

D4→C52→C34→C36→C38→D4
D4→C53→C62→C61→C60→D4
D4→C50→C58→C57→C48→D4
D4→C69→C77→C74→C72→D4
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D5 D5→C54→C46→C47→C40→C37→D5
D5→C76→C75→C71→C64→C66→C68→D5

To streamline calculation procedure, the delivery demand of each customer is 
converted into a standard roll pallet quantity. The DC characteristics in Industries I, Π, 
and Ш contain the number of customers, period demand quantity, and graphic symbol, 
and are listed in Table 9.

Table 9. DC characteristics in Industries I, Π, and Ш

DC Number of 
customers

Periodic demand
(roll pallets)

Customer symbol 
in Figs. 3–5

D1 12 513
D2 15 672
D3 16 722Industry I 

D4 12 568
D1 12 542
D2 16 695Industry Π 
D3 16 746
D1 14 617
D2 17 711
D3 19 856
D4 16 682

Industry Ш 

D5 11 528

6.2. Relevant parameter setting of multi-phase hybrid approach and optimization 
results

In this empirical study, parameters for multi-phase hybrid approach are determined 
based on previous studies (Mitra 2008; Nagurney 2009; Özdamar and Demir 2012; Zhu 
et al. 2014). The parameter settings are given as follows:
1. Parameters are involved in data source and can be obtained in the initial routes for 
Industries I, Π, and Ш:

a. Industy I: , , , , , ; 11m  4n  1 2N  2 3N  3 3N  4 3N 

b. Industry Π: , , , , ; 10m  3n  1 3N  2 3N  3 4N 

c. Industry Ш: , , , , , , ;16m  5n  1 3N  2 3N  3 4N  4 4N  5 2N 

d.  is equal to the number of customers in each route.

2. Several other parameters are involved in the model formulation: , , 600B  75vQ 

, , , , , , , , and 3.2 s vC C 100U  52  5W  65L  3.99  4,800A  1 600vF  ，

. For calculation and comparison convenience, fixed and service costs can 1.5 
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likewise be set as , , , , , , 1 605G  2 874G  3 936G  4 802G  5 756G  1 645P 

, , , and . These costs can be computed based on the 2 586P  3 602P  4 563P  5 621P 

different numbers of DCs within various industries.

3. Several parameters are involved in the algorithm configuration:  is the 10 

maximum number of iterations in obtaining the best known solution without any 

improvement between two routes from different DCs,  denotes the maximum 15 

number of iterations in obtaining the best known solution without any improvement 

between two routes within each DC, and  is the maximum number of 500 m

iterations in terminating the multi-phase hybrid approach.
The multi-phase hybrid approach is implemented to optimize the total costs for grand 
coalition based on empirical data in Industries I, Π, and Ш. Good feasible routes are 
shown in Tables 10–12, and a comparison between initial and optimal total costs is 
presented in Figs. 6–8. Determining the costs and reducing the number of vehicles in 
three industries for grand coalition can be achieved because of three reasons: (1) The 
clustering procedure in multi-phase hybrid approach can help increase the possibility 
that the final solution converges with the optimal one. (2) Heuristic algorithm can 
significantly improve the initial solution. (3) Dynamic programming procedure obtains 
good feasible solution within each vehicle route.
Table 10. Good feasible vehicle routes for grand coalition from four DCs in Industry I

DC Good feasible vehicle routes

D1
D1→C14→C1→C2→C15→C3→C4→C16→D1
D1→C30→C9→C29→C8→C28→C7→C13→D1

D2
D2→C18→C5→C6→C19→C20→C21→D2
D2→C22→C34→C33→C32→C45→D2
D2→C17→C31→C10→C44→C46→D2

D3
D3→C38→C24→C23→C12→C11→D3
D3→C48→C47→C35→C36→C37→D3
D3→C50→C39→C49→C40→C41→D3

D4
D4→C25→C26→C27→C42→C43→D4
D4→C51→C52→C53→C54→C55→D4
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Fig. 6. Initial and good, feasible costs comparison diagram in Industry I

Table 11. Good feasible vehicle routes for grand coalition from three DCs in Industry 
Π

DC Good feasible vehicle routes

D1
D1→C4→C1→C13→C14→C27→D1
D1→18→C7→C6→C5→C3→C2→D1
D1→C15→C16→C28→C24→C17→D1

D2
D2→C20→C29→C25→C23→C22→C21→D2
D2→C12→C10→C9→C8→C11→C19→D2

D3
D3→C35→C31→C32→C26→C30→D3
D3→C36→C37→C38→C34→C33→D3
D3→C39→C40→C42→C44→C43→C41→D3

Fig. 7. Initial and good, feasible costs comparison diagram in Industry Π
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Table 12. Good feasible vehicle routes for grand coalition from five DCs in Industry Ш

DC Good feasible vehicle routes

D1
D1→C10→C1→C2→C3→C4→C12→C13→D1
D1→C11→C15→C16→C17→C18→C19→D1

D2
D2→C14→C6→C5→C7→C8→C9→D2
D2→C24→C25→C23→C22→C21→C20→D2

D3
D3→C27→C26→C28→C29→C31→C32→C30→D3
D3→C49→C56→C58→C57→C63→C55→C48→D3
D3→C42→C43→C33→C44→C51→C59→C50→D3

D4
D4→C37→C39→C38→C36→C35→C34→D4
D4→C53→C54→C62→C61→C60→C52→D4
D4→C45→C40→C41→C47→C46→D4

D5
D5→C65→C64→C66→C67→C68→C69→C73→D5
D5→C72→C70→C71→C74→C75→C76→C77→D5

Fig. 8. Initial and good, feasible costs comparison diagram in Industry Ш.
For comparison purposes, HGA (Ho et al. 2008), ISFLA (Luo and Chen 2014), and 
BVDH (Tu at al. 2014) are also implemented and tested based on the same datasets and 
parameters from the above industries I, Π, and Ш. The comparison results are shown in 
Table 13. The measures of effectiveness from the results contain the total cost and 
number of vehicles (TC expresses total costs (USD), and NV expresses number of 
vehicles).
Table 13. Comparison of proposed approach and three other algorithms in Industries I, 

Π, and Ш
Initial 

solution
Proposed 
approach

HGA ISFLA BVDHIndustry 
no. TC NV TC NV TC NV TC NV TC NV

D1 1,566 2 1,606 2 1,675 2 1,649 2 1,606 2
D2 2,162 3 1,874 3 1,931 3 1,902 3 1,874 3I
D3 2,367 3 2,033 3 2,153 3 2,102 3 2,078 3
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D4 1,959 3 1,720 2 1,846 3 1,755 3 1,720 2
D1 1,868 3 1,803 3 1,837 3 1,819 3 1,803 3
D2 2,093 3 1,732 2 1,862 3 1,753 2 1,732 2Π
D3 2,245 4 1,897 3 2,053 3 1,921 3 1,897 3
D1 1,679 3 1,573 2 1,605 2 1,573 2 1,573 2
D2 2,250 3 1,678 2 1,824 3 1,678 2 1,716 3
D3 2,471 4 2,059 3 2,189 4 2,113 4 2,084 3
D4 2,334 4 1,984 3 2,191 3 2,114 3 2,035 3

Ш

D5 1,838 2 1,756 2 1,792 2 1,779 2 1,756 2
Overall 
average 2,069 3.08 1,810 2.5 1,913 2.83 1,847 2.67 1,823 2.58

Based on the results in Table 13, the following findings can be summarized:
 In Industries I, Π, and Ш, the total costs of each DC and each industry from 

the proposed approach decreased in comparison with those from other three algorithms. 
D4 costs in Industry Ш decreased from 2,191 USD with HGA to 1,984 USD with the 
proposed algorithm. In addition, the total costs of Industry Ш decreased from 9,601 
USD with HGA to 9,050 USD with the proposed algorithm.
 The number of vehicles from the proposed approach is less than that from the 

other three algorithms.

To demonstrate the capability of optimizing large-scale logistics networks based 
on the proposed multi-phase hybrid approach, a comparative study with the BVDH 
algorithm on benchmark instances for MDVRP, including p08, pr02, pr03, pr05, pr06, 
pr07, and pr10 (more than 200 customers exist in p08, pr05, pr06, and pr10 benchmark 
instances), was undertaken. We found that the average solution from the proposed 
approach is closer to the average solution from the New Best Solution than that from 
BVDH. 

Table 14. Comparison results on benchmark instances for large-scale MDVRP

Benchmark 
instances

Number of 
customers

New best 
solutions

Proposed multi-phase 
approach BVDH

p08 249 4,420.95 4,452.37 4,536.82
pr02 96 1,288.37 1,288.37 1,288.37
pr03 144 1,782.58 1,782.58 1,851.65
pr05 240 2,343.66 2,343.66 2,456.38
pr06 288 2,675.16 2,702.23 2,862.19
pr07 72 1,085.61 1,085.61 1,120.32
pr10 288 2,811.49 2,828.56 3,127.39

Average 197 2,343.97 2,354.77 2,463.3

Compared with other models and algorithms, the proposed approach has the following 
merits: 

 In Industries I, Π, and Ш, the total travel cost and number of vehicles are 
significantly improved using the proposed approach. More realistic factors are 
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introduced into the problem formulation; for example, transportation cost among 
DCs, maintenance cost for semitrailer trucks and vehicles, delivery cost for each 
DC, and so on. The proposed approach includes a multi-stage process with 
clustering, dynamic programming, and heuristic algorithm: Clustering can 
effectively reduce computational complexity; dynamic programming can acquire 
the optimal solution for each route; the heuristic algorithm combines both 
between-route operations and within-route operations, where dynamic 
programming is also integrated. The multi-stage process is iteratively executed 
and can reduce the conservativeness of the obtained result. Therefore, this 
strategy gains more benefits for logistics and transportation operators.
 The initial route construction is generated from the clustering procedure, 

followed by a dynamic programming procedure to further enhance the procedure 
of initial route solution seeking. The heuristic algorithm and the cycle operation 
process are presented to assist increase the possibility that the final solution 
converges to the known best solution. For example, the total costs in the pr02, 
pr03 and pr07 from Table 14 calculated from proposed approach are equal to the 
new best solutions.
 The heuristic algorithm contains between-route operations (relocate, exchange, 

2-opt*, and swap move), within-route operations (dynamic programming). These 
operations can be used to improve the sequence of customers between different routes, 
and the within-route operations can obtain the optimal solution in each route. The 
between-route and within-route operations are applied interchangeably until the known 
good feasible solution is achieved.

6.3. Applications of Shapley value and cost reduction models

For calculation and presentation convenience, Industry I is selected for analysis. Fifteen 
non-empty coalitions are generated and served by LSP because four DCs exist in the 
logistics distribution network. The optimization results over a planning period from all 
non-empty coalitions are shown in Table 15.

Table 15. Comparison between initial and optimized networks over a planning period

S Demand
(roll pallets)

Total costs (USD) for 
initial network

Total costs (USD) for 
optimized network

{D1} 513 1,566 1,606
{D2} 672 2,162 1,874
{D3} 722 2,367 2,033
{D4} 568 1,959 1,720
{D1, D2} 1,185 3,728 3,338
{D1, D3} 1,235 3,933 3,455
{D1, D4} 1,081 3,525 3,332
{D2, D3} 1,394 4,529 3,786
{D2, D4} 1,240 4,121 3,497
{D3, D4} 1,290 4,326 3,527
{D1, D2, D3} 1,907 6,095 5,146
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{D1, D2, D4} 1,753 5,687 4,967
{D1, D3, D4} 1,803 5,892 5,103
{D2, D3, D4} 1,962 6,488 5,290
{D1, D2, D3, D4} 2,475 8,054 6,535

Cost savings between initial and optimized network can be redistributed among 
different DCs using the improved Shapley value model. A previous discussion 
indicated that the Shapley value model can be used to study profit distribution among 
multiple participants. For practical purposes, the synergy requirement is set as 

 in this study. Synergy requirement value is a key factor that reflects the 0.15 
negotiation process between LSP and coalition participants. The profit distributions for 
all non-empty coalitions are shown in Table 16 (Unit: USD).

Table 16. Profit distribution in MCVR optimization

T 0 ( )
i S

C i
 C(T) v(T) ( , )T v

{D1} 1,566 1,606 0 (0.0; ·; ·; ·)
{D2} 2,162 1,874 245 (·; 245; ·; ·)
{D3} 2,367 2,033 284 (·; ·; 284; ·)
{D4} 1,959 1,720 203 (·; ·; ·; 203)
{D1, D2} 3,728 3,338 332 (44; 288; ·; ·)
{D1, D3} 3,933 3,455 406 (61; ·; 345; ·)
{D1, D4} 3,525 3,332 164 (-20; ·; ·; 184)
{D2, D3} 4,529 3,786 632 (·; 297; 335; ·)
{D2, D4} 4,121 3,497 530 (·; 286; ·; 244)
{D3, D4} 4,326 3,527 679 (· ; ·; 380; 299)
{D1, D2, D3} 6,095 5,146 807 (93; 329; 385; ·)
{D1, D2, D4} 5,687 4,967 612 (35; 341; ·; 236)
{D1, D3, D4} 5,892 5,103 670 (11; ·; 410; 249)
{D2, D3, D4} 6,488 5,290 1,018 (·; 307; 401; 310)
{D1, D2, D3, D4} 8,054 6,535 1,519 (116; 469; 552; 382)

All possible profit distributions are shown in Table 16. Figure 9 shows the cost 
reduction percentages and all possible coalitional sequences. The figure shows that D2, 
D3, and D4 have positive reduction percentages in the last column, which means that 
D2, D3, and D4 can receive certain percentage cost savings if they agree to accept the 
cooperation service provided by LSP. LSP can also further optimize the logistics 
distribution network compared to the scenario when each DC serves its own customers 
individually. The third column of Fig. 9 shows that D1 and D4 can obtain -1.3% and 
9.4% cost reduction percentage respectively in the coalition {D1, D4}. This finding 
indicates that DC D1 will receive a negative cost reduction percentage in collaboration 
with D4 served by LSP; under this circumstance, D1 will not accept the service 
provided by LSP.
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D1
D2
D3
D4

6.3%
18.5%
19.8%
16.5%

D1
D2
D3

5.9%
15.2%
16.3%

D1
D2
D4

2.2%
15.8%
12.0%

D1
D3
D4

0.7%
17.3%
12.7%

D2
D3
D4

14.2%
16.9%
15.8%

D1
D2

2.8%
13.3%

D1
D3

3.9%
14.6%

D1
D4

-1.3%
9.4%

D2
D3

13.7%
14.2%

D2
D4

13.2%
12.5%

D3
D4

16.1%
15.3%

D1 0.0%

D2 11.3%

D3 12.0%

D4 10.4%

Fig. 9. Cost reduction percentages for all coalitions

6.4 Sequential coalition selection

Sequential coalition selection is necessary to analyze the impact of sequential coalition 
on profit distribution strategy. Equation (18) and SMP are used to select sequential 
coalitions for grand coalition establishment. These SMP-based sequential coalitions can 
be used to investigate the negotiation power for all participants by LSP. All possible 
sequential coalitions with cost reduction percentages are shown in Fig. 9. Sequential 
coalitions based on SMP can be further selected and are exhibited in Tables 17–20.

Table 17. Sequential coalitions starting from D1 D2, D3, and D4 for SMP-based grand 
coalition

Sequential coalitions starting from D1
1 {D1,D2,D3,D4}  2 {D1,D3,D2,D4} 
Player i D1 D2 D3 D4 Player i D1 D3 D2 D4
( , ,1)i  0.0% - - - ( , ,1)i  0.0% - - -
( , , 2)i  2.8% 13.3% - - ( , , 2)i  3.9% 14.6% - -
( , ,3)i  5.9% 15.2% 16.3% - ( , ,3)i  5.9% 16.3% 15.2% -
( , , 4)i  6.3% 18.5% 19.8% 16.5% ( , , 4)i  6.3% 19.8% 18.5% 16.5%

Sequential coalitions starting from D2
1 {D2,D1,D3,D4}  2 {D2,D3,D1,D4} 
Player i D2 D1 D3 D4 Player i D2 D3 D1 D4
( , ,1)i  11.3% - - - ( , ,1)i  11.3% - - -
( , , 2)i  13.3% 2.8% - - ( , , 2)i  13.7% 14.2% - -
( , ,3)i  15.2% 5.9% 16.3% - ( , ,3)i  15.2% 16.3% 5.9% -
( , , 4)i  18.5% 6.3% 19.8% 16.5% ( , , 4)i  18.5% 19.8% 6.3% 16.5%

3 {D2,D3,D4,D1}  4 {D2,D4,D3,D1} 
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Player i D2 D3 D4 D1 Player i D2 D4 D3 D1
( , ,1)i  11.3% - - - ( , ,1)i  11.3% - - -
( , , 2)i  13.7% 14.2% - - ( , , 2)i  13.2% 12.5% - -
( , ,3)i  14.2% 16.9% 15.8% - ( , ,3)i  14.2% 15.8% 16.9% -
( , , 4)i  18.5% 19.8% 16.5% 6.3% ( , , 4)i  18.5% 16.5% 19.8% 6.3%

Sequential coalitions starting from D3
1 {D3,D1,D2,D4}  2 {D3,D2,D1,D4} 
Player i D3 D1 D2 D4 Player i D3 D2 D1 D4
( , ,1)i  12.0% - - - ( , ,1)i  12.0% - - -
( , , 2)i  14.6% 3.9% - - ( , , 2)i  14.2% 13.7% - -
( , ,3)i  16.3% 5.9% 15.2% - ( , ,3)i  16.3% 15.2% 5.9% -
( , , 4)i  19.8% 6.3% 18.5% 16.5% ( , , 4)i  19.8% 18.5% 6.3% 16.5%

3 {D3,D2,D4,D1}  4 {D3,D4,D2,D1} 
Player i D3 D2 D4 D1 Player i D3 D4 D2 D1
( , ,1)i  12.0% - - - ( , ,1)i  12.0% - - -
( , , 2)i  14.2% 13.7% - - ( , , 2)i  16.1% 15.3% - -
( , ,3)i  16.9% 14.2% 15.8% - ( , ,3)i  16.9% 15.8% 14.2% -
( , , 4)i  19.8% 18.5% 16.5% 6.3% ( , , 4)i  19.8% 16.5% 18.5% 6.3%

Sequential coalitions starting from D4
1 {D4,D2,D3,D1}  2 {D4,D3,D2,D1} 
Player i D4 D2 D3 D1 Player i D4 D3 D2 D1
( , ,1)i  10.4% - - - ( , ,1)i  10.4% - - -
( , , 2)i  12.5% 13.2% - - ( , , 2)i  15.3% 16.1% - -
( , ,3)i  15.8% 14.2% 16.9% - ( , ,3)i  15.8% 16.9% 14.2% -
( , , 4)i  16.5% 18.5% 19.8% 6.3% ( , , 4)i  16.5% 19.8% 18.5% 6.3%

Tables 10–13 demonstrate the cost reduction percentage based on SMP provided in 
Section 5.2. On the basis of the proposed approaches in Section 5.2, the best sequential 

coalitions from each table can be selected:  are sequential {D1, D3,D2,D4} 

coalitions starting from D1;  are sequential coalitions starting from {D2,D3,D4,D1} 

D2;  are sequential coalitions starting from D3; and {D3,D4,D2,D1} 

 are sequential coalitions starting from D4. These sequential {D4,D3, D2,D1} 

coalitions, along with their respective cost reduction percentages, are summarized in 
Table 18.

Table 18. Sequential coalitions for SMP-based grand coalition
1 {D1,D3,D2,D4}  2 {D2,D3,D4,D1} 
Player i D1 D3 D2 D4 Player i D2 D3 D4 D1
( , ,1)i  0.0% - - - ( , ,1)i  11.3% - - -
( , , 2)i  3.9% 14.6% - - ( , , 2)i  13.7% 14.2% - -
( , ,3)i  5.9% 16.3% 15.2% - ( , ,3)i  14.2% 16.9% 15.8% -
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( , , 4)i  6.3% 19.8% 18.5% 16.5% ( , , 4)i  18.5% 19.8% 16.5% 6.3%

3 {D3,D4,D2,D1}  4 {D4,D3,D2,D1} 
Player i D3 D4 D2 D1 Player i D4 D3 D2 D1
( , ,1)i  12.0% - - - ( , ,1)i  10.4% - - -
( , , 2)i  16.1% 15.3% - - ( , , 2)i  15.3% 16.1% - -
( , ,3)i  16.9% 15.8% 14.2% - ( , ,3)i  15.8% 16.9% 14.2% -
( , , 4)i  19.8% 16.5% 18.5% 6.3% ( , , 4)i  16.5% 19.8% 18.5% 6.3%

All possible sequential coalitions for SMP-based grand coalition are illustrated in Table 
18. The profit gain procedure for these four sequential coalitions is shown in Fig. 10. 
Applying the approach in Section 5.2 into Table 18 and Fig. 10 leads to the optimal 

sequential coalition as . The best cooperation strategy can be {D3,D4,D2,D1} 

described as follows. D3 is first optimized by LSP and will obtain 12.0% cost 
reduction. Then, coalitions containing D3 and D4 are served by LSP with 16.1% and 
15.3% cost reduction respectively, followed by D2. D3, D4, and D2 can respectively 
receive 16.9%, 15.8%, and 14.2% cost reduction. Finally, D1 joins the coalition, and 
the grand coalition is established. D3, D4, D2, and D1 can obtain 19.8%, 16.5%, 
18.5%, and 6.3% cost reduction, respectively.

 
                (a)                                (b)

 
                (c)                                (d)

Fig. 10. Selected possible sequential coalitions for grand coalition: (a) starting from 
D1, (b) starting from D2, (c) starting from D3, and (d) starting from D4.

As shown in Fig. 10, cost reduction percentages increase for each DC when the 
coalition is updated for these four possible sequential coalitions based on SMP strategy. 
In practice, SMP strategy is attractive for participants because the percentages of 
monotonic cost reduction and the strategies of reasonable profit distribution will 
encourage logistics participants to cooperate with one another.
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To verify the accuracy of optimal sequential coalition, the nucleolus, core center, and 
minmax core methods from cooperative game theory (Cruijssen et al. 2010; Lozano et 
al. 2013) are used for comparison and analysis in Table 19.

Table 19. Profit distribution according to improved Shapley value, nucleolus, core 
center, and minmax core

T Shapley Nucleolus Core centre Minmax core

{D1} (0.0; · ; · ; · ) (0.0; · ; · ; · ) (0.0; · ; · ; · ) (0.0; · ; · ; · )
{D2} ( · ;245; · ; · ) ( · ;245; · ; · ) ( · ;245; · ; · ) ( · ;245; · ; · )
{D3} ( · ; · ;284; · ) ( · ; · ;284; · ) ( · ; · ;284; · ) ( · ; · ;284; · )
{D4} ( · ; · ; · ; 203 ) (· ;· ; · ; 203 ) (· ;· ; · ; 203 ) ( · ; · ; · ; 203 )
{D1,D2} (44;288; · ; · ) (29;303; · ; · ) (38;294; · ; · ) (35;297; · ; · )
{D1,D3} (61; · ;345; · ) (43; · ;363; · ) (52; · ;354; · ) (47; · ;359; · )
{D1,D4} (-20; · ; · ;184) (-35; · ; · ;199) (-25; · ; · ;189) (-32; · ; · ; 196 )
{D2,D3} ( · ;297;335; · ) ( · ;369;263; · ) ( · ;337;295; · ) ( · ;354;278; · )
{D2,D4} ( · ;286; · ; 244) ( · ;373; · ; 157) ( · ;352; · ; 178) ( · ;365; · ; 165 )
{D3,D4} ( · ; · ;380;299) ( · ; · ;409;270) ( · ; · ;394;285) ( · ; · ;401;278)
{D1,D2,D3} (93;329;385; · ) (88;306;413; · ) (99;313;395; · ) (90;309;408; · )
{D1,D2,D4} (35;341; · ;236) (21;350; · ;241) (30;343; · ;239) (23;346; · ;243)
{D1,D3,D4} (11; · ; 410 ;249) (5; · ; 414 ;251) (9; · ; 396 ;265) (7; · ; 405 ;258)
{D2,D3,D4} ( · ;307;401;310) ( · ;237;445;336) ( · ;280;423;315) ( · ;258;439;321)
{D1,D2,D3,D4} (116;469;552;382) (83;302;624;510) (104;331;591;493) (94;307;603;515)

As shown in Table 19, sequential coalitions based on SMP from nucleolus, core center, 
and minmax core methods are further selected and exhibited in Table 20.

Table 20. Sequential coalitions from nucleolus, core center, and minmax core for grand 
coalition based on SMP 

Sequential coalitions from nucleolus
1 {D3,D4,D2,D1}  2 {D4,D3,D2,D1} 
Player i D3 D4 D2 D1 Player i D4 D3 D2 D1
( , ,1)i  12.0% - - - ( , ,1)i  10.4% - - -
( , , 2)i  17.3% 13.8% - - ( , , 2)i  13.8% 17.3% - -
( , ,3)i  18.8% 17.2% 11.0% - ( , ,3)i  17.2% 18.8% 11.0% -
( , , 4)i  26.4% 26.0% 14.0% 5.3% ( , , 4)i  26.0% 26.4% 14.0% 5.3%

Sequential coalitions from core center
1 {D2,D1,D3,D4}  2 {D3,D4,D2,D1} 
Player i D2 D1 D3 D4 Player i D3 D4 D2 D1
( , ,1)i  11.3% - - - ( , ,1)i  12.0% - - -
( , , 2)i  13.6% 2.4% - - ( , , 2)i  16.6% 14.5% - -
( , ,3)i  14.5% 6.3% 16.7% - ( , ,3)i  17.9% 16.1% 13.0% -
( , , 4)i  15.3% 6.6% 25.0% 25.2% ( , , 4)i  25.0% 25.2% 15.3% 6.6%

3 {D3,D1,D2,D4}  4 {D4,D3,D2,D1} 
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Player i D3 D1 D2 D4 Player i D4 D3 D2 D1
( , ,1)i  12.0% - - - ( , ,1)i  10.4% - - -
( , , 2)i  15.0% 3.3% - - ( , , 2)i  14.5% 16.6% - -
( , ,3)i  16.7% 6.3% 14.5% - ( , ,3)i  16.1% 17.9% 13.0% -
( , , 4)i  25.0% 6.6% 15.3% 25.2% ( , , 4)i  25.2% 25.0% 15.3% 6.6%

Sequential coalitions from minmax core
1 {D3,D1,D2,D4}  2 {D3,D4,D2,D1} 
Player i D3 D1 D2 D4 Player i D3 D4 D2 D1
( , ,1)i  12.0% - - - ( , ,1)i  12.0% - - -
( , , 2)i  15.2% 3.0% - - ( , , 2)i  16.9% 14.2% - -
( , ,3)i  17.2% 5.7% 14.3% - ( , ,3)i  18.5% 16.4% 11.9% -
( , , 4)i  25.5% 6.0% 14.2% 26.3% ( , , 4)i  25.5% 26.3% 14.2% 6.0%

3 {D4,D3,D2,D1} 
Player i D4 D3 D2 D1
( , ,1)i  10.4% - - -
( , , 2)i  14.2% 16.9% - -
( , ,3)i  16.4% 18.5% 11.9% -
( , , 4)i  26.3% 25.5% 14.2% 6.0%

As shown in Tables 19–20, applying the approach in Section 5.2 into Tables 19–20 

leads to the optimal sequential coalition as  for nucleolus, core {D3,D4,D2,D1} 

center, and minmax core methods. The best cooperation strategy from the improved 
Shapley value model receives the same result compared with other cooperative-game-
theory-based approaches. As more participants join the collaborative logistics network, 
a higher gain can be observed, which is known as the snowball effect (Frisk et al. 2010; 
Lozano et al. 2013). The radius of the snowball represents the algorithm stability and 
can be calculated as the difference between the maximum and minimum cost reduction 
percentages. A smaller radius means a more stable profit distribution scheme. As 
shown in Tables 19–20, radii for the four methods can be respectively computed as 
13.5% for improved Shapley value model, 20.7% for nucleolus, 18.6% for core center, 
and 20.3% for minmax core. Evidence supports that the improved Shapley value model 
outperforms the other algorithms in terms of stability.

With synergy requirement set as , the LSP can receive 15% of the total cost 0.15 
savings, equivalent to 228 USD per working period. The remaining profit is distributed 
among D1, D2, D3, and D4 based on the improved Shapley value model. D3 receives 
469 USD cost savings and has the greatest cost reduction percentage because of 
customers’ uneven geospatial distribution and high customer demand. Considering the 
proximities between DCs and customers, good transportation condition, and high 
service costs for D1, D1 receives the lowest cost reduction percentage.

LSP can adjust the synergy requirement  to increase negotiation power for increased 
benefit. If several participants cannot accept the profit distribution plan based on a 
certain synergy requirement , then the LSP can decrease synergy requirement to 
enhance the cooperation opportunity. If a certain DC (e.g., D1) cannot achieve 
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collaboration agreement regardless of what synergy requirement is provided by the 

LSP, then the optimal sequential coalition becomes  rather than {D3,D2, D4} 

. The optimal sequence can be recalculated and generated based on a {D3,D4,D2} 

similar calculation process in Section 5.3. Additional managerial insights can also be 
generated: (1) Monotonicity and additivity properties are not always existent in the 
coalition logistics network optimization procedure. (2) The heterogeneous behavior of 
participants will influence the robustness of the cooperative logistics network. (3) Key 
factors, such as the transaction cost and the complexity of managing the collaboration, 
can limit the formation of collaborative logistics network.

7. Conclusions

This paper studies the MCVR optimization and profit distribution problem, where 
vehicle routes among DCs can be optimized and adjusted from a global optimization 
perspective. The optimization process is organized by either LSP or existing 
participants in a logistics network. A multi-phase hybrid approach with clustering, 
dynamic programming, and heuristic algorithm is presented to optimize the multi-
center network. A profit distribution method based on an improved Shapley value 
model is then proposed to distribute the gained profits among DCs. MCVRP 
optimization and profit distribution problems are interrelated, and LSP can organize the 
negotiation procedure to distribute cost savings from MCVRP optimization among 
DCs. Through the above procedures, robustness and reliability of large-scale logistics 
distribution network can be enhanced, and network complexity can be reduced.

The MCVRP optimization model is first constructed to optimize the total costs of non-
empty coalition logistics network, followed by the multi-phase hybrid approach to 
solve the model. Then, profit distribution is calculated based on the improved Shapley 
value model among DCs from non-empty coalitions. Finally, cost reduction 
percentages and optimal sequential coalitions can be obtained based on the SMP 
theory, cost reduction model, and best sequential coalition selection strategy. The 
proposed approach is successfully applied to a multi-center distribution network in 
Chongqing City, China, and compared with other prevailing algorithms based on 
cooperative game theory. Results demonstrated that the proposed approach outperforms 
other algorithms, and the best sequential coalition can be selected. Moreover, the 
synergy requirement value can be adjusted to increase the negotiation power for 
logistics distribution network optimization.

To enhance the usability and depth of this study, further research should consider 
incorporating additional factors, such as products that require temperature control, 
customers’ time windows, split loads, and simultaneous deliveries and pickups into 
logistics network design. These additional factors can be integrated into both MDVRP 
and profit distribution problems. The heterogeneity of synergy requirement values 
among participants should be also considered to enhance the robustness of logistics 
distribution network. Meanwhile, the approach can be also extended to solving other 
similar multiple centers pharmaceutical distribution problems for decision-makers.
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