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Abstract—The Bayesian network (BN) is a powerful model 
for probabilistic knowledge representation and inference 
and is increasingly used in the field of reliability evaluation. 
This paper presents a bibliographic review of BNs that 
have been proposed for reliability evaluation in the last 
decades. Studies are classified from the perspective of the 
objects of reliability evaluation, i.e., hardware, structures, 
software, and humans. For each classification, the 
construction and validation of a BN-based reliability 
model are emphasized. The general procedural steps for 
BN-based reliability evaluation, including BN structure 
modeling, BN parameter modeling, BN inference, and 
model verification and validation, are investigated. 
Current gaps and challenges in reliability evaluation with 
BNs are explored, and a few upcoming research directions 
that are of interest to reliability researchers are identified. 
Index Terms—Bayesian network (BN), reliability, hardware, 
structure, software, human.  

I. INTRODUCTION 

ELIABILITY is an item’s probability that it performs its 
required function under given conditions for a stated time 

interval. This characteristic is intrinsically uncertain and a 
stochastic variable of an object, which can be hardware, 
structures, software, or humans. Evaluating the reliability of 
these objects is a challenging problem for reliability engineers 
and researchers.  

Reliability can be evaluated using appropriate statistical 
inference techniques. For example, hardware reliability 
focuses on the research of systems and hardware and can be 
researched using fault tree analysis, event tree analysis, 
reliability block diagrams, Markov and semi-Markov models, 
and Petri nets. Structures are subsumed under hardware; 
however, we categorize them separately because they are 
closely related to structural mechanics principles. Structural 
reliability has been researched using response surface methods, 
first-order reliability methods, and second-order fourth-
moment methods. Software reliability is defined by IEEE as 
the probability of failure-free software operation for a 
specified period of time in a specified environment. It has 
been researched using relevance vector regression, Gaussian 
processes, and the Markov-modulated Poisson process. 
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Human reliability is the probability that an individual conducts 
system-required activities correctly for a specified period of 
time. It has been researched using ATHEANA, CREAM, and 
SPAR-H. Each reliability evaluation technique has its 
advantages and inherent disadvantages. Representing the 
uncertainties in the dependencies between different 
components or factors of the evaluated objects with many 
reliability evaluation methods, such as fault tree and reliability 
block diagram, is difficult because of the binary variable 
restriction [1]. Other techniques, such as Markov models and 
Petri nets, suffer from state space explosion problems [2]. 

Bayesian networks (BNs) are important probabilistic 
directed acyclic graphical models that can effectively 
characterize and analyze uncertainty, which is a problem 
commonly encountered in real-world domains, and handle 
state space explosion problems [3]. The applications of BNs 
has been extended to many fields involving uncertainty [4], 
from risk analysis [5, 6], safety engineering [7], resilience 
engineering [8], and fault diagnosis [9-11] to current reliability 
engineering, which is mainly discussed in the present work. 
BN-based reliability evaluation is conducted by forward (or 
predictive) analysis of BNs with various inference algorithms. 
That is, the probability of occurrence of the node that denotes 
the state of the evaluated object is calculated on the basis of 
the prior probabilities of the root nodes that denote the 
components or factors of the evaluated object and the 
conditional dependence of each node. 

Reliability evaluation with BNs in the hardware, structure, 
software, and human domains is a particularly active research 
area that is attracting considerable attention from reliability 
engineers and researchers. Several review articles have 
summarized previous related studies. Langseth and Portinale 
[12] provided a thorough literature survey on BNs applied to 
reliability engineering, focusing on modeling framework, 
including BN model construction, causal interpretation, and 
BN inference. Tosun et al. [13] provided a systematic review 
of BNs applied to software quality prediction, also focusing on 
BN modeling steps, namely, structure learning, parameter 
learning, use of tools, data characteristics, and validation. 
Mkrtchyan et al. [14] reviewed the use of BNs in human 
reliability analysis, analyzed five groups of BN applications, 
and identified the process of constructing BNs. In another 
work, Mkrtchyan et al. [15] reviewed five approaches to 
creating conditional probability tables and evaluated the 
performance of each approach.  

This study aims to summarize and review recent studies on 
BNs used for reliability from the perspective of the objects of 
reliability evaluation, namely, hardware, structures, software, 
and humans, because these categories of objects cover nearly 
the entire BN-based reliability literature. The general BN-
based reliability evaluation procedural steps are investigated 
and compared between evaluation objects. Moreover, the 
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potential challenging problems of BNs in reliability evaluation 
are identified, and upcoming research directions that are of 
interest to reliability engineers and researchers are presented. 
The remainder of this paper is structured as follows. Section II 
presents the BN-based reliability evaluation methodology. 
Section III summarizes and analyzes the applications of BNs 
in evaluating the reliability of hardware, structures, software, 
and humans. Section IV suggests research directions. Section 
V summarizes the study. 

II. BN-BASED RELIABILITY EVALUATION METHODOLOGY 

A. Overview of BNs 

BNs, also known as static BNs, are probabilistic directed 
acyclic graphical models. They use nodes to represent 
variables, arcs to signify direct dependencies between the 
linked nodes, and conditional probabilities to quantify the 
dependencies. Static BNs are widely used in reliability 
evaluation, and many monographs have introduced BNs in 
detail [16-18].  

For n random variables X1, X2, . . . , Xn and a directed 
acyclic graph with n nodes, among which node j (1 ≤ j ≤ n) is 
associated with Xj variable, the graph is the BN representing 
the variables X1, X2, . . . , Xn in the following equation: 
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where the parents (Xj) denote the set of all variables Xi and an 
arc connects node i to node j in the graph. 

According to conditional independence assumptions and 
chain rules, the joint probability of variables U = {X1, X2, …, 
Xn} can be calculated as follows: 
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where Pa(Xi) is the parent node of Xi in the BN. 
BNs can perform backward or diagnostic analyses with 

various inference algorithms based on Bayes’ theorem, which 
is expressed as follows: 
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Several limitations may be observed when BNs are adopted 
to evaluate the reliability of dynamic or complex systems [16] 
because BNs are static models and do not involve classes and 
objects. By contrast, dynamic BNs (DBNs) can represent the 
dynamic behavior of systems [18], and object-oriented BNs 
(OOBNs) can model complex systems with identical or 
similar components [17]. 

Evaluating the reliability of objects at the present moment 
does not involve temporal features; thus, BNs in such an 
evaluation scenario are appropriate. By contrast, in predicting 
reliability in the future, temporal features are involved; thus, 
DBNs are required. DBNs are extended BNs that relate 
variables to each other between adjacent time steps; that is, 
DBNs include multiple copies of the same variables, and the 
different copies represent different states of the variables over 
time [18]. DBNs are powerful tools in representing dynamic 
systems and therefore widely used in the reliability prediction 
of objects. 

Establishing a BN-based reliability evaluation model is 
difficult and tedious when the evaluated object is too complex 
to be modeled with BNs, especially when the object is 
composed of collections of identical or similar components. 
Object-oriented methods are integrated into BNs to form 
OOBNs. An OOBN is a BN that contains not only the usual 
nodes but also instance nodes, which represent an instance of 
another generic BN fragment termed as class. An object, 
which is the fundamental unit of an OOBN, is produced by 
instantiating the class. OOBNs allow for simple model reuse, 
submodel encapsulation, and model construction in a top-
down fashion, a bottom-up fashion, or a mixture of the two 
[17]. OOBNs are suitable tools for evaluating the reliability of 
objects with large, complex, and hierarchical structures. 

Complex dynamic systems can be modeled by dynamic 
OOBNs (DOOBNs), which are an integration of DBNs and 
OOBNs [19]. A DOOBN-based model was used in the 
reliability evaluation of a water heater process in a previous 
work, from implementation to operation [20]. 

B. Procedure for Reliability Evaluation with BNs 

For each category of evaluated objects (i.e., hardware, 
structures, software, and humans), BN-based reliability 
evaluation mainly includes four steps, namely, BN structure 
modeling, BN parameter modeling, BN inference, and 
verification and validation. A detailed flowchart of this 
procedure is given in Figure 1. 

The BN structure is the model’s qualitative part and 
corresponds to the directed acyclic graph. BN structure 
modeling consists of determining nodes and specifying linking 
arcs. BN structure modeling can be completed using the 
following methods: knowledge representation (for hardware, 
structures, software, and humans), mapping (for hardware, 
software, and humans), and structure learning (for hardware).  

BN parameter modeling includes assigning prior probability 
and specifying conditional probability. Prior probability refers 
to the probability distribution of variables before any evidence 
is considered. Conditional probability refers to the posterior 
probability of variables when evidence is observed. A 
conditional probability table is used for discrete variables, 
whereas a conditional probability distribution is used for 
continuous variables. BN parameter modeling can be 
completed using the following methods: expert elicitation (for 
hardware, structures, software, and humans), mapping (for 
hardware), and parameter learning (for hardware, structures, 
software, and humans).  

In BN-based reliability evaluation, BN inference is used to 
update the probability evaluation of networks given new 
observations or information. BN inference can be conducted 
using exact inference (for hardware and structures) and 
approximate inference (for hardware and software). Many BN 
tools, such as Netica and Hugin, are widely used for BN 
inference (for hardware, structures, software, and humans).  

The verification and validation of BN models are of great 
significance to reliability evaluation because they provide 
reasonable confidence to the assessment results. Verification 
is determining whether a model accurately represents the 
corresponding description and specifications. It can be 
completed using sensitivity analysis (for hardware, structures, 
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Figure 1. Detailed flowchart of BN-based reliability evaluation (ha: hardware; 
st: structures, so: software; hu: humans) 

software, and humans) and well-known scenarios (for 
hardware, structures, and humans). Validation is determining 
whether a model accurately reflects reality and can be 
accomplished using real data (for hardware, structures, and 
software), simulated data (for hardware and structures) and 
contrastive modeling (for hardware, structures, software, and 
humans). 

III. APPLICATIONS OF BNS IN RELIABILITY EVALUATION 

A. Hardware Reliability Evaluation with BNs 

Figure 2 shows a typical BN for the reliability evaluation of 
a series hardware system composed of a series system and a 
parallel system. Each root node represents the status of each 
component in the systems, and the final leaf node represents 
the reliability of the entire system. A review of the procedural 
steps for hardware reliability evaluation with BNs follows. 

Component A

Component B

Component C

R of series 
system

Component D

Component E

Component F

R of parallel 
system

R of entire 
system

 
Figure 2. Typical BN for hardware reliability evaluation 

1) BN Structure Modeling: In the literature, three main 
types of methods have been identified for constructing BNs 
for the reliability evaluation of hardware, namely, knowledge 
representation, mapping, and structure learning. 

Knowledge representation techniques are also known as 
cause-and-effect relationship methods. The knowledge about 
the evaluated hardware is collected by experts and captured 
into BNs. For example, Sättele et al. [21] developed a BN-
based reliability evaluation method for alarm systems for 
natural hazards; the structure of the BNs was constructed on 
the basis of the influence relationships of the components in 
the monitoring, data interpretation, and information 
dissemination units. Honari et al. [22] used BNs to evaluate 
the reliability of an (r, s)-out-of-(m, n): F distributed 
communication system; the structure of the BNs was 
constructed on the basis of the logical relationship of the (r, s)-
out-of-(m, n): F system. Eliassi et al. [23, 24] proposed a BN-
based composite power system reliability modeling and 
evaluation methodology; the structure of the BNs was 
extracted by a minimal cutset-based approach, and the nodes 
at the three main levels of the structure were linked together 
according to the logical relationships of the components, 
cutsets, and system state. Cai et al. [25-27] adopted BNs and 
DBNs to evaluate the reliability and availability of subsea 
blowout preventer systems while considering common cause 
failure, imperfect repair, and preventive maintenance [28, 29]; 
the structures of the BNs and DBNs were constructed using 
the logical relationships of the components and knowledge of 
experts. These knowledge representation methods are largely 
subjective and may produce inaccurate reliability evaluation 
models. In addition, BN structures constructed by knowledge 
representation methods are large and pose substantial 
computational demand on inference algorithms. 

Mapping techniques are also termed translating or 
transforming methods. The structure of the BNs is transformed 
from other reliability evaluation models. Fault tree analysis is 
a popular technique for hardware reliability evaluation and a 
widely used mapping model. Conversion algorithms from 
fault tree to BNs have been thoroughly researched. Bobbio et 
al. [1] proposed a mapping algorithm from a fault tree to BNs 
and evaluated the reliability of a redundant multiprocessor 
system. Huang et al. [30] analyzed the reliability of the 
electrical system of a CNC machine tool by using BNs; the 
structure of the BNs was also mapped from fault trees. Mi et 
al. [31] proposed a reliability evaluation methodology for 
electromechanical systems; the structure of the BNs was 
translated from dynamic fault trees. Montani et al. [32] and 
Portinale et al. [33] developed DBN-based reliability analysis 
tools; the structure of their DBNs was translated from 
corresponding dynamic fault trees. Boudali and Dugan [34] 
proposed a discrete-time BN-based reliability modeling and 
analysis methodology for critical systems; the structure of the 
discrete-time BNs was translated from dynamic fault trees. 
Liang et al. [35] proposed a reliability assessment 
methodology that is based on the integration of DBN and 
numerical simulation for warships; the structure of the DBNs 
was transformed from fault trees. Cai et al. [36] constructed 
BNs by transforming fault trees and assessed the reliability 
and availability of a subsea blowout preventer system by 
considering imperfect repair. Reliability models aside from 
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fault trees can also be mapped into BNs. For example, Liu et 
al. [37] proposed a reliability assessment method for auxiliary 
feedwater systems by translating GO-FLOW models to BNs. 
Mapping methods are less subjective, and the accuracy of 
reliability evaluation by mapping methods is higher than that 
by knowledge representation methods. The superiority of the 
former can be ascribed to the use of mapping models, such as 
fault trees, instead of the knowledge of experts. 

Structure learning techniques are machine learning methods. 
The structure of BNs for reliability evaluation is learned from 
massive reliability data related to the failure of each 
component and the entire hardware system. Structure learning 
methods are completely objective. The advantage of this type 
of method is the higher accuracy of the reliability evaluation 
results compared with those obtained by knowledge 
representation and mapping methods. The apparent 
disadvantage of structure learning methods is the difficulty or 
infeasibility of collecting sufficient data for structure learning. 
An alternative is to use simulation methods to generate 
sufficient data to fill the gap. For example, Daemi et al. [38] 
proposed a BN-based reliability evaluation methodology for 
composite power systems by focusing on the importance of 
components; they used state sampling using Monte Carlo 
simulation to generate sufficient training data and used 
common structure learning algorithms to establish the 
structure of the BNs with the data. Doguc and Ramirez-
Marquez [39, 40] developed a generic BN-based evaluation 
methodology for system reliability; they used the K2 
algorithm to learn the structure of the BNs from historical data 
of the system. Only few studies have used structure learning 
methods in constructing BNs for reliability evaluation mainly 
because the difficulty in obtaining training data limits the 
application of these methods. 

2) BN Parameter Modeling: This process is similar to BN 
structure modeling. Three main types of methods for BN 
parameter modeling for the reliability evaluation of hardware 
have been identified, namely, expert elicitation, mapping, and 
parameter learning. 

In expert elicitation methods, the prior and conditional 
probabilities of a BN for reliability evaluation are specified by 
domain experts on the basis of their knowledge, experience, 
and statistical reliability data. For example, Daemi et al. [38] 
assigned the parameters of component nodes artificially from 
forced outage rates to establish a BN-based reliability 
evaluation model for composite power systems. Yontay and 
Pan [41] developed a BN-based tool for evaluating the 
reliability dependencies between components and systems; the 
prior distributions of the model parameters were obtained by 
converting knowledge of experts into corresponding statistical 
expression. Zhang et al. [42] proposed a BN-based reliability 
evaluation method for a power system and evaluated the 
probabilities of successful cyberattacks on the system; the 
conditional probabilities of the nodes were determined using 
simple “AND” and “OR” relationships. Ruijun et al. [43] used 
interval-valued triangular fuzzy BNs to evaluate the reliability 
of multistate systems; the conditional probability tables of the 
networks were established by combining the knowledge of 
experts and practical experience. A major issue that arises 
when modeling BN parameters is the potentially large size of 
conditional probability tables. Micromodels such as noisy-or 

and noisy-max have been proposed to solve this problem. 
These models present a local conditional probability 
distribution that depends on fewer parameters than do 
complete ones. Therefore, these micromodels can be used for 
local structures. However, they may be inaccurate in real-
world scenarios. 

If the structures of BNs are translated from other kinds of 
reliability evaluation models by mapping methods, then the 
parameters of the BNs can also be translated from those 
models. With a fault tree as an example, the prior probabilities 
of the root nodes in BNs are identical to the corresponding 
probabilities of the leaf nodes in the fault tree. The conditional 
probabilities of the nonroot nodes in the BNs are assigned on 
the basis of the logical relationships of the nodes in the fault 
tree, such as AND-gate, OR-gate, R/N-gate, PAND-gate, 
SEQ-gate, and SP-gate [1, 30-37]. The gate logic in a fault 
tree is usually binary, but mapping the two-state relationship 
in a fault tree to a multi-state relationship in BNs is difficult. 
Therefore, inaccurate reliability evaluation models will be 
established when multistate relationships are considered in 
reality. 

Parameter learning in BNs is known as parameter 
estimation. It is the task of estimating prior and conditional 
probabilities corresponding to the network structure. Like 
structure learning methods, parameter learning methods have 
the strength of highly accurate reliability models but also the 
weakness of difficulty in obtaining sufficient training data. 
Many algorithms have been developed for parameter learning, 
such as the expectation maximization and the penalized 
expectation maximization algorithms. Several parameter 
learning methods have been researched and used in the field of 
BN-based reliability evaluation. For example, Doguc and 
Ramirez-Marquez [39, 40] used the unsupervised construction 
algorithm K2 to calculate the conditional probabilities of BNs 
for system reliability evaluation with the help of Bayes’ 
theorem. Daemi et al. [38] specified the parameters of load 
point nodes using a maximum likelihood method for the BN-
based reliability evaluation model for composite power 
systems. Liu et al. [44] established a BN-based reliability 
evaluation model by considering common cause failures and 
studied the influence of extreme averse weather on the 
reliability of composite power systems; the conditional 
probability distributions of the BNs were obtained using 
random sampling, a parameter learning algorithm. 

3) BN Inference: Exact and approximate inference 
algorithms are used to update the probability evaluation of 
networks given new observations or information.  

Exact algorithms, such as variable elimination, junction tree, 
and conditioning algorithms, guarantee correct answers but 
tend to be computationally demanding. Tien and Der 
Kiureghian [45] proposed a BN-based reliability evaluation 
methodology for infrastructure systems, presented a BN 
parameter compression approach, and developed an exact 
inference algorithm that is based on variable elimination, 
which used compressed conditional probability tables without 
decompressing them, for system reliability assessment. Tong 
and Tien [46] extended the research from binary systems to 
multistate systems, which are also based on an exact inference 
algorithm. 
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By contrast, approximate algorithms relax the demand for 
exact answers to ease the computational demand. These 
algorithms are usually based on sampling or optimization. 
This category includes stochastic sampling, importance 
sampling, Markov chain Monte Carlo, and belief propagation. 
Marquez et al. [47] proposed a novel hybrid BN-based 
framework containing a mixture of discrete and continuous 
variables for system reliability analysis and developed an 
approximate inference algorithm that is based on dynamic 
discretization for the hybrid BNs by combining an iterative 
discretization scheme with a junction tree inference algorithm. 
Zhong et al. [48] applied a time-to-failure modeling and 
reliability evaluation method that is based on a continuous BN 
for complex mechatronic systems; a revised nonparametric 
belief propagation inference algorithm, which is an 
approximation inference algorithm, was developed to perform 
the reliability analysis. 

Notably, research on BN inference algorithms in the field of 
reliability engineering has received limited attention. 
Conversely, inference is performed using various commercial 
or free software, including Netica [26, 27, 36, 37, 49], 
AgenaRisk [31], MSBNs [25], GeNIe [21, 50], and 
BayesiaLab [51]. 

4) Verification and Validation: The verification methods for 
BN-based hardware reliability evaluation are based on either 
sensitivity analysis or well-known scenarios. For the first type 
of method, Cai et al. [49] used a three-axiom sensitivity 
analysis method to verify the DBN-based reliability evaluation 
methodology for grid-connected photovoltaic systems. For the 
second type of method, Daemi et al. [38] verified the 
efficiency of a BN-based reliability evaluation model for 
composite power systems by applying it to the IEEE 
Reliability Test System. Similarly, Zhang et al. [42] and Liu et 
al. [44] verified their BN-based reliability analysis methods 
for composite power systems by applying them to IEEE 
Reliability test System 79 and the modified IEEE Reliability 
Test System, respectively.  

The validation methods for BN-based hardware reliability 
evaluation are based on real data, simulated data, and 
contrastive modeling. For the first type of method, Doguc and 
Ramirez-Marquez [39, 40] validated the reliability evaluation 
results obtained by BNs by comparing them with actual values 
obtained by other researchers. For the second type of method, 
Zhong et al. [48] validated their reliability evaluation method 
on the basis of a continuous BN for complex mechatronic 
systems by using simulated data obtained from an active 
vehicle suspension simulation that was based on MATLAB’s 
Kernel Density Estimation Toolbox. For the last type of 
method, Eliassi et al. [23] validated their BN-based reliability 
evaluation method for composite power systems by comparing 
it with the state enumeration approach and Monte Carlo 
simulation. Similarly, Marquez et al. [47] and Simon et al. [51] 
used analytical solutions, exact probability theorem, and 
Markov chain approach to validate their respective BN-based 
reliability analysis and inference methods. 

B. Structural Reliability Evaluation with BNs 

A structure is considered a specific kind of hardware 
because the reliability of a structure is closely related to the 
mechanics principles but not to the configurations or 

relationships of components. The DBN is the main modeling 
tool for structural reliability evaluation because structural 
reliability is closely related to the degradation behavior of the 
structure. Figure 3 depicts a typical DBN for the reliability 
evaluation of a degraded structure. In general, nodes  and ρ 
are the parameters in the structure degradation model, node E 
represents the observed evidence, and node R represents the 
reliability of the structure. A detailed review of the procedural 
steps for structural reliability evaluation with this type of DBN 
follows. 

δ1

ρ1

E1

R1

ρ0

δ2

ρ2

E2

R2

δt

ρt

Et

Rt

...

...

 
Figure 3. Typical BN for structural reliability evaluation 
 

1) BN Structure Modeling: In the literature, only the first 
type of method for the BN structure modeling of hardware, 
which is knowledge representation, is used in structural 
reliability research. For example, Groden and Collette [52] 
proposed a BN-based framework for updating the structural 
performance and reliability of marine structures; fatigue, 
probabilistic, and permanent set models were integrated into 
single BNs artificially, and the possible values of various 
distributions in these models were represented by the nodes of 
the BNs. Hackl and Kohler [53] proposed a DBN-based 
evaluation methodology for the structural reliability of 
reinforced concrete structures, focusing on degradation caused 
by corrosion; the structure of the BNs was constructed by 
transforming the parameters in corrosion and structural models 
into the nodes of the BNs and the causal relationships between 
the parameters of the models into the edges of the BNs. 
Mokhtar et al. [54] developed an evaluation methodology for 
the structural reliability of corroded interdependent pipe 
networks by using BNs, whose structure was constructed 
using the structural relationships of the pipelines and segments. 
Lee and Achenbach [55] analyzed the reliability of a jet 
engine compressor rotor blade with a fatigue crack by using 
DBNs; the structure of the DBNs was based on a fatigue crack 
growth model, and the parameters in the model were 
represented by the nodes. In [56], a similar method was used 
for the structural reliability analysis of stress corrosion crack 
growth. Straub [57] established a generic stochastic structural 
reliability analysis model for deterioration processes by using 
DBNs; the nodes represented the parameters in structural 
models, such as the fatigue crack growth model, and the 
structure of DBNs was constructed artificially. The literature 
shows that the structure of BNs is mainly constructed from 
structural performance models or the artificial integration of 
these models, such as the integration of a corrosion model and 
a mechanical model. The major feature of BNs is that the 
nodes represent the parameters in these models.  
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Mapping methods have not been used for the BN structure 
modeling for structural reliability evaluation because of the 
absence of one-to-one correspondence between the original 
reliability evaluation models, such as response surface models, 
and the BNs. In addition, structure learning methods have not 
been reported because the available structural reliability data 
are insufficient, especially those on degradation. 

2) BN Parameter Modeling: The prior probabilities and 
conditional probabilities of BNs for structural reliability 
evaluation are specified using expert elicitation methods or 
parameter learning methods. 

Using an expert elicitation method, Mokhtar et al. [54] 
established the prior probability table of BNs for a structural 
reliability evaluation methodology for corroded 
interdependent pipe networks by using the failure probabilities 
obtained from a first-order reliability method; the authors 
specified the conditional probability on the basis of series or 
parallel relationships. Mahadevan et al. [58] proposed a BN-
based structural system reliability evaluation methodology and 
used a branch-and-bound method to construct the conditional 
probability tables. 

Similar to BN structure modeling, parameter learning 
methods suffer from insufficiency of structural reliability data, 
especially those on the degradation of structures. Therefore, 
parameter learning with complete data is impossible. Certain 
parameter learning algorithms with incomplete data have been 
developed and used in the field of BN-based reliability 
engineering. For example, Lee and Achenbach [55] calibrated 
the parameters of DBNs for the reliability analysis of the rotor 
blade of a jet engine compressor by using an expectation 
maximization algorithm for the incomplete available 
inspection data. A similar method was used in [56] for the 
structural reliability analysis of stress corrosion crack growth. 

3) BN Inference: Given that structural reliability modeling 
focuses on degradation behavior, the variables in structural 
reliability models are represented as a continuous space in 
DBNs. The convergence rate of the approximate inference 
algorithms for the models involving continuous variables is 
extremely slow, and in reality, the algorithms may not even 
converge. In addition, the application of simulation-based 
approximate inference algorithms in the case of rejection or 
likelihood sampling is also limited due to the computational 
inefficiency of such algorithms [57, 59]. A review of the 
literature shows that only exact inference algorithms have 
been used in the field of BN-based reliability evaluation. For 
example, Mokhtar et al. [54] used a junction tree algorithm to 
assess the structural failure probability of corroded 
interdependent pipe networks. Lee and Achenbach [55] used a 
forward–backward algorithm to achieve the exact inference of 
DBNs for the reliability analysis of a jet engine compressor 
rotor blade. A similar method was used in the structural 
reliability analysis of stress corrosion crack growth in [56]. In 
[57] and [60], a forward–backward algorithm was adopted to 
perform the exact inference of DBNs for a stochastic structural 
reliability analysis model for deterioration processes, and 
Straub and Kiureghian [59, 61] applied exact inference 
algorithms to BNs for their proposed structural reliability 
framework by minimizing the enhanced BNs into reduced 
BNs. 

Few commercial BN tools have been used in structural 
reliability evaluation; alternatively, researchers have written 
their own BN codes for structural reliability evaluation by 
using MATLAB [54-57, 59, 61-63]. 

4) Verification and Validation: Verification and validation 
methods for structural reliability evaluation are identical to 
those for hardware reliability evaluation. The verification 
methods are based on sensitivity analysis and well-known 
scenarios. For example, Mokhtar et al. [54] used both types of 
method as they conducted a sensitivity analysis and behavior 
tests by simulating known scenarios to verify the proposed 
BN-based structural reliability evaluation methodology. Using 
the second type of method, Zwirglmaier and Straub [62] used 
two application examples to verify the discretization 
procedures for rare events in discrete BNs for structural 
reliability assessment. 

Three types of validation methods for BN-based structural 
reliability evaluation are used, namely, validations based on 
real data, simulated data, and contrastive modeling. Regarding 
the first type of method, Lee and Achenbach [55] validated a 
DBN-based model for the reliability analysis of a jet engine 
compressor rotor blade by using a Bayes factor and filed 
inspection data. For the second type of method, Lee et al. [56] 
validated a structural reliability analysis methodology for 
stress corrosion crack growth by using Bayesian hypothesis 
testing and simulated inspection data. Groden and Collette [52] 
used synthetic inspection data generated by Monte Carlo 
simulation to validate a BN-based framework for updating 
structural performance and reliability of marine structures. 
Regarding the last type of method, Mahadevan et al. [58] 
validated the proposed BN-based structural system reliability 
evaluation methodology by comparing its results with those of 
traditional reliability methods. Zhu and Collette [63] proposed 
a dynamic discretization method for DBN inference for 
structural reliability analysis; the robustness and efficiency of 
the method were validated by comparing it with the existing 
ones by using crack growth examples. Straub [57] validated a 
DBN-based stochastic model for structural reliability analysis 
by comparing its results with those of a second-order 
reliability method and Monte Carlo simulation. Luque and 
Straub [60] validated the computational efficiency of a DBN-
based reliability analysis method for deteriorating systems by 
comparing its results with those of a standard Markov chain 
Monte Carlo method. 

C. Software Reliability Evaluation with BNs 

Software is different from hardware and structure in that it 
is not subject to degradation. Any operational failure is caused 
by faults inherent to the software. Software failures are caused 
by random input data, maintenance activities, or changing 
environments over time. BNs are used to combine various 
information sources to evaluate the reliability of software 
systems. Figure 4 shows a typical BN for the reliability 
evaluation of software. In general, the root nodes represent the 
factors affecting reliability, and the final leaf node represents 
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Figure 4. Typical BN for software reliability evaluation 

the reliability of the software. A review of the procedural steps 
of software reliability evaluation with BNs follows. 
 

1) BN Structure Modeling: Knowledge representation and 
mapping are the two main types of methods of constructing 
BN structures.  

In knowledge representation methods, the information 
sources related to software reliability and the interdependent 
relationships are determined mainly by the developers and 
users of the software. For example, Fenton et al. [64-66] 
proposed a BN-based model for software reliability and defect 
prediction and constructed the BN structure artificially by 
considering the factors affecting the reliability of a software 
product, such as the experience of staff, the use of formal 
methods, and the complexity of the problem. Neil et al. [67] 
adopted OOBNs to construct large-scale models for predicting 
software reliability and safety; the structure of the BN 
fragment was constructed on the basis of the experience of 
experts. Dahll and Gran [68] proposed a BN-based reliability 
and safety evaluation approach for the software of 
programmable safety systems; all available relevant 
information was integrated into the BNs, and the structure was 
constructed gradually by integrating the target nodes with 
observable and intermediate ones. Gran [69] and Dahll [70] 
used BNs to combine disparate sources of information in the 
safety and reliability evaluation of software-based systems and 
adopted a causal direction approach to establish the structure 
of the BNs on the basis of the experience and judgment of 
experts. Mohanta et al. [71] proposed a BN-based bottom-up 
method for the early prediction of software reliability from 
product metrics and established the topology of the BNs by 
using the faults and corresponding design metrics. Si et al. [72] 
developed a BN-based dependability assessment method for 
Internet-scale software and established the structure of BNs by 
analyzing the software architecture on the basis of its 
characteristics.  

In mapping methods, the structures of the BNs are 
translated from other software reliability evaluation models or 
from the logic of the software. For example, Zou et al. [73] 
integrated a flow network model, BNs, and the proposed 
contribution method to evaluate the reliability of a digital 
instrumentation and control software system; they analyzed 
the sensitive edges by mapping the flow network model into 
the BNs automatically. Roshandel et al. [74] applied a DBN-
based software reliability prediction approach at the 
architectural level, constructed the structure of the BNs from 
the corresponding global behavioral model, and then extended 

the model to the DBNs; however, they did not perform a strict 
model transformation. Jiang et al. [75] proposed a BN-based 
reliability analysis model for programmable logic controller 
systems; the proposed hybrid relation model, which was 
identified as a BN, was constructed by mapping on the basis 
of the execution logic of the embedded software. 

Software is not subject to aging; thus, the tools used are 
nearly all BNs but not DBNs. In addition, similar to the 
structural reliability literature, the software reliability literature 
has not reported the use of structure learning methods for BN-
based software reliability evaluation. 

2) BN Parameter Modeling: Establishing a parameter model 
for BNs by using parameter learning methods is difficult 
because complete data are required by collecting sufficient 
software reliability data. In BN parameter modeling for 
software reliability evaluation, expert elicitation methods and 
parameter learning methods with incomplete data are mainly 
used. In the BN-based software defect and reliability 
evaluation models proposed by Fenton et al. [64] and Neil et 
al. [67], the prior probabilities and conditional probabilities of 
the BNs were determined using expert elicitation and data. 
Gran and Helminen [69, 76] proposed a method for merging a 
BN for a software safety assessment with a BN for the 
reliability evaluation of software-based digital systems; the 
conditional probability tables of the BNs were elicited through 
brainstorming exercises with all the project participants, who 
shared their general knowledge and experience in software 
development and evaluation. In their BN-based software 
reliability and safety evaluation models, Dahll and Gran [68, 
70] assigned the prior and conditional probabilities of the BNs 
by using expert judgment. In their BN-based software 
reliability prediction method, Mohanta et al. [71] obtained the 
conditional probability distributions by using parametric or 
functional form and conducting multiple linear regression 
analysis. 

For the second type of method, Bai et al. [77] proposed a 
software reliability prediction approach based on Markov BNs 
and used an expectation maximization algorithm to estimate 
the unknown parameters in the distribution from incomplete 
data. 

3) BN Inference: No major study has focused on BN 
inference algorithms for software reliability evaluation. To our 
knowledge, only one approximate inference algorithm related 
to dynamic discretization has been reported. Fenton et al. [66] 
proposed a software defect and reliability prediction model 
based on BNs; an approximate inference method using 
dynamic discretization algorithm was adopted to perform the 
prediction, and the method exhibited higher accuracy and 
required less storage space than did a static one. Alternatively, 
many researchers have used BN tools, such as Hugin [64, 65, 
68-70, 76], Netica [71, 78], and AgenaRisk [66], to conduct 
BN inference for software reliability evaluation. This situation 
is similar to that of hardware reliability research and totally 
different from that of structure reliability research. 

4) Verification and Validation: Verification based on 
sensitivity analysis is the main verification method for BN-
based software reliability evaluation models. Roshandel et al. 
[74] used sensitivity analysis to demonstrate that the proposed 
DBN-based software reliability prediction approach was 
effective at the architectural level, and its results were helpful 
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in making architectural decisions. Liu et al. [78] partially used 
sensitivity analysis to validate that the proposed BN-based 
software reliability evaluation method for subsea blowout 
preventers was accurate and rational. Verification based on 
well-known scenarios is not widely used possibly because no 
well-known software scenario similar to the IEEE Reliability 
Test System for hardware has been established for such 
verification.  

Two validation methods for software reliability evaluation 
are used, namely, validation based on real data and validation 
based on contrastive modeling. Real data are easier and more 
likely to be obtained from experiments on software than from 
those on hardware and structure. Therefore, many researchers 
have opted for validation based on real data. Neil et al. [67] 
used real test data and expert opinion that were not used to 
derive the BNs to validate the proposed OOBN-based 
software reliability and safety prediction approach. Si et al. 
[72] performed experiments on a real enterprise e-commerce 
application system to validate the effectiveness of their BN-
based dependability assessment method for Internet-scale 
software. Jiang et al. [75] used experimental results to 
demonstrate the accuracy of the proposed BN-based reliability 
analysis model for programmable logic controller systems. 
Performing validation through contrastive modeling, Bai [79] 
evaluated the performance of a Markov BN-based software 
reliability prediction model with an operational profile by 
comparing the results of the proposed model with those of the 
Kaaniche–Kanoun model. In addition, Mohanta et al. [71] 
validated their BN-based software reliability early prediction 
method by using real data obtained from a set of experiments 
and investigated the accuracy of the method by comparing its 
results with those of the Rome Air Forces Development 
Centre method proposed by McCall [80]. 

D. Human Reliability Evaluation with BNs 

Human reliability analysis, which is an important research 
field in reliability engineering, aims to identify and analyze 
the causes, consequences, and contributions of human failures 
in various industrial systems [81]. BNs are increasingly used 
in this field due to their capability to describe the complex 
influencing relationships of human factors. Figure 5 illustrates 
an example of a BN used in human reliability evaluation. In 
general, the root nodes represent the factors affecting 
reliability, and the final leaf node represents human reliability. 
A review of the procedural steps for human reliability 
evaluation with BNs follows. 
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Figure 5. Typical BN for human reliability evaluation 
 

1) BN Structure Modeling: With regard to the structure of 
BNs for human reliability evaluation, knowledge 
representation method is still the primary method. The 
structure can be derived from the judgment and experience of 
experts, with limited human performance data. For example, 
Li et al. [82] studied organizational influences quantitatively 
by using a fuzzy BN-based human reliability analysis method 
and established the structure of the BNs by using the cause-
and-effect relationship method on the basis of the experiences 
of maintenance and human factor experts. Aalipour et al. [83] 
used BNs to research the causes of human errors in the 
maintenance activities in a production process and constructed 
the structure of BNs on the basis of the causal dependencies 
between the variables. Zwirglmaier et al. [84] developed a 
BN-based methodology to capture cognitive causal paths in 
human reliability analysis and adopted a two-level method 
(i.e., causal path identification and model reduction) to 
construct the structure of the BNs. 

Numerous human reliability analysis methods have been 
developed, and some of these methods have been mapped to 
BNs in the study of human reliability. Groth and Swiler [85] 
proposed a BN version of SPAR-H for human reliability 
analysis by directly translating the SPAR-H model to BNs. 
Sundaramurthi and Smidts [86] proposed a BN-based human 
reliability modeling methodology for the Next Generation 
System Code, and the structure of the BNs was transformed 
from the simplified causal graph.  

Cai et al. [87] used BNs to study the influence of human 
factors on offshore blowouts, and the structure of the BNs was 
mapped from pseudo-fault tree models. Martins and Maturana 
[88] proposed a BN-based framework for human reliability 
analysis for collision accidents during oil tanker operation and 
transformed the collision fault tree into BNs that represented 
the same domain. 

Similar to software, human factors are not subject to 
degradation and aging; therefore, BNs and not DBNs are 
mainly used for human reliability analysis. 

2) BN Parameter Modeling: The uncertainties in human 
factors are more numerous and complex than those in 
hardware, structures, and software. Expert elicitation methods 
may be the most appropriate method for parameter modeling. 
Li et al. [82] estimated the prior and conditional probabilities 
of fuzzy BNs for human reliability analysis on the basis of the 
engineering judgments of domain experts. Aalipour et al. [83] 
assigned the marginal probability tables of BNs for human 
error analysis in the cable manufacturing industry by using 
direct elicitation and expert judgment. Zwirglmaier et al. [84] 
quantified a BN for human reliability analysis by combining 
human performance data and expert elicitation results as 
information sources. Martins and Maturana [88] obtained the 
conditional probability tables through an iterative search and 
linear interpolation approach in the context of the lack of data 
and expert opinion. Baraldi et al. [89] derived the conditional 
probability tables of BNs for human reliability analysis from 
the elicitation of a limited number of relationships provided by 
experts in the form of rules. Musharraf et al. [90] developed a 
collection method for human performance data by virtual 
experiments and assigned the prior and conditional 
probabilities of BNs for human reliability analysis in the event 
of an offshore emergency evacuation. Li et al. [91] used 
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situational awareness data measured by simulation 
experiments to determine the conditional probability 
distribution of a BN-based model for operators’ situational 
awareness reliability.  

Collecting sufficient human performance data for general 
industrial applications is difficult. However, for certain 
industries, some data have already been collected and sorted, 
and parameter learning methods can be used to determine the 
prior and conditional probabilities. For example, 
Sundaramurthi and Smidts [86] calculated the conditional 
probabilities and node probabilities by using the parameter 
learning function of the software GeNIe and data collected 
from aviation and nuclear accidents. 

3) BN Inference: No BN inference algorithms have been 
studied for human reliability analysis. However, many BN 
tools have been used directly to perform BN inference, 
including MSBNx [82, 92, 93], AgenaRisk [83], Hugin [85, 
94], GeNIe [86, 90, 95], and Netica [87, 88]. 

4) Verification and Validation: Validation techniques for 
human reliability evaluation methodologies were researched 
and classified by Kirwan [96, 97], but he focused on all 
evaluation methodologies instead of only BN-based ones. In 
BN-based human reliability analysis, verification and 
validation are distinct. For verification, sensitivity analysis is 
the primary method. Cai et al. [87] performed a sensitivity 
analysis to verify the proposed BN models for human 
reliability analysis of offshore blowouts. Gregoriades and 
Sutcliffe [98] used BNs to model the cause-and-effect 
relationships of performance-shaping factors and assessed the 
agent’s operational reliability; the models were validated using 
data mining techniques, including relevance analysis, 
association rules, and classification. Yang et al. [94] 
developed a human reliability quantification method in marine 
engineering by integrating fuzzy logic, evidential reasoning 
and BNs and used sensitivity analysis to validate the proposed 
method. In addition, verification based on well-known 
scenarios has also been reported. Lee and Seong [93] 
developed a BN-based computational model to evaluate the 
situation of nuclear power plant operators and verified the 
proposed method by comparing the results of expert mental 
model and less-skilled operator mental model. 

Acquiring real and even simulated data is difficult; 
consequently, only validation based on contrastive modeling 
has been used. For instance, Groth and Swiler [85] validated 
the proposed BN version of SPAR-H for human reliability 
analysis by comparing it with the SPAR-H method. Musharraf 
et al. [90] validated their BN-based human reliability analysis 
method for offshore emergency evacuation by comparing its 
results with those of the Bradbury-Squires method [99] by 
using the same data. Musharraf et al. [95] used a success 
likelihood index methodology to validate another BN-based 
human reliability assessment model for offshore emergency 
conditions. Kim and Seong [92] proposed a BN-based analytic 
model to evaluate the situation of nuclear power plant 
operators and validated this method by comparing it with the 
situation evaluation model proposed by Miao et al. [100]. This 
comparison of methods validates existing human reliability 
evaluation methodologies partially but not completely. A 
complete validation should be performed further in real 
industrial applications with real data. 

E. Discussion 

The applications of BNs in reliability evaluation are 
reviewed in the previous section. The important issues 
mentioned can be summarized as follows. 

(1) Most of the studies on BN-based reliability evaluation 
focus on hardware, whereas only few studies explore the BN-
based reliability evaluation of structures, software, and 
humans. In the reliability evaluation of hardware, structures, 
software, and humans, most studies focus on BN structure 
modeling and BN parameter modeling, whereas only few 
studies include BN inference, verification, and validation.  

(2) Knowledge representation and expert elicitation 
methods are the predominantly used techniques for structure 
and parameter modeling because they offer the simplest 
solution to determining the uncertainty between the nodes of 
BNs, that is, by using the knowledge of experts. However, 
these methods are highly subjective and may produce 
inaccurate reliability evaluation models.  

(3) Mapping methods are less subjective, and the accuracy 
of reliability evaluation by this type of method is higher than 
that by knowledge representation methods. Therefore, if the 
structure modeling is using mapping method, the parameter 
modeling is not always using mapping method, just like 
software and human. 

(4) Structure and parameter learning are the most accurate 
methods for constructing BNs; however, in practice, obtaining 
sufficient and valuable data for training structure and 
parameter models is nearly impossible. 

(5) BN inference algorithms, including exact and 
approximate inference, have been seldom investigated in 
studies on BN-based reliability evaluation methodologies. 
Instead, inference is mainly performed using various 
commercial or free software programs because they can help 
solve computational complexity and reduce memory usage 
considerably. 

(6) Verification and validation are important to BN-based 
reliability evaluation methodologies; however, many proposed 
methodologies have not been verified and validated using 
suitable methods. Real data have only seldom been applied to 
the verification and validation of BN-based reliability 
methodologies. Instead, contrastive modeling and simulated 
data are widely used. 

(7) DBNs are extensively used to study the reliability of 
hardware and structures. However, their application in 
software and human reliability evaluation is limited mainly 
because only hardware and structures are subject to 
degradation and aging, which can be well described by DBNs. 

IV. RESEARCH DIRECTIONS 

In view of the literature review of BN-based reliability 
evaluation methodologies, a few upcoming research directions 
in this field that are of interest to reliability researchers and 
practitioners are presented in this section. 

A. BN Modeling Methods Considering Cascading Failures 

Failure dependency remarkably affects the reliability of 
systems, particularly hardware and structures. Common cause 
failure and cascading failure are two typical examples of 
failure dependency. BN modeling methods considering 
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common cause failure have been extensively researched [25, 
101]. A cascading failure is a failure in an interconnected 
system, in which the failure of a part can trigger the failure of 
successive parts. Few studies on the BN-based reliability 
evaluation methodology have considered cascading failures 
[102]. For hardware and structure reliability evaluation, 
constructing the structure and parameter models of BNs for 
reliability evaluation by considering the cascading failure of 
components, especially when temporal and dynamic features 
are involved, is a challenging problem. 

B. DBN-Based Reliability Prediction for Software and 
Humans 

Software and humans are not subject to degradation and 
aging when they are modeled for reliability evaluation. 
Software behavior changes with time because maintenance 
activities occur or the environment changes over time. Human 
errors are more complex than software errors because human 
reliability is influenced by intrinsic factors (e.g., skill) and 
external factors (e.g., weather). Reliability can be predicted 
well if the dynamic changes in the environmental factors 
related to software and human reliability can be modeled using 
DBNs. 

C. Integration of Big Data and BN Reliability Evaluation 
Methodology 

Big data is a popular research topic and has three attributes: 
volume, variety, and velocity. Massive amounts of data on 
hardware, structures, software, and humans are collected or 
recorded by sensors or humans. Numerous pieces of useful 
information, especially those about system or component 
failures, are contained by these data. The structure learning 
and parameter learning of BNs need these useful data for 
reliability modeling. The integration of big data and BN 
reliability evaluation presents a definite orientation for 
interdisciplinary research. However, extracting useful 
information from big data and constructing reliability 
evaluation, analysis, and prediction models by using BNs are 
challenging problems. 

D. Rapid Approximate Inference Algorithms for DBNs for 
Reliability Evaluation 

For reliability prediction, DBN inference is mainly 
accomplished using various commercial or free software 
programs. In reality, a complex reliability model leads to high 
computational cost of the inference with software. A time slice 
with a long period of time should be set, thereby leading to 
inaccurate prediction results. By contrast, rapid approximate 
inference algorithms may achieve good prediction results. 
Therefore, research on rapid approximate inference algorithms 
for DBNs is a worthwhile future direction. 

V. CONCLUSION 

Since the introduction of BNs by Pearl in the early 1980s, 
their application in reliability engineering has been widely 
researched and obtained favorable achievements. This work 
provides a literature review of BN-based reliability evaluation 
methodologies from the perspective of the objects of 
evaluation, focusing on the general procedure of reliability 
modeling with BNs. For each evaluated object (i.e., hardware, 

structures, software, and humans), the various methods for 
each procedural step (i.e., BN structure modeling, BN 
parameter modeling, BN inference, and model verification and 
validation) are reviewed and analyzed in detail. The potential 
problems and current gaps in applying BNs to reliability 
evaluation are discussed, and upcoming research directions 
that are of interest to reliability researchers are presented. We 
hope that the current paper can provide researchers and 
practitioners a helpful guide for BN-based reliability 
evaluation methodology with BNs. 
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