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Abstract 
Cooling load prediction is indispensable to many building energy saving strategies. In this paper, 
we proposed a new method for predicting the cooling load of commercial buildings. The proposed 
approach employs a Bayesian Network model to relate the cooling load to outdoor weather 
conditions and internal building activities. The proposed method is computationally efficient and 
implementable for use in real buildings, as it does not involve sophisticated mathematical theories. 
In this paper, we described the proposed method and demonstrated its use via a case study. In 
this case study, we considered three candidate models for cooling load prediction and they are 
the proposed Bayesian Network model, a Support Vector Machine model, and an Artificial Neural 
Network model. We trained the three models with fourteen different training data datasets, each 
of which had varying amounts and quality of data that were sampled on-site. The prediction 
results for a testing week shows that the Bayesian Network model achieves similar accuracy as the 
Support Vector Machine model but better accuracy than the Artificial Neural Network model. 
Notable in this comparison is that the training process of the Bayesian Network model is fifty-eight 
times faster than that of the Artificial Neural Network model. The results also suggest that all three 
models will have much larger prediction deviations if the testing data points are not covered by 
the training dataset for the studied case (The maximum absolute deviation of the predictions that 
are not covered by the training dataset can be up to seven times larger than that of the predictions 
covered by the training dataset). In addition, we also found the uncertainties in the weather 
forecast significantly affected the accuracy of the cooling load prediction for the studied case and 
the Support Vector Machine model was more sensitive to those uncertainties than the other two 
models. 
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1 Introduction 

In the U.S., building sector accounted for the largest portion of 
the primary energy consumption in 2010 (U.S. DOE 2014). 
Furthermore, building energy use is expected to rise by ~31% 
from 2010 to 2030 (U.S. DOE 2014; EIA 2016). Thus, even 
small reductions in building energy used can bring great 
positive benefits to U.S.’s primary energy use. In fact, many 
studies have been reported in the literature, which reduce 
the primary energy use through building energy efficiency 
measures (Xue et al. 2014; Hughes et al. 2015; Hao et al. 

2016; Alajmi 2012; Krati 2016; Corbin et al. 2013; Široky  
et al. 2011; Ma et al. 2012). Those methods include demand 
response strategies (Xue et al. 2014; Hughes et al. 2015; 
Hao et al. 2016), energy audit strategies (Alajmi 2012; Krati 
2016), and advanced control strategies (Wetter et al. 2016; 
Huang et al. 2016a, 2017; Ma et al. 2012; Huang and   
Zuo 2014). To assure the successful application of all  
these proposed strategies, or for the verification of their 
implementation (Walter and Sohn 2016), an accurate 
prediction of building cooling load is necessary (Li and 
Huang 2013). For example, in the demand response strategy  
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proposed by Hao et al. (2016), the predicted cooling load is 
required to determine the set points for the temperature of 
each thermal zones. In Krati (2016)’s energy audit study, 
the cooling load is necessary in predicting the energy saving 
from different energy saving methods. The predicted cooling 
load is also a critical input for the model predictive control 
strategy proposed by Huang et al. (2016a). This strategy 
can generate the optimal set points for the future time 
horizons.  

Predicting the building cooling load, however, can be 
difficult. The challenges come from two aspects: First, building 
cooling load can be affected by countless factors, including 
weather, internal activities, and occupant preferences (Kim 
2011). Considering all those factors simultaneously requires 
a lot of detailed information regarding buildings. However, 
this information may not be assessable or is hard to quantify. 
Second, the relationship between the factors and the cooling 
load is a complicated non-linear function which is difficult 
to be described by the commonly used linear regression 
(Hou et al. 2006). The complexity of the relationship is 
mainly due to the highly non-linear nature of the building 
system. For example, the heat transfer between the ambient 
environment and the building via radiation is governed 
by the Stefan-Boltzmann law which is described by a 
non-linear equation.  

Currently, three broad methods to predict the cooling 
load have been reported in the literature. In the first method 
(Eskin and Türkmen 2008; Thevenard and Haddad 2006), 
building energy simulation tools such as DOE-2 (Birdsall  
et al. 1990), EnergyPlus (Crawley et al. 2001), and TRNSYS 
(Klein et al. 1976) are employed to predict the cooling  
load based on a physical description of the buildings and 
surrounding environment. In this physical description, 
algebraic equations and/or differential equations are usually 
used to represent the complicated relationships between 
cooling load and other variables. Due to its explicit nature, 
this physical description is usually named as a “white-box” 
model. To achieve an accurate white-box model, detailed 
specifications of building characteristics, building operation 
schedules, and occupant behavior, are required. 

In the second method, purely data-driven models 
(“black-box” models) were developed to predict the cooling 
load according to the pre-defined factors. Those black-box 
models include Artificial Neural Network models (Kashiwagi 
and Tobi 1993; Sakawa et al. 1999; Ben-Nakhi and Mahmoud 
2004; Kwok et al. 2011; Leung et al. 2012; Deb et al. 2016) 
and Support Vector Machine models (Hou and Lian 2009; 
Li et al. 2009a,b; Chen et al. 2017; Zhang et al. 2016). Some 
researchers (Yao et al. 2004; Hou et al. 2006; Li et al. 
2010a,b) also attempted to achieve a better performance by 
combining multiple black-box models. For those black-box 
models, significant amount of training data is usually required 

to achieve desired accuracy. 
The third method (Braun and Chaturvedia 2002; Sun  

et al. 2013a) is to utilize “gray-box” models that are hybrids 
of the white-box models and the black-box models. In the 
gray-box models, thermal network models, which simplify 
the energy flows in the buildings (such as the heat transfer 
through the building envelope), are usually employed to 
calculate the net energy requirement to achieve desired 
zone temperatures. The values of parameters in the network 
models are estimated both from rough building descriptions 
and the optimizations. The optimizations aim to minimize 
the difference between the outputs of the gray-box model 
and the training dataset by modulating those parameters. 
The gray-box models require less building information 
than the white-box model and fewer training data than the 
black-box model.  

From the large-scale application points of view, black-box 
models may be highly promising because of the expectation 
that more building data are becoming available. Additionally, 
black-box models do not require detailed building information, 
which may be difficult, sometimes even impossible, to gather, 
due to the time and/or cost constraints. Second, black-box 
models are more cost-effective for implementation than the 
other two types of models. After trained, black-box models 
can predict the cooling load with very little computational 
resource demand and fast speed (Li and Huang 2013). This 
feature dramatically lowers the requirement of the hardware 
in which the prediction models are implemented. 

Nevertheless, there are still two problems, which 
prevent black-box models from being widely adapted in 
the real-world. Those problems are: First, it is difficult to 
use those black-box models without relevant background. 
Black-box models are usually built on sophisticated 
mathematical theories. For example, in the Support Vector 
Machine model proposed by Hou and Lian (2009), a 
dispensable step is to use a set of hyperplanes to classify  
the training data. However, a hyperplane is not a familiar 
concept to average practitioners in buildings industry, not 
to mention for them to regulate the parameters of hyperplane. 
However, the accuracy of those models is usually sensitive 
to the parameters (Chapelle et al. 2002). Second, it is lack of 
quantitative descriptions regarding how the amount of 
training data affects the performance of different models. 
Those descriptions can help researchers to identify the best 
amount of training data, which balances the accuracy and 
the efforts for preparing the training data.  

Besides the two problems mentioned above, there is 
also another unanswered question: how the uncertainties in 
the weather prediction affect the results of the cooling load. 
The weather condition is considered as an important  
factor for the cooling load (Walter et al. 2016). In the real 
implementation, the forecasted weather condition from the 
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weather service providers is usually employed. However, 
uncertainties in weather forecast are inevitable. The 
uncertainties may be due to the limitations of the weather 
forecast models (Gneiting and Raftery 2005), or the micro- 
climate effect (Gneiting and Raftery 2005). Although there 
are studies aimed to quantify the impacts of the uncertainties 
in weather data (Sun et al. 2013b), we did not find the 
relevant research in the cooling load prediction field. 
However, to identify how the uncertainties affect the prediction 
is very important since it can help people to determine an 
appropriate weather prediction service to pursue. 

In this paper, to address the first problem, we developed 
a new black-box model, Bayesian Network model. The 
Bayesian Network model is a probability-based graphic 
model, which is very suitable for non-linear systems. One 
advantage of the Bayesian Network is that it doesn’t require 
significant efforts to understand, and thus are suitable for 
large-scale applications. To deal with the second problem, 
we performed a case study to evaluate the performance   
of the Bayesian Network model. In this case study, onsite 
measurement data was used to train and test the Bayesian 
Network model. To compare the performance of the 
Bayesian Network model with those of existing black-box 
models, we also included a Support Vector Machine model 
and an Artificial Neural Network model in the case study. 
We evaluated the three models trained by various training 
datasets, which had different amounts of data. To handle 
the last problem, we also quantitatively assessed how the 
uncertainties in weather forecast affect the cooling load 
prediction. 

This study advances the body of science from four 
aspects: First, a new Bayesian Network model for cooling 
load prediction of commercial buildings is proposed. Second, 
a systematic comparison of the Bayesian Network model 
with the Support Vector Machine model, and the Artificial 
Neural Network model, in terms of the prediction accuracy 
and the training time cost, is performed. Third, insights 
regarding how the amount of training data affects the 
cooling load prediction are provided. Lastly, a quantitative 
assessment on how the uncertainties in weather forecast 
affect the cooling load prediction is conducted, which is the 
first one to our best knowledge.  

2 Bayesian Network model 

In this section, we present the proposed Bayesian Network 
model. Firstly, we introduce the theory of the Bayesian 
Network model. Secondly, we discuss how to develop a 
Bayesian Network model for building-related applications, 
generally. Lastly, we elaborate how we capitalize on attributes 
of the Bayesian Network model for predicting the cooling 
load of a commercial building. 

2.1 Theory 

Bayesian Network models are probability-based graphic 
models and have been used in many broad engineering 
applications (see Delage et al. 2006; Denoyer and Gallinari 
2004; Yu et al. 1999; Kim et al. 2004; Zhang and Ji 2011). 
In the building industry, we have found only limited uses 
of them. O’Neill (2014) used a Bayesian Network model  
to predict building energy performance. In their study, the 
HVAC and hot water energy consumption in an office 
building is predicted with the Bayesian Network model. 
Jensen et al. (2009) used a Bayesian Network model to 
quantify the effects from the thermal indoor environment 
on the mental performance of occupancies. Toftum et al. 
(2009) used a Bayesian Network model to describe the 
relationship between acceptable thermal conditions and 
occupant performance and building energy consumption. 
Xiao et al. (2016) employed a Bayesian Network model in 
the fault detection for the air handling unit systems. In the 
previous study, we also developed a Bayesian Network 
model for optimizing the condenser water set point (Huang 
et al. 2016c) and performed a preliminary study, which 
aims to extend the model to load prediction purposes 
(Huang et al. 2016b). While significant, these applications 
were of limited scope and application of the Bayesian 
Network models.  

Owing to limited uses in the building community, we 
provide a broad explanation of the Bayesian Network 
model here. Figure 1 illustrates the graphical structure of   
a typical Bayesian Network model. A model consists of 
“nodes” and “arcs”. Nodes (e.g., Xa and Xb) represent 
variables (independent or dependent variables) involved in 
the studied system. Terminology is such that a node that 
has impacts on other nodes is called a “parent node” (e.g., 
Xa and Xf), and a node that is impacted by other nodes is 
named as “child node” (e.g., Xb and Xd). Of course, A node 
can be both a parent node and a child node (e.g., Xb and Xc).  

 

Fig. 1 Structure of a typical Bayesian Network model 
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The arcs indicate the dependent relationships between the 
nodes. To demonstrate how a Bayesian Network model 
works, the node Xc will serve as an example in the following 
section. 

In Fig. 1, the node Xc has three parent nodes: Xa, Xb, and 
Xe. Thus, the node Xc is a function of three parent nodes: 

, , )(c a b eX f X X X=                                (1) 

The relationship between parent nodes and child notes 
can be expressed as an “exchange” or “transfer” table. For 
example, if we assume the values of Xa, Xb, and Xe are limited 
in its ranges: [xa,L, xa,H], [xb,L, xb,H], and [xe,L, xe,H], respectively. 
Then, the ranges of Xa, Xb, and Xe can be split into smaller 
sections shown in Table 1. 

Additionally, since the parent and child nodes are 
conditional, we specify the conditions as “conditional 
possibilities.” For example, Xc = xc,i, when the values of Xa, Xb, 
and Xe are within the set { }a j b k e lX A X B X EÎ Ç Î Ç Î . 
And its conditional possibility is computed as 

,
,(

( )
)/ ( )

c c i
c c i a

a j b k e l

j b k e l a j b k e l

X xP P X x X
X A X B X E

A X B X E P X A X B X E

=
= = Ç Î

Î Ç Î Ç Î

Ç Î Ç Î Î Ç Î Ç Î

( )
   

(2) 

where ,( )c c i a j b k e lP X x X A X B X E= Ç Î Ç Î Ç Î  is the 
possibility that Xc = xc,i and the values of Xa, Xb, and Xe are 
within the set { }a j b k e lX A X B X EÎ Ç Î Ç Î ; ( aP X Î  

)j b k e lA X B X EÇ Î Ç Î  is the possibility that the values 
of Xa, Xb, and Xe are within the set { a j b kX A X BÎ Ç Î Ç  

}e lX EÎ . 
The above “possibilities” or probabilities can be calculated 

for all parent-child relations. For example, we could express 
the conditional relationship as Eq. (3), assuming that we 
have a training dataset that is significantly large in terms of 
size. With a significantly large training dataset, the probability 
is close to the frequencies of that certain values. 

Table 1 Sections of ranges in the Bayesian Network model 

Range Number of sections Sections 

[xa,L, xa,H] m 
A1=[xa,L, xa,1) 

… 
Am=[xa,m−1, xa,H] 

[xb,L, xb,H] n 
B1=[xb,L, xb,1) 

… 
Bn=[xb,n−1, xb,H] 

[xe,L, xe,H] o 
E1=[xe,L, xe,1) 

… 
Eo=[xe,o−1, xe,H] 

,

,

tot

( )
( )

c c i a j b k e l

c c i a j b k e l

P X x X A X B X E
num X x X A X B X E

num

= Î Î Î =

= Î Î Î

Ç Ç Ç

Ç Ç Ç
  (3) 

tot

( )
( )

a j b k e l

a j b k e l

P X A X B X E
num X A X B X E

num

Î Ç Î Ç Î =

Î Ç Î Ç Î
           (4) 

where ,( )c c i a j b k e lnum X x X A X B X EÇ ÇÎ Î ÎÇ=  is 
the number of training data points in which the values of 
Xc, Xa, Xb, and Xe are within the set ,{ c c i a jX x X A= ÎÇ Ç  

}b k e lX B X EÎÇÎ ; ( )a j b k e lnum X A X B X EÎ Ç Î Ç Î  
is the number of training data points in which the values 
of Xa, Xb, and Xe are within the set { a j b kX A X BÎ Ç Î Ç  

}e lX EÎ ; and numtot is the number of total training data 
points. 

Equation (2) can be simplified as:  

,

,

( )
( )

( )

c c i

a j b k e l

c c i a j b k e l

a j b k e l

X xP
X A X B X E
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Ç

=
=

Î Ç Î Ç Î

= Î Î Î
Î Ç Î Ç

Ç
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Ç
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     (5) 

Then, the expectation of Xc, when the values of Xa, Xb, and 
Xe are within the set { }a j b k e lX A X B X EÎ Ç Î Ç Î  can be 
calculated by 

, ,

( )

( /( ))

c

a j b k e l

p
c i c c i a j b k e li

XE
X A X B X E

x P X x X A X B X E

=
Î Ç Î Ç Î

= Î Ç Î Ç Îå

( )

    (6) 

where xc,1,..., xc,p are the observed values of Xc. 
If we assume that the value of Xc, when the values of Xa, 

Xb, and Xe are within the set { }a j b k e lX A X B X EÎ Ç Î Ç Î , 
is equal to its expectation. Thus, 

( ), ,
( )

c
c a b e

a j b k e l

XX f X X X E
X A X B X E

= @
Î Ç Î Ç Î( )   

(7) 

Based on the above analysis, the value of Xc for the 
given values of Xa, Xb, and Xe can be determined according 
to Eqs. (5) and (6). 

It is possible that the training dataset may not cover the 
full range for the parent nodes, which means ( cnum X =  

, )c i a j b k e lx X A X B X EÇ Ç ÎÇÎ Î  and/or ( anum X Î  
)j b k e lA X B X EÇ Î Ç Î  equal to 0. In that case, Eq. (5) 

becomes invalid. To address this issue, the linear interpolation 
and the nearest extrapolation methods are applied in the 
continuously prediction with the Bayesian Network model. 
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For example, one may use the Bayesian Network model to 
predict Xc for the three successive time steps: t1, t2, and t3. 
If Eq. (5) becomes invalid only at t2, we can estimate the 
prediction for t2 by the linear interpolation method:  

( )3 1
2 2 3 3

3 1

( ) ( )( ) ( )c c
c c

X t X tX t t t X t
t t
-

= - +
-

             (8) 

If Eq. (5) becomes invalid only at t3, we can estimate the 
prediction for t3 by the nearest extrapolation method: 

3 2( ) ( )c cX t X t=                                  (9) 

The nearest extrapolation method assumes that the 
value of the studied child node changes very little by the 
small change in the values of the parent nodes. We shall 
admit both the linear interpolation method and the nearest 
extrapolation method may lead to inaccurate prediction 
especially when the length of the extrapolation period is 
large.  

2.2 Procedure for developing Bayesian Network model 

The typical procedure for developing the Bayesian Network 
model consists of four steps and the following parts detail 
each step. 

Step 1: To determine the parent nodes for the studied 
child nodes.  

Selecting the parent nodes requires a careful balance 
between accuracy and accessibility: including more parent 
nodes tends to give better prediction results. However, more 
parent nodes also require more efforts in preparing the 
training dataset. For example, to predict the cooling load 
for buildings, ideally we should have the detailed information 
regarding the building operation, such as the number of 
the occupancies, and intensive meteorological data, such  
as the dry bulb temperature, the precipitation, the solar 
radiation intensity, and how thick the cloudy is. However, 
many of the above information is not necessarily accessible. 
For example, the number of the occupancies is hard to 
collect due to the concern that the privacy may be violated. 

Step 2: To prepare and process the training data. 

Based on the identified parent nodes in Step 1, we must 
express the relationship between the parent and child notes. 
We can do so empirically, by collecting data for both parent 
nodes and the corresponding child nodes. By doing so, we 
would develop an empirically-based Bayesian Network 
model. The relationship could also be generated through 
the use of physics-based models, but we do not do so here, 
in the application that follows. To make sure the training 
dataset contains sufficient information, the points should 

evenly distribute in each range of parent nodes. After the 
training dataset is ready, we should determine how to split 
this dataset. There are different ways to perform the split, 
such as evenly splitting or setting the split intervals so that 
each split section has the same or close amount of data 
points. After the split is completed, we can calculate the 
conditional probabilities according to Eq. (5), or directly 
calculate the values of child nodes from Eqs. (8) or (9). 

Step 3: To calculate expectations. 

After we obtain conditional probabilities from Step 2, we 
can calculate the expectations of the studied child nodes, 
under different section combinations of the parent nodes, 
according to Eq. (6). The calculated expectations combined 
with the corresponding section combinations of parent 
nodes form another dataset (named as “output dataset”). 

Step 4: To generate a lookup table.  

To facilitate the implementation of the Bayesian Network 
model, we can convert the output dataset from Step 3 into  
a multiple-dimensional lookup table. This table has np + 1 
columns (np is the number of the parent nodes): the first np 
columns contain the split sections for each parent node 
while the last column contains the values of expectations. 
Then the lookup table can be directly implemented in either 
software or hardware.  

In this study, we employ Python (Python Software 
Foundation, https://www.python.org), which is a script 
language, to automatize the above procedure. Theoretically, 
the above procedure can be used to develop the Bayesian 
Network model to describe any relationships, which is not 
limited in the building industry. However, whether the 
desired prediction by the Bayesian Network model can   
be achieved depends on different settings in the Bayesian 
Network model, for example, how to select appropriate 
parent nodes and how to determine the structure of the 
Bayesian Network model. The general methods to obtain 
the best settings, however, are beyond the scope of this 
paper.  

2.3 Bayesian Network model for cooling load prediction 

We now process with the application of the theory that 
discussed in the above section to express the relationship 
between the cooling load and predefined factors. We do so, 
in order to have a model that is readily computing, in near 
real time to facilitate the implementation in the real world, 
as mentioned in the introduction section. According to 
Section 2.2, the first step to develop the Bayesian Network 
model for cooling load prediction is to determine the parent 
nodes. The cooling load can be affected by many factors. 
Generally speaking, those factors can be divided into two 
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categories: the weather condition and the building internal 
activities. Depending on the type of building, the weather 
condition and internal activities affect the total cooling 
load in different ways. For example, in data centers, the 
cooling load is dominated by the heat gain from the IT 
(information technology) equipment, and the impact of  
the weather condition is usually negligible. However, for 
buildings with a constant and high outdoor air intake (such 
as the semiconductor manufacturing facilities), the cooling 
load is mainly due to the processing of the outdoor air. In that 
case, the cooling load is mainly determined by the weather 
condition. For a commercial building, such as an office 
building, the cooling load is usually affected both by the 
weather condition and internal activities (ASHRAE 2012).   

In this study, we focus on the cooling load prediction 
for the commercial buildings. Thus, we have to identify  
the parent nodes that represent the weather condition and 
internal activities, respectively. As mentioned in Section 3.2, 
the selection of the weather condition and internal activities 
should be made based on the balance between the prediction 
accuracy and the data accessibility. With that in minds, we 
first consider the parent nodes for the weather condition. 
As discussed above, there are many meteorological data 
can be used to describe the weather condition. However, 
some of the data require special efforts to obtain. For 
example, to determine how thick the cloud is, we usually 
rely on the human observation, which is not feasible for  
the cooling load prediction. To facilitate the large-scale 
application, we select the outdoor dry bulb temperature 
and the outdoor wet bulb temperature as the representatives 
of the weather condition. Those two temperatures can 
describe the thermodynamics patterns of the outdoor air, 
which is one of the major driven forces for the heat transfer 
through envelop. More importantly, those two temperatures 
are readily available in either local weather station, or the 
weather forecast stations. We shall acknowledge that only 
considering the two temperatures may cause the accuracy 
issue if the solar radiation accounts for the significant 
portion of the heat gain by the buildings. The same 
philosophy for selecting the parent nodes is also applied to 
the internal activities and we select two variables: the hour 
index and the day category number. This is mainly because 
they require very little effort to collect. The hour index is the 
index of the hour in one day: it starts with 0 representing 
12 AM. The hour index is used to reflect the changes of  
the internal activities over the hour-level period. The day 
category numbers are used to reflect the internal activities 
of the day-level period. Table 2 shows three category numbers 
and their descriptions. We expect that days in the same 
category have a similar internal activity pattern.  

Based on the above analysis, a Bayesian Network model 
shown in Fig. 2 is built for the cooling load prediction. This  

Table 2 Category of days 

Day 
category 
number

Day 
category 

name 
Description 

1 Working 
Day 

Normal working day of the week when no event*
occurs. For typical office buildings, the working 
days are from Monday to Friday 

2 Holiday 
The non-working days when no event occurs. 
For typical office buildings, the working days are 
from Saturday to Sunday 

3 Event Day The days when events occur 
* In this context, “event” means the activity during which the number of 
occupancies or occupancy schedules are significantly different from the normal 
working day or Holiday. An example of event in the universities will be the 
commencement.  

 
Fig. 2 Structure of Bayesian Network model for the cooling load 
prediction 

Bayesian Network model has four parent nodes and one 
child node. There are also four arcs connect the child node 
with each parent node. 

3 Case study 

In this section, we will detail how to use the proposed 
Bayesian Network model to predict the cooling load for a 
real university campus. To better evaluate the performance 
of the Bayesian Network model, we also employed two other 
models from the literature, in the cooling load prediction. 
To assess the impact of the quantity of training data on  
the accuracy of the cooling load prediction, we generated 
multiple training datasets with different amounts of data. 
Then, we trained the three models with those datasets and 
predicted the cooling load for the testing set. Finally, we 
studied the sensitivity of the cooling load prediction to the 
uncertainties in the weather condition forecast.  

3.1 Case description 

The studied case is a university campus located in Annapolis, 
Maryland, U.S. The campus consists of ten buildings and 
lies in a subtropical climate zone, which is hot and humid 
in summers and cool in winters. The university has three 
academic semesters: the spring semester is from early 
Januaries to the mid of Mays, the summer semester is from 
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the mid of Mays to the mid of Augusts, and the fall semester 
is from the mid of Augusts to the end of the calendar year. 

Figure 3 shows the onsite measured data from the campus 
for two periods: 09/08–11/02/2014 and 04/27–09/20/2015. 
The cooling load was gathered by the supervisor controller 
of the central chiller plant that served the entire campus. 
The two periods cover the summer semester and the fall 
semester, which constitute a typical cooling season for this 
campus. The cooling load decreased from around 4000 ton 
to around 500 ton from September to October, 2014. From 
February to May, 2015, the cooling load increased from 
around 500 ton to around 7000 ton, and then decreased to 
4000 ton in September, 2015.  

Besides the cooling hourly load, the hourly outdoor dry 
bulb temperature and the outdoor wet bulb temperature 
were obtained from a weather station located in the campus. 
The day category number was determined according to the 
academic calendar, which was available on the university 
website. 

In this study, the measured data was divided into two 
parts for different purposes: one part (09/09–11/02/2014 & 
04/27-09/06/2015 & 09/14-20/2015 in Fig. 3) for training and 
the other part (09/07–13/2015, 1 week, blue part in Fig. 3) 
for testing. The ratio of the points in the testing dataset to 
that in the training dataset is around 0.04. 

3.2 Prediction settings 

We used the Bayesian Network model described in Section 
2.3 to predict the cooling load for the studied campus. As 
discussed in Section 2.2, it is necessary to discretize the 
training dataset into groups. In the Bayesian Network model, 
two of the parent nodes (the day category number and the 
hour index) are already discrete. For the other two parent 
nodes (outdoor dry bulb temperature and outdoor wet bulb 
temperate), we discretized the temperature into 2-degree 
increments (2 °C) that spanned the full range of these 
temperature data: for the outdoor dry bulb temperature, 
the discrete sections are [0,2),... [40, ); for the outdoor wet 
bulb temperature, the split sections are  [0,2),... [30, ). 
We chose 2 °C increment because it is the best according to 
our sensitivity analysis (see details in Huang et al. 2016b). 

Besides the Bayesian Network model, we also employed 
two other models: a Support Vector Machine model and an 
Artificial Neural Network model. As mentioned in the 
introduction section, both the Support Vector Machine 
model and the Artificial Neural Network model have been 
used for predicting the cooling load in the literature (Hou 
and Lian 2009; Li et al. 2009a,b; Kashiwagi and Tobi 1993; 
Sakawa et al. 1999; Ben-Nakhi and Mahmoud 2004; Kwok 
et al. 2011; Leung et al. 2012). Table 3 shows the information 

 
Fig. 3 Onsite measured data for the studied case (black part: traning data; blue part: testing data) 
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used by these models to predict. 
For both the Support Vector Machine and the Artificial 

Neural Network models, we normalized the training data. 

3.3 Evaluation metrics 

To quantitatively evaluate the prediction accuracy, we 
employ two commonly used variables: the coefficient of 
determination, denoted R2, and the root mean squared 
deviation (RMSD). R2 is calculated by 

2
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where p,iQ  and m,iQ  are the i-th predicted and measured 
cooling loads, respectively; pnum is the prediction number;  
and mQ is the mean value of m,iQ . Basically, the more closely 
R2 approaches 1, the better the prediction accuracy is. 

The RMSD is calculated by 
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The closer RMSD is to 0, the better the prediction results 
are (Reddy 2011). 

3.4 Relationship between cooling load prediction and 
amount of training data  

Typically, the amount of training data used in the calibration 
face impacts the fidelity of the resulting. In this section, we 
investigated the relationship between the cooling load pre-
diction and the amount of the data used in the model training. 
To do so, we will first generate various training datasets and 
each dataset contains different amount of data. Then we 
will use each training dataset to train the three models: the 
Bayesian Network model, the Support Vector Machine model, 
and the Artifical Neural Network model. After that, we will use 
the trained model to predict the cooling load for the testing 
set and compare the prediction results with the measure-
ment. The following section elaborates the above steps. 

As a first step, we split the training data by weeks and 
indexed the weeks by time. As shown in Fig. 4, the training 
data was divided into twenty-eight weeks. The indexes of 
the weeks, which are just before and after the testing week, 
are twenty-seven and twenty-eight, respectively. We then 
assigned the twenty-eight weeks into fourteen groups shown 
both in Fig. 4 and Table 4. For the second step, we trained 
the Bayesian Network model, the Support Vector Machine 
model, and the Artificial Neural Network model with the 
data from fourteen groups shown in the Table 4.  

Table 3 Settings of the Supply Vector Machine model and the Artificial Neural Network model 

Models Inputs Key settings 

Support Vector Machine*  
Kernel function: Gaussian function,  
Penalty parameter C of the error term: 1000 

Artificial Neural Network**  

Outdoor dry bulb temperature, 
Outdoor wet bulb temperature, 
Hour index, Day category number 

Number of the hidden layer: 1,  
Training algorithm: back-propagation,  
Maximum iteration number: 100  

* Implemented with Python package: Scikit-learn (Pedregosa et al. 2011). 
** Implemented with Python Package: PyBrain (Schaul et al. 2010). 

 
Fig. 4 Indexes of the training data groups 
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Lastly, we used the trained models to predict the cooling 
load for the testing set. Figure 5 shows the RMSDs of three 
models with different training datasets. For the Bayesian 
Network model, the RMSD drops from around 25.0%    
to 14.6% when the training dataset changes from Group  
One (two weeks) to Group Fourteen (twenty-eight weeks). 
However, we also notice that the RMSD does not 
monotonously decrease. For example, when the training 
dataset group changes from Group Four (eight weeks) to 
Group Five (ten weeks), the RMSD increases from around 
23.0% to 29.4%. For the Support Vector Machine model, 
when the amount of the training data is less than twelve 
weeks, its RMSD keeps in a narrow range from 32.1% to 
34.4%. When the amount of the training data changes from  

 
Fig. 5 Cooling load prediction results with different training 
datasets 

twelve weeks to sixteen weeks, its RMSD significantly reduces 
from around 34.4% to 14.6%. When the amount of the 
training data further increases, the RMSD of the Support 
Vector Machine model keeps in a narrow range from 
14.5% to 16.2%. For the Artificial Neural Network model, 
the change of its RMSD is not as obvious as that of the rest 
two models: when the amount of the training data is less than 
fourteen weeks, we can observe some of oscillations (around 
±3%) in its RMSD. When the amount of the training data is 
larger than twenty-two weeks, its RMSD is almost constant. 

There are two questions associated with the results 
shown in Fig. 5. The first question is why the RMSDs of the 
Bayesian Network model and the Support Vector Machine 
model drop significantly when the group ID changes from 
six to eight. The second question is why the RMSDs for all 
the three models become almost constant when the group 
ID is larger than eight.  

To examine the first question, we explored in more 
detail the distribution of the deviations in the three models 
predictions from the measured cooling load. The deviation 
is defined as: 

p, m,( / 1) 100%i i iDV Q Q= - ´                      (12) 

Figure 6 shows the distribution of the deviations. For 
the Bayesian Network model, when the group ID is less than 
eight, there exist a significant number of outliers (the data 
points that lie an abnormal distance from other points).  
In statistics, an outlier is viewed as being too far from   
the central values to be reasonable. When the group ID is 
larger than or equal eight, the number of outliers reduces 
dramatically. Since the deviations of outliers are much 

Table 4 The groups of the training datasets 

Group ID Week index Number of data points 

1 26,27 276 

2 24,25,26,27 554 

3 22,23,24,25,26,27 872 

4 20,21,22,23,24,25,26,27 1188 

5 18,19,20,21,22,23,24,25,26,27 1463 

6 16,17,18,19,20,21,22,23,24,25,26,27 1756 

7 14,15,16,17,18,19,20,21,22,23,24,25,26,27 2079 

8 12,13, 14,15,16,17,18,19,20,21,22,23,24,25,26,27 2413 

9 10,11,12,13, 14,15,16,17,18,19,20,21,22,23,24,25,26,27 2743 

10 8,9,10,11,12,13, 14,15,16,17,18,19,20,21,22,23,24,25,26,27 3077 

11 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 3413 

12 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 3735 

13 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 4071 

14 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 4379 
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higher than that of other predicted data points, reducing 
the number of outliers can contribute a lot to the decrease 
of the RMSD. Because of this, the RMSD of the Bayesian 
Network model drops significantly when the group ID 
changes from six to eight. In addition, the interquartile 
range (the difference between the upper and lower quartiles) 
of the deviation distribution for the Bayesian Network model 
is slightly reduced when the group ID changes from one to 
eight. This means the prediction of the Bayesian Network 
model is becoming more and more accurate in general. For 
the Support Vector Machine model, the distributions of 
deviations are very similar to those of the Bayesian Network 
model. The major difference between the predictions of the 
Bayesian Network model and those of the Support Vector 
Machine model is that there are more outliers in the 
deviation distributions of the latter than that of the former. 
For the Artificial Neural Network model, the impact of the 
group ID on its deviation distributions is less obvious than 
that of the other two models. When group ID changes  
from one to fourteen, there is not a clear tendency that the 
interquartile range or the number of outliers is reducing or 

increasing. Based on the above analysis, we can see that 
outliers in the prediction results by the Bayesian Network 
model and the Support Vector Machine model are likely to 
be caused by the lack of certain training data points. For 
the Artificial Neural Network model, the outliers in the 
prediction results are seems to be caused by its incapability 
to catch the change of the cooling load. 

To answer the second question, we firstly check how 
many testing data points are covered by the training dataset. 
Here we consider the testing data point is covered by the 
training dataset if it meets the following condition: 

{ } [ ] [ ]
[ ] [ ]

db,train db,test wb,train wb,test

train test train test

1,.., , 1
1

i n T i T T i T
DC i DC HI i HI

$ Î - < Ç -

< Ç = Ç =      
(13) 

where n is the number of the data points in the training 
dataset; Tdb,train[i], Twb,train[i], DCtrain[i], and HItrain[i] are the 
dry bulb temperature, the wet bulb temperature, the day 
category number, and the hour index, respectively, for the 
i-th data point in the training dataset; Tdb,test, Twb,test, DCtest, 

 
Fig. 6 Distribution of deviations in the prediction by different models 
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and HItest are the dry bulb temperature, the wet bulb tem-
perature, the day category number, and the hour index, 
respectively, for the testing data point. Equation (13) 
assumes that with very small changes (1 °C) in the dry bulb 
temperature and the wet bulb temperature, the change in 
the cooling load, when the day category number and the 
hour index are constant, is negligible. Thus, if there are 
data points in the training dataset, which has the same day 
category number and the same hour index as well as a closer 
dry bulb temperature and a closer wet bulb temperature as 
the testing data point, we actually have the information 
regarding the cooling load for the testing data point in the 
training dataset. Thus, we consider the testing data point is 
“covered”.  

We calculated the percentage of the testing data points 
that are covered by different training datasets (named as 
cover-percentage) and Fig. 7 shows the results. It is clear 
that the cover-percentage increases dramatically when the 
group ID increases from one to eight. However, when the 
group ID is larger than eight, the cover-percentage almost 
keeps constant. We then took a close look at the prediction 
results of the three models when data in the Group One is 
used for training. Figure 8 shows the deviation distributions 
of the testing data points covered/not covered by Group 
One. We can see, for all the three models, the deviation 
distribution of the testing data points that are not covered 
by Group One is much worse than that of the testing data 
points covered by Group One. The maximum absolute 
deviation of the predictions that are not covered by Group 
One is up to seven times larger than that of the predictions 
covered by Group One. This result suggests that all the 
three models are lack of ability to extrapolate the training 
dataset. For the studied case, the cover-percentage basically 
determines their prediction accuracy. Thus, the RMSDs for  

 
Fig. 7 Percentage of the testing data points covered by the training 
dataset 

all the three models become almost constant when the group 
ID is larger than eight. 

In addition to exploring the performance of the Bayesian 
Network, we also explore the computational benefits of the 
presented approach. Figure 9 shows the CPU time for the 
training of three models with different training datasets. 
The computer we used in this study is a Dell Ultrabook 
laptop. The CPU and the operation system are Intel Core 
i7-6600U (2.60GHz & 2.80 GHz) and Window 7 Enterprise, 
respectively. In general, for all the three models, the CPU 
times for training increase significantly when the amount 
of training data increases. The Support Vector Machine 
model has the lowest CPU times when the group ID of the 
training dataset is less than ten. When the group ID of the 
training dataset is larger than or equal to ten, the Bayesian 
Network model is the fastest in training. The CPU times  
of the Artificial Neural Network model are much higher 

 
Fig. 8 Distribution of the deviations in the three models when 
training dataset is Group One 

 

Fig. 9 CPU time for training of different models 
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than those of the other models regardless of which training 
dataset is used (always by at least ten times). When the 
Group Fourteen is used as the training dataset, the CPU time 
for the Artificial Neural Network model is 115 s, which is 
forty-eight times higher than the Support Vector Machine 
model, and fifty-eight times higher than the Bayesian 
Network model. The reason that the Artificial Neural 
Network model has very high CPU time is because its 
training process involves an iteration process to minimize 
the error functions. In our cause, it is obvious the iteration 
process doesn’t converge very soon. 

Lastly, we plotted the predictions of three models against 
the measured cooling load when the Group Fourteen is used 
as the training dataset (Fig. 10). The Bayesian Network 
model and the Support Vector Machine model achieve very 
closer results: their R2 are both around 0.8. However, the 
results of the Artificial Neural Network model are much 
worse than the rest two models and its R2 is only 0.61. 
Based on Fig. 10, we see that the Bayesian Network model 
and the Support Vector Machine model tracks the change 
of cooling load quite well although there are some relatively 
large deviations in the mid of September 10. For the Artificial 
Neural Network model, it fails to capture the change of 
cooling load for September 9 and 10. 

Based on the above analysis, we can obtain the following 
observations: 

1) All the three models can’t extrapolate the training 
dataset. For the studied case, the cover-percentage determines 
the accuracy of the cooling load prediction. If the testing 
data point is beyond the training dataset, prediction 
deviations are much larger. 

2) For the studied case, the Bayesian Network model 
and the Support Vector Machine model can catch the 
trajectory of the cooling load quite well. However, the 

 
Fig. 10 Cooling load prediction results with twenty-eight weeks 
training dataset  

performance of the Artificial Neural Network model is much 
worse, with the same training dataset even. 

3.5 Relationship between uncertainties in weather 
forecast and the cooling load prediction 

In this section, we will first demonstrate how we mimicked 
uncertainties in weather. Then we will show how we included 
the mimicked uncertainties in the inputs for the trained 
models to predict the cooling load.  

To mimic the uncertainties in the weather forecast, we 
employed the following equation: 

*
sta ranPd Pd Err Err= + +                          (14) 

where *Pd  is the forecast with “uncertainties”, Pd is the 
prefect forecast. The Errsta represents static error, which is 
usually caused by the limitations of the forecast model. The 
Errran represents random error, which is usually caused  
by disturbances, such as the noises in the inputs for the 
prediction. 

We used the measured outdoor dry bulb temperature 
and outdoor wet bulb temperate shown in Fig. 3 as the 
prefect forecast and applied Eq. (14) to generate “predictions” 
of the outdoor dry bulb temperature and the outdoor wet 
bulb temperate with uncertainties.  

For both the two temperatures, the random error  
(unit: °C) is computed as: 

ran ( 0.5,0.5)Err random= -                         (15) 

where random( ) is a function that returns a random number 
between the input range. 

For the static error, we considered seven possible values: 
−2, −1.5, −1, 0, 1, 1.5, 2 °C. Figure 11 shows the generated 
“prediction” of the outdoor dry bulb temperature when the 
static error is 2 °C. We then used the “predictions” with 
synthetic errors as the input to predict the cooling load for 
the testing period again. 

Figure 12 shows the prediction results of the three 
models. For the Bayesian Network model, when the static 
error increases from 0 to 2 °C, the RMSD increases from 
16.7% to 23.6%. If the static error decreases from 0 to −2 °C, 
the RMSD increases from 16.7% to 24.2%. This means the 
RMSD will increase up to 20.0% when the absolute value of 
the static error increases by 1 °C. For the Support Vector 
Machine model, the uncertainties in the weather forecast 
have similar impacts on its accuracy as that on the accuracy 
of the Bayesian Network model. The RMSD increases up to 
30.0% when the absolute value of the static error increases 
by 1 °C. For the Artificial Neural Network model, the impact 
from the uncertainties is smaller: the RMSD increases up  
to 16.0% by 1 °C increase in the absolute value of the static 
error. 
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Fig. 11 “Prediction” of the outdoor dry bulb temperature with 
uncertainties 

 
Fig. 12 Cooling load predictions when the uncertainities exist in 
the outdoor dry bulb temperature and outdoor wet bulb 
temperatature forecast 

Based on the above analysis, we can see for all the three 
models, the uncertainties in the weather forecast have 
dramatic impacts on their prediction accuracy: the RMSD 
can increase by 30% when the absolute value of the static 
error increases only by 1 °C. This indicates, for the studied 
case, the importance of relatively accurate weather forecasts. 
It also suggests that the accuracy of the forecasting model 
must be weighed in light of the accuracy of the model inputs, 
like forecasts of weather. Finally, we also observed that the 
Support Vector Machine model is slightly more sensitive to 
the change of the uncertainties.  

4 Conclusion  

This paper proposes a Bayesian Network model for 
predicting the cooling load of a commercial building. We 

show that the proposed Bayesian Network model has the 
potential of achieving similar or better performance than a 
Support Vector Machine model or an Artificial Neural 
Network model. In the case study, the Bayesian Network 
model used the lowest CPU time for training when the 
amount of the training data is more than ten weeks. The 
CPU time cost by the Artificial Neural Network model is 
higher than that of the Bayesian Network model by up to 
5700%. Moreover, using the Bayesian Network model does 
not require background in sophisticated mathematical 
theories. These benefits suggest that the Bayesian Network 
model is promising for real-world applications.  

In this paper, we also explore the relationship between 
performance of the candidate prediction models and the 
amount of data available to train the models. We found all 
the three models can’t extrapolate the training dataset. For 
the studied case, the three models tend to have much larger 
prediction deviation if the testing data point lies far 
distance from the training dataset. On the other hand, we 
also noted that increasing the amount of the training data, 
but not the percentage of the testing data points that are 
covered by the training dataset, doesn’t benefit the prediction 
a lot. Based on the above statement, we suggest to increase 
the percentage of the testing data points that are covered by 
the training dataset, rather than only the amount of data in 
the training dataset, if the three models are employed for 
prediction. 

Another insight from this paper is that all the three 
models don’t have the ability to tolerate the uncertainties in 
the inputs. For the studied case, uncertainties in the weather 
forecast significantly decrease the accuracy of the cooling 
load prediction in the studied case. Among the three models, 
the Support Vector Machine model is more sensitive to 
uncertainties. The above results reveal that when evaluating 
the accuracy of the prediction model, the accuracy of the 
model input, such as weather forecast, should be taken into 
account.  

In this study, the evaluation of the Bayesian Network 
model focuses on one single case and we selected a relatively 
short test period. In the future, it will be beneficial to 
extend the evaluation to longer testing periods, or different 
types of buildings under different weather conditions when 
relevant data is available. By doing that, we can see if    
the Bayesian Network model still works and the above 
observations can still be applied. It will also interesting to 
study how to further increase the accuracy of the Bayesian 
Network model, by identifying better indicators for the 
internal activities. In this study, we chose the hour index 
and the day category since they are readily available. However, 
there are limitations from using them. For instance, the 
cooling load may be more sensitive to the hour index in 
working days for a typical office building, which makes the 
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training process more difficult. It is also worth mentioning 
that this paper focuses on exploring the possibility of applying 
the Bayesian Network model in the cooling load prediction 
for the commercial buildings. To effectively achieve this goal, 
we employ the use of the commonly used settings for the 
Bayesian Network model, such as discrete inputs, a uniform 
discretization interval, and a predefined structure. In the 
future study, it will be important to study if better perfor-
mance can be achieved by employing continuous inputs, and 
letting the Bayesian Network model learn the discretization 
interval and structure from the training dataset.  
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