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Abstract The application of Bayesian network (BN) the-

ory in risk assessment is an emerging trend. But in cases

where data are incomplete and variables are mutually

related, its application is restricted. To overcome these

problems, an improved BN assessment model with

parameter retrieval and decorrelation ability is proposed.

First, multivariate nonlinear planning is applied to the

feedback error learning of parameters. A genetic algorithm

is used to learn the probability distribution of nodes that

lack quantitative data. Then, based on an improved grey

relational analysis that considers the correlation of varia-

tion rate, the optimal weight that characterizes the corre-

lation is calculated and the weighted BN is improved for

decorrelation. An improved risk assessment model based

on the weighted BN then is built. An assessment of sea ice

disaster shows that the model can be applied for risk

assessment with incomplete data and variable correlation.

Keywords Bayesian network � Genetic algorithm � Grey
relational analysis � Risk assessment

1 Introduction

Risk is the consequence of interactions between risk factors

and risk-bearing objects (Grandell 1991) in a multidimen-

sional and multilayered system. Risk assessment, the core

of risk science, is a comprehensive evaluation and esti-

mation of the occurrence of risks and losses (Zhang 2013),

and constitutes an important research area in the field of

management and decision making. Qualitative risk

assessment is mainly based on expert knowledge, whereas

quantitative risk assessment uses mathematical methods

(Bühlmann 1996).

Considering risk cognition and risk information, both

risk and its assessment are uncertain, or rather fuzzy and

random (Paté-Cornell 1996). There are several culprits that

create this uncertainty: (1) the randomness of attributes of

risk such as time, frequency, and intensity; (2) the

incompleteness and ambiguity of environmental informa-

tion; and (3) dependency on subjective knowledge.

Therefore, the expression and handling of fuzzy and ran-

dom information is one of the key issues in modern risk

assessment modeling (Yu 2017).

There are many risk assessment methods, including

qualitative and quantitative ones. Classic methods, such as

the analytic hierarchy process (Saaty 1980), fuzzy com-

prehensive assessment (Yang and Yang 1998), and grey

system theory (Deng 1990), are used widely. The analytic

hierarchy process (AHP) combines qualitative judgment

with quantitative analysis to handle subjective preference

in a quantitative way (Al-Harbi 2001). Fuzzy comprehen-

sive assessment (FCA) can process ambiguous information

with quantitative mathematical expressions (Ruan et al.

2005). Grey evaluation applies grey relational analysis

(GRA) to assessment modeling with incomplete data

(Zheng and Hu 2009). However, these classical methods
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are mainly based on subjective experience and expert

knowledge. Neither weight calculation in AHP nor affili-

ation determination in FCA takes advantage of objective

data, indicating a relatively strong subjectivity and low

credibility in assessment. Furthermore, these methods have

defects in describing nonlinear interactions between risk

factors.

In the past two decades, some emerging research tech-

niques have been utilized in risk assessment. Prominent

among them have been the neural network (NN) approa-

ches discussed by Hagan and Beale (2002), cloud models

(Li and Liu 2004), event tree analysis (ETA) applied by

Ericson (2005) to system safety studies, and Petri net (PN)

techniques that Girault and Valk (2003) introduced into

systems engineering. NN in particular has capability in

parallel computing, self-learning, and fault tolerance,

which can achieve nonlinear modeling for complex sys-

tems. Cloud modeling combines fuzzy theory with proba-

bility theory for the expression of uncertain information.

ETA and PN can describe the interinfluence of factors

visually and achieve the rigorous inference of multisource

information.

Although these emerging methods overcome many of

the problems encountered in classic methods, they still

have limitations in handling uncertainty. NN has a weak

ability to express fuzzy and random knowledge; Cloud

modeling cannot achieve integral reasoning of information;

and ETA and PN are subjective in relationship analysis and

information fusion. In general, the vital issues in risk

assessment, that is, objective fusion and reasoning of multi-

source and uncertain information, have not been effectively

tackled.

Enlightened by artificial intelligence (AI), which is well

recognized in processing uncertainty, risk assessment can

be propelled by means of AI algorithms. As one of the most

promising technologies in AI, Bayesian Network modeling

has drawn the attention of researchers. It has been pre-

liminarily applied to risk assessment, such as catastrophic

risk assessment (Li et al. 2010), health risk assessment (Liu

et al. 2012), risk analysis of marine strategic aisles (Yang

and Zhang 2014), and risk assessment for ship-bridge

collisions (Yang 2015). BN modeling in recent studies can

be summarized as comprising 3 steps: (1) the selection of

indicators as network nodes; (2) the manual establishment

of network structure based on casual analysis among nodes;

and (3) the determination of network parameters according

to expert knowledge. Structures and parameters, never-

theless, are mostly determined by experiential knowledge

with strong subjectivity and little data.

In order to take full advantage of the potential of BN in

uncertainty processing, several methodologies have been

combined to promote more objective and quantitative

modeling in risk assessment. Consequently, fuzzy mathe-

matics theory (Zhang 2015), object-oriented analysis

(Wang 2016), weight fusion (Liu 2016), and geographic

information science (Grêt-Regamey and Straub 2006) were

introduced. These fields of study extract quantitative data

from the original information and determine the structure

and parameters automatically by intelligent algorithms.

Objective data mining, instead of subjective construction,

can be the catalyst of BN application in the expression,

fusion, and reasoning of uncertain information in risk

assessment.

The BN application in risk assessment is not a doddle.

The practical problems are usually full of qualitative

description but also a lack of quantitative data, where

expert knowledge is a feasible bridge that transfers data

from the former to the latter. Nonetheless, the ‘‘quantitative

data’’ transformed by expert knowledge is incomplete and

subjective. There remains a barrier in constructing a BN

objectively and scientifically with nonquantitative infor-

mation and incomplete data. Moreover, the modeling pro-

cess hitherto used ignores the conditional independence

hypothesis of BN, that is, network nodes should be con-

ditionally independent of each other. This assumption is

hard to meet in practical application due to the strong

correlation between assessment factors, even though the

independence assumption should be satisfied as much as

possible.

An improved BN model, with parameter retrieval and

decorrelation ability, is proposed to deal with data

incompleteness and factor correlation in quantitative risk

assessment. The model makes an attempt to break through

the restrictions of BN and promote its application to risk

assessment.

2 Bayesian Network and Its Applicability

BN is an emerging AI algorithm and has been initially

applied in risk assessment. We first make a brief intro-

duction of basic concepts and mathematical principles, and

then explain its applicability in risk assessment.

2.1 Bayesian Network Theory

BN, also known as Bayesian reliability network, is a

combination of graph theory and probability theory (Shi

2012). It is not only a graphical description of the causal

relationships between variables that provides a way to

visualize knowledge, but it is also a probabilistic reasoning

technique for uncertainty. BN is expressed as a complex

and causal diagram intuitively, and can be denoted by a

binary B ¼ G; hh i:
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• G ¼ V;Eð Þ denotes a directed acyclic graph, V is a set

of nodes denoting variables in problem domain, and E

is a set of arcs denoting the causal dependency between

variables.

• h is the network parameter including the prior probability

and the conditional probability table (CPT) of nodes. It

expresses the influence degree between nodes and

reflects quantitative features in the knowledge domain.

Assume a set of variables V ¼ V1; . . .;Vnð Þ. The math-

ematical basis of BN is the Bayesian formula.

P VijVj

� �
¼

P Vi;Vj

� �

P Vj

� � ¼
P Við Þ � P VjjVi

� �

P Vj

� � ð1Þ

where P Við Þ and P Vj

� �
are prior probabilities, P VjjVi

� �
is a

conditional probability, and PðVijVjÞ is a posterior

probability.

If the prior probability distribution of root nodes and the

CPT of non-root nodes are given, the joint probability

distribution can be reasoned by Eq. 2.

P V1;V2; . . .;Vnð Þ ¼
Yn

i¼1

P VijPa Við Þð Þ ð2Þ

where P V1;V2; . . .;Vnð Þ is the joint probability distribution

of variables, Pa Við Þ denotes the parent of Vi.

BN construction includes structural learning and

parameter learning, or rather learning about the topology

network and CPT. BN can be not only learned by intelli-

gent algorithms with big data, but also can be constructed

with relevant expert knowledge and experience (Wang

2010). Therefore, BN achieves an effective combination of

qualitative analysis and quantitative calculation.

2.2 Applicability Analysis of Bayesian Network

in Risk Assessment

Risk modeling with BN is a complex process that includes

variable definition, node selection, data processing, struc-

tural learning, CPT learning, and probability reasoning.

Assessment theory has also developed a complete system

consisting of index selection, system establishment, weight

calculation, and index fusion. Both processes are circular and

revised constantly. The brief modeling steps are shown in

Table 1.

As shown in Table 1, BN coordinates with risk assess-

ment—the BN modeling process corresponds to the risk

assessment process in each step. The probabilistic reason-

ing technique of BN can effectively achieve the fusion of

uncertain information, which is vital for risk assessment.

Therefore, BN is an effective model for dealing with

uncertain risk assessment.

However, the problems of missing quantitative data and

variable correlation mentioned in Sect. 1 limit the

application of BN in risk assessment. Our next step is to

optimize the BN modeling based on a genetic algorithm

(GA) and an improved grey relational analysis (GRA). The

concrete technical flow is shown in Fig. 1.

3 Optimization Method of Bayesian Network

Concerning missing quantitative data, we introduce mul-

tivariate function planning and apply feedback error

searching based on a GA. A CPT retrieval algorithm of

qualitative nodes with small samples is proposed. As for

the conditional independence hypothesis that each node

should be conditionally independent, an improved GRA is

adopted to get optimal weights, which is then blended into

probability distributions to achieve decorrelation.

3.1 Retrieval of a Conditional Probability

Table Based on a Genetic Algorithm

Parameter learning affects the accuracy of network rea-

soning directly. The existing algorithms are not applicable

in practical problems due to the irregularity of data. We

will analyze the data problem in CPT learning and propose

a retrieval algorithm.

3.1.1 Problem Analysis of Conditional Probability

Table Learning

There are some parameter learning algorithms for complete

data, including the maximum likelihood estimation method

(Darwiche 2009), the Bayesian method, and the gradient

descent method (Niculescu et al. 2006). And there are also

some methods for dealing with incomplete data (Friedman

et al. 1997; Basak et al. 2012), such as the expectation–

maximization (EM) method and the Gibbs sample method.

Although the existing algorithms could learn the parame-

ters, they are no longer applicable in the following data

conditions:

1. Non-quantitative data: a comprehensive description of

a problem, especially of humanity and society,

includes both quantitative data and qualitative lan-

guage. When the raw data contains qualitative descrip-

tion, the above algorithms cannot be used directly for

BN training. The traditional way to process qualitative

data is to first quantify the qualitative information

based on experience and knowledge, such as Delphi

method (Okoli and Pawlowski 2005). There is no

doubt that the process has a degree of subjectivity,

which can easily cause a loss of objective information.

2. Incomplete data: The way of data collection and

storage could result in missing data, but the above
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algorithms require complete quantitative data.

Although there are algorithms for processing missing

data, which assume that the missing data is negligible,

it is difficult to calculate CPT by the algorithms in the

case of incomplete data, especially with excessively

missing data. So how to calculate the CPT of

qualitative and missing-data indicators objectively?

3.1.2 Retrieval Algorithm Design

Taking into account assessment results (such as disaster

economic loss and casualty data) published by the

authorities as a point of departure, we can get a true pos-

terior probability distribution from an actual assessment

and construct an error function. The feedback error func-

tion derived from searching for an optimal CPT is applied

to reduce the learning errors. We propose the retrieval

algorithm for parameter learning and use a genetic algo-

rithm to search the optimal CPT of nodes.

Genetic algorithm (GA) is a randomized search method,

which is derived from the evolution of biological circles. It

was first proposed by Holland in 1992 (Holland 1992).

According to the GA process (Li 2002), we adapt the cross-

over and mutation operators, and fitness function to BN

parameter learning. The CPT learning with GA (retrieval

algorithm of CPT based on GA) is designed as follows.

Input CPT search space; Fitness function (error

function)

Output Optimal CPT

Step 1 Creation of initial CPT population;

Step 2 Statistical analysis of historical data to obtain

posterior probability distribution of real

assessment, to build the fitness function;

Step 3 Perform crossover, mutation, and other genetic

operations;

Step 4 Selection according to fitness function;

Step 5 Termination condition judgment, output optimal

CPT

The outstanding advantage is that the retrieval algorithm

can achieve parameter learning with qualitative informa-

tion and incomplete data. Based on objective data and error

feedback, the CPT is retrieved by GA. In addition, learning

efficiency is not related to the degree of missing data and

the complexity of the network.

Table 1 Bayesian network modeling and assessment process

BN modeling Risk assessment

Step 1. Variable definition, node selection Step 1. Indicator selection

Step 2. Structural learning Step 2. System construction

Step 3. CPT learning Step 3. Indicator weight calculation

Step 4. Reasoning and calculation Step 4. Model construction

Evaluation object

Selection of indicators

Structure construction

CPT determination

Quantitative 
indicators

Qualitative 
indicators

Parameter learning 
algorithm

Genetic 
algorithm

Index weight

Improved Gray 
Relational Analysis

Weighted Bayesian Network

Reasoning and calculation

Evaluation results

Fig. 1 The optimized modeling

route of an ideal Bayesian

network
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3.2 Optimization of Weighted BN Based

on Improved Grey Relational Analysis

BN is theoretically not suitable for modeling with related

variables. We analyze the problem in the existing weighted

BN, then apply an improved GRA to the weight calculation

to improve the conditional independence hypothesis.

3.2.1 Problem Analysis of Variable Correlation

The conditional independence hypothesis simplifies the

probability reasoning of a BN. On the basis of this

assumption that non-associated nodes are conditionally

independent, we use the great posteriori estimation (Liu

2016) to obtain the reasoning formula for posterior

probability.

PðvjV1;V2. . .;VnÞ ¼ P vð Þ
Yn

i¼1

P Vijvð Þ ð3Þ

where under a given condition v, V1;V2; . . .;Vn are mutu-

ally conditional independent. PðvjV1;V2. . .;VnÞ is the

posterior probability, P vð Þ is the a priori probability, and

PðVijvÞ is the conditional probability.

Equation 3 is no longer applicable for related BN nodes

in an actual problem. We need to improve the indepen-

dence hypothesis and promote the application of BN in

assessment. There are some ways to improve the hypoth-

esis and give each node a different weight is an effective

method. Liu (2016) adopted entropy weight to construct a

weighted BN to assess flood disaster risk. Entropy weight

is based completely on quantitative data, whose rationality

requires further examination. Weight calculation is an

essential part of the weighted BN. By considering the

causal associations between BN nodes, the weight should

be measured through the correlation of the nodes. In this

way we improve the grey correlation method to analyze the

correlation between variables and obtain the new weight to

optimize the weighted BN.

3.2.2 Improved Grey Relational Analysis Design

Grey assessment is a method used to measure the corre-

lation degree between factors based on the similarity or

dissimilarity of the development trend (Gu et al. 2003).

Grey relational analysis is used to judge the correlation

between two sequences according to the geometry shapes

of curves. The method makes up for the shortcomings of

mathematical statistical methods, which require that sam-

ples should be subject to the typical probability distribution

(Jiang et al. 2015). The specific process of GRA is as

follows.

Step 1 Determine the reference sequence and compar-

ison sequences;

Step 2 Data calculation and transformation (dimension-

less, normalized);

Step 3 Calculate the difference sequence and the

maximum, minimum difference;

Step 4 Calculate the correlation coefficient and correla-

tion degree.

Grey relational analysis is a form of geometric pro-

cessing that is a quantitative analysis of development

trends in a dynamic process. The calculation of absolute

difference at each moment ignores the variation between

adjacent moments. Because it only takes into account the

difference of each endpoint, the method cannot describe

the correlation between two dynamic sequences.

To overcome this problem, we present the improved

thinking as shown in Fig. 2. The sequence first is fitted

nonlinearly, and the discrete function is replaced by a

continuous function. Then the calculation of difference

sequence is improved as shown in Eq. 4, and the changing

trend is expressed in integral form. The correlation degree

of the geometric shapes is described accurately.

D0i ¼
ZtþDt

t

fi tð Þ � f0 tð Þf gdt

������

������
þ

ZtþDt

t

f 0i tð Þ � f 00 tð Þ
� �

dt

������

������
;

i ¼ 1; 2; 3. . .m

ð4Þ

Discrete 
�me series

Con�nuous 
fi�ng curve

Integral difference 
of the fi�ng curve

Integral difference 
of fi�ng curve 

deriva�ve func�on

Correla�on Weights

Fig. 2 Improved thinking of

grey relational analysis to

correlate two dynamic

sequences
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where D0i is the sequence difference, fi tð Þ is the fitting

function of comparison sequence, f
0

i tð Þ is the derivative

function of fi tð Þ, f0 tð Þ is the fitting function of reference

sequence, and f
0
0 tð Þ is the derivative function of f0 tð Þ.

The process of weight calculation based on correlation

degree is as follows:

First calculate the sequence difference at each moment

D0i kð Þ, the maximum and minimum difference Dmax, Dmin

according to Eq. 4. Then calculate the correlation

coefficient.

e0i kð Þ ¼ qDmax þ Dmin

D0i kð Þ þ qDmax

; k ¼ 1; 2; 3; . . .n ð5Þ

where resolution coefficient q generally takes 0.5. Next

calculate correlation degree.

c0i ¼
1

n

Xn

k¼1

e0i kð Þ ð6Þ

Finally, the weight of each indicator can be calculated.

wi ¼
c0iPm
i¼1 c0i

ð7Þ

We integrate weights into the CPT to construct the

weighted BN, and the reasoning formula 3 is improved as

follows:

PðvjV1;V2. . .;VnÞ ¼ P vð Þ
Yn

i¼1

P Vijvð Þwi ð8Þ

where wi is the weight of each assessment indicator.

The improved GRA takes into full consideration both

state and variation similarity, so it can measure the corre-

lation of two sequences more accurately. Correspondingly,

weights calculated by this method can better measure the

interdependence between nodes and can improve the con-

ditional independence assumption.

The new BN based on the above two algorithms could

achieve objective assessment modeling in case of missing

quantitative data and variable relation. In order to explain the

improvement of modeling process, we make a comparison

between the improved BN and classic BN (Table 2).

3.3 Algorithm Numerical Test

To verify the validity of the CPT retrieval algorithm, we

undertake a comparative analysis with another method for

parameter learning.

We use the classic BN ‘‘Wet Grass’’ in Fig. 3 for dis-

cussion.We first generate training data for this network, then

calculate the CPT of node ‘‘Rain’’ by using an expectation–

maximization algorithm and a retrieval algorithm. Com-

parison of the reasoning results is shown in Fig. 4 and

Table 3. Considering the randomness of our search, we run a

GA 100 times, each with a random initial population, and

check whether the parameters converge to unique.

From Table 3, as the GA achieves the feedback of

reasoning errors, the calculation error decreases by

P(C=Y) P(C=N)

0.5 0.5

C P(S=Y) P(S=Y) C P(R=Y) P(R=Y)

Y 0.2 0.8 Y 0.9 0.1

N 0.8 0.2 N 0.5 0.5

S R P(C=Y) P(C=Y)

Y Y 0.99 0.01

Y N 0.9 0.1

N Y 0.1 0.9

N N 0 1

Fig. 3 ‘‘Wet Grass’’ Bayesian

Network
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59.55%, and the convergence speed increases by 67.94%.

In general, the retrieval algorithm not only has the ability to

calculate the CPT with very limited quantitative data, but

also it enhances accuracy.

4 Model Application

China is one of the countries that are seriously affected by

sea ice in the world. Sea ice poses a major threat to off-

shore engineering facilities, resources, property, and per-

sonal safety, which has an adverse effect on the normal life

of people in coastal areas. In this section, we select the

Chinese Bohai Sea (37�N–41�N, 118�E–122�E) and four

coastal provinces (Liaoning, Shandong, Hebei, and Tian-

jin) as the research setting in which to assess the potential

for a sea ice disaster. The risk assessment is carried out in a

Matlab 2012a1 environment. The library functions come

from the Bayesian Network Toolbox (BNT) written by

Murphy.2

4.1 Node Selection and Structure Construction

Our purpose is to test the feasibility of our model. For the

sake of comparison and verification, based on risk theory

(Dilley et al. 2005) and expert knowledge (Sun and Shi 2012;

Yuan et al. 2013), we select one representative indicator

from each of three criteria in the risk system to illustrate the

sea ice risk problem: danger, vulnerability, and precaution.

1. Danger: Maximum freezing range. This criterion can

be represented by sea ice coverage, which is a

quantitative indicator and a significant factor that

contributes to sea ice disaster risk.

2. Vulnerability: Marine economic density. This factor is a

ratio of total marine production to regional area. Marine

economic production mainly includes marine fisheries,

the offshore oil and gas, ocean engineering construction,

and marine transportation industries, and so on.

3. Precaution: Social security level. This variable is a

measure of societal preparedness, which is related to

economy, medical care, transportation, and so on. The

indicator contains all kinds of information, which is

complex and non-quantitative.

Sea ice disaster risk also is measured by economic los-

ses. An assessment system is shown in Table 4. The map of

the corresponding BN structure is shown in Fig. 5.
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Fig. 4 Convergence curves of

different algorithms (left for

expectation–maximization

(EM) algorithm, right for

retrieval algorithm)

Table 2 Comparison between the improved Bayesian network and classic Bayesian network models

Modeling conditions Quantitative data loss and strong variable relation

Modeling process Structural learning Parameter learning Reasoning calculation

Classic BN Manual construction

based on knowledge

Expert scoring to quantify

qualitative information

Simple reasoning without

considering relation

Improved BN Manual or automatic construction Retrieval with GA Weighted reasoning

1 Matlab2012a, https://ww2.mathworks.cn/.
2 Bayesian Networks Toolbox, http://www.cs.ubc.ca/*murphyk/

Software/BNT/bnt.html.
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4.2 Conditional Probability Distribution

Calculation

After the construction of a Bayesian network structure, a

CPT is calculated. We first need to process the raw data to

get training samples. Then the retrieval algorithm with the

GA developed in Sect. 3.1 is used to search for the prob-

ability distributions.

4.2.1 Data Processing

We collected indicator data from the provinces of Liaon-

ing, Shandong, and Hebei and Tianjin Municipality

between 1951 and 2015. The data of T , d1, and d2 are

quantitative, continuous, and year-by-year statistics, whose

sources are shown in Table 5. The information for d3
reflects the qualitative description of experts. Because BN

processes discrete data, the discretization of data was

performed to produce samples and determine the number

of states taken by nodes.

In risk assessment, the discrete states are determined

depending on the risk level of the indicators. Based on the

Sea Ice Grade Standard compiled by the State Oceanic

Administration (2010) as shown in Table 6, we classified

the disaster level into two states: high risk (including level

I, II, III) and low risk (including level IV, V). That is, each

network node has two states. Node value {1, 2} is on behalf

of two states {high risk, low risk}. Discrete samples were

generated as shown in Table 7. T , d1, and d2 were divided

into two states, while d3 lacks quantitative information. We

used the first 50 years (1951–2010) of samples for BN

training and the last 5 years’ data (2011–2015) for a test.

4.2.2 Retrieval of Optimal Conditional Probability

Table Based on Genetic Algorithm

For quantitative nodes d1 and d2, we calculated a priori

probability distributions P d1ð Þ, P d2ð Þ and CPT Pðd1jTÞ,
Pðd2jTÞ based on statistical analysis and a maximum

likelihood estimation algorithm. For qualitative node d3,

we calculated P d3ð Þ and Pðd3jTÞ with the retrieval algo-

rithm in Sect. 3.1. The specific steps are as follows.

Step 1 Determine the initial species. To ensure the

rationality of the search results, we first determine the search

space based on expert knowledge as P d3 ¼ 1ð Þ 2 0; 0:35½ �.
Then we set the CPT as shown in Table 8.

Step 2 Build the fitness function. According to Table 7,

we analyzed the economic loss due to sea ice disaster in the

Bohai Sea from 1951 to 2010 and determined the actual

probability distribution of the sea ice disaster level

(Table 9). Finally the objective function f x; y; zð Þ repre-

senting assessment errors is constructed.

f x; y; zð Þ ¼ P T ¼ 1ð Þ � P T0 ¼ 1ð Þj j
þ P T ¼ 2ð Þ � P T0 ¼ 2ð Þj j ð9Þ

Table 4 Assessment indicator system to measure potential sea ice hazard risk in the Bohai Sea

Assessment target Indicator Attributes

T: Sea ice disaster

Economic losses

d1: Maximum freezing range Quantitative indicators

d2: Marine economic density Marine GDP/area; quantitative indicator

d3: Social security level Qualitative indicators

T

d1 d2 d3

Fig. 5 Bayesian network structure of sea ice disaster in the Bohai Sea

region of China

Table 3 Comparison of the conditional probability table calculation with different algorithms

Number of iterations,

time of convergence

CPT of node ‘‘rain’’ Posteriori probability Error

Expectation–maximization

(EM) algorithm

9 times 79.7752 s 0.4758 0.5242 0.3352 0.6648 2.67%

0.9143 0.0857

Retrieval algorithm 16 times 25.5728 s 0.4960 0.5040 0.3458 0.6542 1.08%

0.8997 0.1003

True situation – 0.5 0.5 0.3529 0.6471 –

0.9 0.1
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where P Tð Þ denotes the reasoning result, and P T0ð Þ denotes
the actual assessment result.

Step 3 Search optimization. Based on the BNT (Jiang

and Lin 2007), we design a mutation operator and a select

operator, and search for the optimal CPT with minimizing

inference errors. The results are shown in Fig. 6 and

Table 10. The complete CPT is shown in Table 11.

4.3 Weighted Bayesian Network Based on Improved

Grey Relational Analysis

We analyzed data from 1951 to 2010 to calculate weights

and integrate them into the CPT. Because there is no

quantitative data for d3, the level of social security is

evaluated by a 0–9 scale in order to determine its time

series. The improved GRA was used to calculate the cor-

relation between three indicators and the economic losses.

Table 6 Level criteria needed to determine sea ice disaster states (Source State Oceanic Administration 2010)

Level I II III IV V

Name Great disaster Major disaster Big disaster General disaster Minor disaster

Maximum freezing range (n mile) [ 100 81–100 61–80 51–60 B 50

Marine economic density (Billion/km2) [ 0.5 0.41–0.5 0.31–0.4 0.21–0.3 B 0.2

Economic loss (Billion) [ 60 41–60 21–40 1–20 B 1

Clustering level High risk level Low risk level

Table 8 Conditional probability distribution at high and low risk

levels

d3 P d3ð Þ Pðd3jTÞ

High risk level Low risk level

High risk level z x 1� x

Low risk level 1� z y 1� y

Table 9 Actual probability distribution of sea ice disaster in the

Bohai Sea

T P0 Tð Þ

High risk level 0.709

Low risk level 0.291

Table 5 Data sources for sea ice disaster and economic losses in Liaoning, Shandong, Hebei, and Tianjin, China, 1951–2015

Assessment index Data sources

Maximum freezing range China Marine Disaster Forty Years of Information Compilation (Yang and Tian 1994), Marine Disaster Bulletina

Marine GDP China Ocean Statistical Yearbook,b

China Fishery Statistical Yearbookc

Sea area Statistical Yearbook compiled by provincial statistical officesd

Economic loss Marine Disaster Bulletin,

Statistical Yearbook compiled by provincial statistical offices

aMarine Disaster Bulletin: http://www.soa.gov.cn/zwgk/hygb/zghyzhgb/
bChina Ocean Statistical Yearbook: http://cyfd.cnki.com.cn/N2015050179.htm
cChina Fishery Statistical Yearbook: https://www.douban.com/note/497925665/?type=like
dStatistical Yearbook: http://www.nianjianku.com/

Table 7 Discrete samples for Bayesian network training and testing

Indicator Training Sample Test sample

1951 1952 1953 1954 � � � 2010 2011 � � � 2015

T 2 2 1 2 � � � 1 2 � � � 1

d1 1 2 2 2 � � � 2 1 � � � 1

d2 1 1 1 1 � � � 2 2 � � � 2

d3 Qualitative information (language description)
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Then, we determined the weight according to Sect. 3.2.2.

The results are shown in Table 12.

From Table 12, the improved correlation is more in

accord with the correlation coefficient, so the dependency

relationship between indicators is better explained with the

weight. Finally, we integrated weights into the conditional

probability and reasoned with Eq. 10. The network struc-

ture, CPT, weights, and reasoning mechanism of improved

BN have been completed.

P T jd1; d2; d3ð Þ ¼ P Tð Þ � P d1jTð Þw1 �P d2jTð Þw2 �P d3jTð Þw3

ð10Þ

4.4 Reasoning Calculation and Model Discussion

Based on the improved BN, we input prior probability and

reasoned according to Eq. 10 to evaluate sea ice disaster in

the Bohai Sea from 2011 to 2015.

In order to test the effectiveness of the model, we

compared it with the fuzzy comprehensive assessment

(FCA) method and existing BN models. We respectively

took the FCA method, the classic BN model, and the

weighted BN model with the entropy method (Liu 2016) to

carry out the same experiment and analyze the results.

1. The threat degree by the FCA is 0.616, while the

probability distribution of sea ice risk is [0.697, 0.303].

Both results are high risk, which is relatively consis-

tent. But FCA can only give a definite evaluation

result, ignoring the uncertainty of risk. By contrast, the

improved BN model can show all risk states and their

probability. Moreover, the model contains less subjec-

tivity than FCA.

2. Seen from Table 13, the assessment accuracy of the

improved BN model can reach 97.89, 78.83% higher

than the traditional BN and 60.41% higher than

weighted BN with entropy method. The traditional

BN model mainly fills missing data through expert

scoring and does not consider correlation between

variables, which makes the assessment subjective and

inaccurate. The weighted BN model with entropy

method considers correlation to some extent, but the

weight calculation must be based on complete data

filled with expert experience and the weight could not

reflect the dependency between variables.

The improved BN model achieves objective risk

assessment with BN in the case of missing data and vari-

able correlation. In this article, we improve the weighted

BN assessment model and apply GA to parameter learning.

It not only realizes the CPT calculation with a lack of

quantitative data but also achieves reasoning errors feed-

back. In addition, the conditional independence hypothesis

of BN tends to be satisfied by integrating CPT with weights

Table 10 Optimal conditional probability table at high and low risk

levels

d3 P d3ð Þ Pðd3jTÞ

High risk level Low risk level

High risk level 0.312 0.719 0.281

Low risk level 0.688 0.296 0.704

Table 11 Conditional probability table of each Bayesian network

node

T di

Pðd1jTÞ Pðd2jTÞ Pðd3jTÞ

1 2 1 2 1 2

1 0.673 0.327 0.688 0.312 0.719 0.281

2 0.319 0.681 0.331 0.669 0.296 0.704

0
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0.002
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Fig. 6 Convergence curve of the solution of the objective function

Table 12 Grey correlation analysis results for indicators of sea ice disaster

Maximum freezing range Marine economic density Social security level

Primitive correlation 0.5831 0.5215 0.4941

Improved correlation 0.5746 0.5776 0.5571

Correlation coefficient 0.9488 0.9996 0.9326

Weights 0.3294 0.3469 0.3237
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from GRA, which also makes the model more applicable in

the actual situation.

5 Conclusion

To deal with uncertainties including randomness and

fuzziness in risk assessment, BN is applied to construct an

assessment model. Risk assessment with BN is carried out

according to the following process: assessment system

analysis, network structure establishment, node parameter

learning, and reasoning. To address the CPT calculation of

qualitative nodes and correlation of variables in BN

application, we did the following work: (1) The CPT cal-

culation for qualitative nodes is transformed into a multi-

variate function planning problem. The error function is

constructed by combining the actual assessment result.

Then GA is used for CPT retrieval with error feedback

searching, which achieves CPT calculation with little

quantitative data; (2) The weight calculation in weighted

BN is improved with GRA. We improve the GRA by

introducing variation rate into the calculation of sequence

difference, which enhances the correlation degree between

indicators. Thus, the optimized weight from correlation is

obtained and the weighted BN is improved.

This research improves the application conditions of

BN: big data and variable independence. In other words,

the improved model can assess risk with BN in the case of

incomplete data and correlated indicators. But there are

also shortcomings in one respect—the optimal CPT

obtained by GA must be derived from existing assessment

truth, which to a certain extent limits use of the model.
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