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a b s t r a c t

Recent works in the literature have proposed quantum-like Bayesian networks as an alternative decision
model to make predictions in scenarios with high levels of uncertainty. Despite its promising capabilities,
there is still some resistance in the literature concerning the advantages of these quantum-like models
towards classical ones.

In this work, we developed a Classical Latent Bayesian network model and we compared it against its
quantum counterpart: the quantum-like Bayesian network. The comparisonwas done using awell known
Prisoner’s Dilemma game experiment from Shafir and Tversky (1992), in which the classical axioms of
probability theory are violated during a decision, and consequently the game cannot be simulated by pure
classicalmodels. In the end,we concluded that it is possible to simulate these violations using the Classical
Latent Variable model, but with an exponential increase in its complexity. Moreover, this classical model
cannot predict both observed and unobserved conditions from Shafir and Tversky (1992) experiments. The
quantum-like model, on the other hand, is shown to be able to accommodate both situations for observed
and unobserved events in a single model, making it more suitable and more general for these types of
decision problems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The task of determining human judgments under uncertainty
has got increasing attention in the scientific literature in the last
decade (Moreira & Wichert, 2016b). More specifically, several
models that are capable to predict or explain human decisions that
are inconsistent with the laws of classical probability theory and
logic (Crosson, 1999; Kuhberger, Komunska, & Josef, 2001; Lamb-
din & Burdsal, 2007; Tversky & Shafir, 1992) have been recently
proposed. These models turn to quantum probability to explain
human decision-making and are part of a new emerging discipline
called Quantum Cognition (Busemeyer, 2015; Wang, Busemeyer,
Atmanspacher, & Pothos, 2013).

Recent research shows that quantum-based probabilistic mod-
els are able to explain and predict scenarios that cannot be ex-
plained bypure classicalmodels (Bruza,Wang, &Busemeyer, 2015;
Busemeyer & Wang, 2015). However, there is still a big resistance
in the scientific literature to accept these quantum-based models.
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Many researchers believe that one canmodel scenarios that violate
the laws of probability and logic through classical probabilistic
decision models that are often used in machine learning (Mur-
phy, 2012). These violations of the laws of probability theory are
hard to explain through classical theory and can have different
types: violations to the Sure Thing Principle (Savage, 1954), dis-
junction/conjunction errors (Tversky & Kahneman, 1983), Ellsberg
(Ellsberg, 1961)/Allais (Allais, 1953) paradoxes, order effects (Sud-
man & Bradburn, 1974), etc.

To accommodate these violations, several quantum-likemodels
have been proposed in the literature. Note that, the term quantum-
like is simply the designation that it is used to refer to any model
that is applied in the domains outside of physics and that use
the mathematical formalisms of quantum mechanics, abstracting
them from any physical meaning and interpretations.

Although, the quantum cognition field is recent in the lit-
erature, there have been several different quantum-like models
proposed in the literature. These models range from dynamical
models (Busemeyer, Wang, & Lambert-Mogiliansky, 2009; Buse-
meyer, Wang, & Townsend, 2006; Pothos & Busemeyer, 2009),
which make use of unitary operators to describe the time evo-
lution since a participant is given a problem (or asked a ques-
tion), until he/she makes a decision, to models that are based on
contextual probabilities (Aerts & Aerts, 1994; Khrennikov, 2009b;
Yukalov & Sornette, 2011). Quantum-like dynamical models have
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also been proposed in the literature to accommodate violations
to the Prisoner’s Dilemma Game (Pothos & Busemeyer, 2009),
study the evolution of the interaction of economical agents in
markets (Haven & Khrennikov, 2013; Khrennikov, 2009a) or even
to specify a formal description of dynamics of epigenetic states of
cells interacting with an environment (Asano et al., 2013). On the
other hand, quantum-like models based on contextual probabili-
ties, explore the application of complex probability amplitudes to
define contexts that can interfere with the decision-maker (Khren-
nikov, 2005b, 2009b, 0000). For a survey about the applications of
quantum-like models for the Sure Thing Principle, the reader can
refer to Moreira and Wichert (2016b).

In the literature, it is clear and acceptable that simple and pure
probabilistic models cannot accommodate human decisions that
violate the laws of classical probability theory and logic (Buse-
meyer & Bruza, 2012). But can a more complex classical model
simulate the paradoxical findings reported in the literature? In
order to answer this question, we propose the application of latent
variables in classical models to accommodate these paradoxical
findings. By latent variables, we mean random variables that are
hidden, that is, they cannot be directly measured in an experi-
mental setting, but can be indirectly inferred from experimental
data. These variables bring great advantages to cognitive models,
because many observed variables can be condensed into a smaller
number of hidden variables, enabling a dimensionality reduction
of the model. For instance, in Psychology or Social Sciences, one
can use latent variables to summarise the influence of several
variables, such as beliefs, personality, social attitudes, etc., over the
concept of h uman behaviour (Bollen, 2002; Griffiths, Steyvers, &
Tenenbaum, 2007).

A well-known classical model that can include such depen-
dencies is the Bayesian network (Pearl, 1988). This model rep-
resents relationships between random variables (such as causal
and conditional dependencies) in an acyclic probabilistic graphical
structure. Bayesian networks are powerful inference models that
have been successfully applied over the years in different fields
of the literature, mainly in artificial intelligence, genetics, medical
decision-making, economics, etc.

In this work, we developed a classical Bayesian network that
makes use of latent variables and we compared it against its quan-
tum counterpart, the quantum-like Bayesian network, which was
previously proposed in Moreira and Wichert (2016a). In the end,
we conclude that it is possible to simulate the violations to the
Sure Thing Principle using the classical Bayesian network with
latent variables with an exponential increase in its complexity,
however this model cannot predict both observed and unobserved
experimental conditions from Shafir and Tversky (1992). On the
other hand, the quantum-like model is shown to be able to ac-
commodate both situations for observed and unobserved events in
a single and general model. Note that the Sure Thing Principle is a
concept widely used in game theory andwas originally introduced
by Savage (1954). This principle is fundamental in Bayesian proba-
bility theory and states that if one prefers action A over B under
state of the world X , and if one also prefers A over B under the
complementary state of theworldX , then one should always prefer
action A over B even when the state of the world is unspecified.

This manuscript is organised as follows. In Section 2, we in-
troduce a general definition for latent variables. In Section 3, we
present the prisoner’s dilemma game and several works of the
literature that report experiments, which violate the Sure Thing
Principle in this game. In Section 4, we propose a classical Bayesian
network model that makes use of Latent Variables to accommo-
date the paradoxical findings of the prisoner’s dilemma game. In
Section 5, it is introduced the quantum-like Bayesian network pro-
posed in thework ofMoreira andWichert (2016a) as an alternative
model to accommodate the several paradoxical findings reported

in the literature. In Section 6, we make a discussion about the
complexity involved in exact probabilistic inferences over classical
and quantum-like Bayesian networks. We end this work with
Section 7, which summarises themain points of this work: that the
quantum-like Bayesian network model poses advantages towards
the classical model with latent variables, since it can simulate
both observed and unobserved phenomena in a single network,
in contrast with the classical model requires extra hidden nodes
(contributing to a decrease in efficiency) and cannot accommodate
both observed and unobserved experimental conditions in a single
model.

2. Latent variables

Most of the times, the data that is recorded (or observed) does
not provide all the information that is needed to model a decision
scenario. In these situations, latent variables are used to model
complex patterns that we do not have the complete data for.

There is not a general and formal definition for latent variables
(Bollen, 2002). Since it is a concept that iswidely used across differ-
ent multidisciplinary areas, it can be defined differently according
to its application. However, a very simple and informal definition
can be given as variables that are not directly observed from data,
but can be inferred using the information of the variables thatwere
recorded (Anandkumar, Hsu, Javanmard, & Kakade, 0000). Instead
of specifying concrete relationships between variables, latent vari-
ables enable the abstraction of these relationships allowing amore
general representation, which can be inferred from the observed
variables.

In this work, we will use latent variables in a probabilistic
graphical model, more specifically in a Bayesian network. Gen-
erally speaking, a Bayesian network is an acyclic probabilistic
graphical model, which provides an intuitive way of specifying
probabilistic relationships and dependencies between random
variables (Griffiths et al., 2007). These relationships are specified
through a joint distribution over the set of all random variables
in the model, and each node specifies conditional dependencies
over its parent nodes. Under this representation, a random vari-
able becomes latent when it is unobserved (or unknown), which
suggests a local independencedefinition, according to Bollen (2002).
When a latent variable is constant (for instance, a prior probability
representing a person’s cognitive bias towards some topic), the
observed variables become independent. More formally, the in-
dependence between random variables and the latent variables is
given by Eq. (1).

Pr(X1, X2, . . . , Xn) = Pr(X1|h)Pr(X2|h) · · · Pr(Xn|h). (1)

Given a set of observed random variables X1, X2, . . . , Xn and
some vector of latent (hidden) variables h, the joint probability
Pr(X1, X2, . . . , Xn) corresponds to the product of the conditional
probabilities of each random variable Xi over the associated latent
variable, Pr(X1|h)Pr(X2|h) · · · Pr(Xn|h).

Consider Fig. 1. Suppose you have a parameterised acyclic prob-
abilistic graphical model over the parameter φ. We will assume
that node H represents a latent variable, because it is not directly
observed (or it is hidden) for some given reason: it might be too
expensive to collect its data, it might have been not recorded or
we simply might not have access to the process generating the
observed data.

Given a dataset of collected data D of sizeM , the above network
consists in a tuple ⟨h[m], x[m]⟩, where h is parameterised instance
of the latent variable H and x an instance of the random variable X .
The likelihood (a measure similar to a probability, which provides
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Fig. 1. Example of a Bayesian network with a latent variable H and a random variable X .

support for particular values of a parameter in a parametricmodel)
of the network is given by the joint distribution:

L(φ : D) =

M∏
m=1

Pr(h[m], x[m] : φ). (2)

In a Bayesian network, the full joint probability distribution can
be described in terms of the chain rule. So, Eq. (2) can be rewritten
as:

L(φ : D) =

M∏
m=1

Pr(h[m] : φH ) · Pr(x[m]|h[m] : φX |H ). (3)

Note that Eq. (3) is composed by two terms, because the net-
work in Fig. 1 has two random variables (more specifically, one
random variable and one latent variable). For N random variables,
thismodelwould haveN terms. Each term is called a local likelihood
function and can determine howwell a randomvariable can predict
its parents (Murphy, 2012).

In Eq. (3), one can decompose the local likelihood function of the
random variable X into two sets: one for each assignment that the
random variable can take. In this case, for the sake of simplicity, it
is assumed that X is a binary random variable that can be assigned
the values True or False.

Pr(x[m]|h[m] : φX |H ) =

∏
m:h[m]=HTrue

Pr(x[m]|h[m] : φX |HTrue )

·

∏
m:h[m]=HFalse

Pr(x[m]|h[m] : φX |HFalse ). (4)

What is the probability
∏

m:h[m]=HTrue
Pr(x[m]|h[m] : φX |HTrue )?

Well, if we look at the conditional probability table in Fig. 1, we see
that it is simply the product of the correspondent conditional prob-
ability distribution entry over all assignments of X . That means,
when X = true, then Pr(x[m]|h[m] : φX |HTrue ) = φX=true|H=true. In
the same way, when X = false, then Pr(x[m]|h[m] : φX |HTrue ) =

φX=false|H=true. The same reasoning is applied for the second term of
Eq. (4), but for HFalse.

Given that we are making a product between all assignment of
X , then

∏
m:h[m]=HTrue

Pr(x[m]|h[m] : φX |HTrue ) can be rewritten as∏
m:h[m]=HTrue

Pr(x[m]|h[m] : φX |HTrue )

= φ
#⟨h=true,x=true⟩
X=true|H=true · φ

#⟨h=true,x=false⟩
X=false|H=true , (5)

where the symbol # represents the cardinality. More specifically,
#⟨h = true, x = false⟩ represents the number of instances where
the latent variableH has the value true and the number of instances
where the random variable X has the value false. From Eq. (5), it
follows that:

φX=false|h=true =
#⟨h = true, x = false⟩

#⟨h = true, x = true⟩ + ⟨h = true, x = false⟩

=
#⟨h = true, x = false⟩

#⟨h = true⟩
. (6)

Eq. (6) means that for a given network structure, we simply
count the number of instances that each assignment X and H
appear. The goal is to estimate the parameters of the latent variable

in order to accommodate the violations of the several paradoxes
reported over the literature. For the case of this work, to accom-
modate violations to the Sure Thing Principle.

In the next section, we present a decision scenario that has been
widely reported over the literature as an example of violations to
the Sure Thing Principle: the Prisoner’s Dilemma Game (Shafir &
Tversky, 1992).

3. The Prisoner’s Dilemma game

The Prisoner’s Dilemma game corresponds to an example of
the violation of the Sure Thing Principle. In this game, there are
two prisoners who are in separate solitary confinements with no
means of speaking to or exchangingmessages with each other. The
police offer each prisoner a deal: they can either betray each other
(defect) or remain silent (cooperate).

The dilemma of this game is the following. Taking into account
the payoff matrix, the best choice for both players would be to
cooperate. However, the action that yields a bigger individual
reward is to defect. If player A has to make a choice, he has two
options: if B has chosen to cooperate, the best option for A is to
defect because hewill be set free; if B has chosen to defect, then the
best action for A is also to choose to defect because he will spend
less time in jail than if he cooperates.

To test the veracity of the Sure Thing Principle under the Pris-
oner’s Dilemma game, several experiments were performed in the
literature in which three conditions were tested:

1. Participants were informed that the other participant chose
to defect.

2. Participants were informed that the other participant chose
to cooperate.

3. Participants had no information about the other partici-
pant’s decision.

Table 1 summarises the results of severalworks in the literature
that have performed this experiment using different payoffs. Note
that although these results show that the majority of the players
choose to defect in all three conditions of the experiment, there is
still a significant percentage of players who choose to cooperate.
Throughout the literature, it is considered that this significant
percentage of players is violating the Sure Thing Principle (Pothos
& Busemeyer, 2009) and, consequently, violating the law of total
probability. In a classical setting, assuming that no prior infor-
mation about the first player’s preferences (neutral priors), it is
expected that:

Pr ( P2 = Defect | P1 = Defect ) ≥ Pr ( P2 = Defect )
≥ Pr ( P2 = Defect | P1 = Cooperate ) .

However, this is not consistent with the experimental results
reported in Table 1. Note that Pr( P2 = Defect | P1 = Defect )
corresponds to the probability of the second player choosing the
Defect action given that he knows that the first player chose to
Defect . In Table 1, this corresponds to the entry Known to Defect.
In the samemanner, Pr( P2 = Defect | P1 = Cooperate ) corresponds
to the entry Known to Cooperate. The observed probability dur-
ing the experiments concerned with player 2 choosing to defect,
Pr ( P2 = Defect ), corresponds to the unknown entry of Table 1
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Table 1
Works of the literature reporting the probability of a player choosing to defect under several conditions.

Literature Known to defect Known to cooperate Unknown Classical probability

Shafir and Tversky (1992) 0.9700 0.8400 0.6300 0.9050
Li and Taplin (2002)a 0.8200 0.7700 0.7200 0.7950
Busemeyer, Matthew, and Wang (0000) 0.9100 0.8400 0.6600 0.8750
Hristova and Grinberg (0000) 0.9700 0.9300 0.8800 0.9500

Average 0.9175 0.8450 0.7225 0.8813

a Corresponds to the average of all seven experiments reported in the work of Li and Taplin (2002).

because there is no evidence regarding the first player’s actions.
Finally, the entry Classical Probability corresponds to the classical
probability Pr ( P2 = Defect ), which is computed through the law
of total probability assuming neutral priors (a 50% chance of a
player choosing either to cooperate or to defect):

Pr (P2 = Defect) = Pr (P1 = Defect)
· Pr (P2 = Defect|P1 = Defect)
+ Pr (P1 = Cooperate) · Pr (P2 = Defect|P1 = Cooperate) .

At this point, the reader might be thinking that the paradoxes
reported in Table 1 can be easily modelled through classical prob-
ability models (Murphy, 2012) and for this reason there is no need
to develop quantum probabilistic models for these problems. One
can also think that the classical model fails to accommodate the
paradox due to missing information. There can be some variables
thatmight be influencing the participant’s game and that cannot be
measured directly (for instance, some arbitrarymental states, such
as self-esteem, etc.). One can call these variables hidden and for that
reason they can be modelled through latent variables. In the next
section, we will present a classical Bayesian network model that
uses latent variables to model the Prisoner’s Dilemma game. This
hidden state is introduced to show that by adding extra variables
to the classical model, to capture the uncertainty of the player, is
not enough to solve the paradox at hand.

4. Classical Bayesian network with latent variables

In order to discuss the idea that some hidden variable(s) might
influence the participant’s mental states leading to the paradoxical
findings reported in Table 1, in this sectionwe introduce a classical
Bayesian network model with latent variables to model the Pris-
oner’s Dilemma game.

A classical Bayesiannetwork canbedefined by a directed acyclic
graph structure in which each node represents a different random
variable from a specific domain and each edge represents a direct
influence from the source node to the target node. The graph repre-
sents relationships between variables and each node is associated
with a conditional probability table which specifies a distribution
over the values of a node given each possible joint assignment
of values of its parents. This idea of a node, depending directly
from its parent nodes, is the core of Bayesian networks. Once the
values of the parents are known, no information relating directly or
indirectly to its parents or other ancestors can influence the beliefs
about it (Koller & Friedman, 2009).

Consider Fig. 2, which represents a classical Bayesian network
with a latent variable to model the Prisoner’s Dilemma game.

In Fig. 2, P1 and P2 are both random variables. P1 represents
the decision of the first player and P2 represents the second
participant’s decision (either defecting or cooperating). H is the
hidden state or latent variable and represents some unmeasurable
factor that can influence the players’ decisions. For the sake of
simplicity, let us assume that the latent variable has two states:
risk_seeking and risk_averse. In the proposed classical model, the
latent variable represents the personality of a player towards risk
and suggests that a risk seeking player will tend to cooperate

more, in contrast with a risk averse player will tend to defect
more often. The main reason for making this assumption resides
in two factors. First, over the literature, the prisoner’s dilemma
game is modelled under these two conditions when the purpose
is to represent individual risk in decision-making tasks (Au, Lu,
Leung, Yam, & Fung, 2011; Pothos & Busemeyer, 2009). Second,
the complexity of the Bayesian networkwould grow exponentially
and unnecessarily large with the incorporation of more random
variables or with random variables with multiple assignments.
Adding extra assignments to the latent variable will not bring
any advantage in this decision-making problem as the reader will
notice in the end of this section. Since a latent variable is a variable
that is not directly measured, it can only be inferred from the ob-
served data. The two randomvariables, P1 and P2, are the observed
data from the experiment and are represented, respectively, by
the functions F (P1i,Hj) and G(P2i,Hj) for i ∈ {defect, cooperate}
and j ∈ {risk_averse, risk_seeking}. These functions depend on the
hidden and unmeasured variable H , which is parameterised over
the parameter K (H = j).

One cannote that thismodel is in accordancewith thedefinition
of latent variables from Bollen (2002): if H is known, then the
random variables P1 and P2 become independent:

Pr(P1, P2) = Pr(P1|H).Pr(P2|H).

The goal of this model is to find the parameter K (H = j) from
the observed experimental data such that all conditions of the
Prisoner’s Dilemma Game are satisfied. In other words:

1. When it is known that the first player chose to defect, then
the participant should defect.

2. When it is known that the first player chose to cooperate,
then the participant should defect.

3. When it is not known if the first player chose to defect or
cooperate, then the second player should cooperate.

Assuming thatm corresponds to themth element of the dataset
D, the maximum likelihood estimate of this network with variable
φ is given by the full joint probability distribution,

L (φ : D) =

∏
m=1

Pr (H [m] , P1 [m] , P2 [m] : φ) . (7)

Remember that H is the hidden state or latent variable that
represents the personality of the player and is parameterised over
the parameter K (H = j), with j ∈ {risk_averse, risk_seeking}. P1
and P2 are both random variables. P1 represents the decision of
the first player and P2 represents the second participant’s decision
(either defecting or cooperating). P1 and P2, are the observed data
from the experiment and are represented, respectively, by the
functions F (P1i,Hj) and G(P2i,Hj) for i ∈ {defect, cooperate}.

Given that we have three random variables in the network,
the full joint probability distribution consists in the product of the
nodes given their parents,

L (φ : D) =

(∏
m=1

Pr (H [m] : φH)

)
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Fig. 2. A classical Bayesian network with a latent variables to model the Prisoner’s Dilemma game. P1 and P2 are both random variables. P1 represents the decision of the
first player and P2 represents the decision of the second player (either to cooperate or to defect). H is the hidden state or latent variable and represents some unmeasurable
factor that can influence the participant’s decisions.

×

(∏
m=1

Pr
(
P1 [m] |H[m] : φP1|H

))

×

(∏
m=1

Pr
(
P2 [m] |H[m] : φP2|H

))
. (8)

The first term of Eq. (8) is the latent variable and corresponds
to the prior probability about a player’s personality. This hidden
variable needs to be inferred from the observed data. The second
and third terms correspond to player’s P1 and P2 actions, respec-
tively, and are the terms that we need to expand and compute.
Since we are more interested in computing the probability of the
second player, P2, we will do the calculations with this term. The
calculations for P1 are performed in a similar way. Expanding
the term about P2, the probability of the second player can be
computed in terms of his personality (either risk seeking or risk
averse), which is represented by the latent variable H .∏
m=1

Pr
(
P2 [m] |H[m] : φP2|H

)
=

∏
m:h[m]=risk_averse

Pr(P2[m]|H[m] : φP2|H=risk_averse) ·

∏
m:h[m]=risk_seeking

Pr(P2[m]|H[m] : φP2|H=risk_seeking ).

(9)

Analysing each term, we see the latent variable can indeed be
estimated by the random variables P2 and P1 through a function
G(P2 = i,H = j) and F (P1 = i,H = j), for i ∈ {defect, cooperate}
and j ∈ {risk_averse, risk_seeking}, which corresponds to the
number of times the assignments ofH would appear together with
each assignment of P2 and P1. More formally,∏

H=risk_averse

Pr
(
G2 [m] |H [m] : φG2|H=risk_averse

)
=
(
φG2=defect|H=risk_averse

)
·
(
φG2=cooperate|H=risk_seeking

)
(10)

φP2=defect|H=risk_averse =
#⟨P2 = defect,H = risk_averse⟩

⟨H = risk_averse⟩
= G (P2 = defect,H = risk_averse) . (11)

In the same way, we can make the same calculations for a risk
seeking player:

φP2=defect|H=risk_seeking =
#⟨P2 = defect,H = risk_seeking⟩

⟨H = risk_seeking⟩

= G (P2 = defect,H = risk_seeking) . (12)

For the random variable P1 the calculations are similar:

φP1=defect|H=risk_averse =
#⟨P1 = defect,H = risk_averse⟩

⟨H = risk_averse⟩
= F (P1 = defect,H = risk_averse) (13)

φP1=defect|H=risk_seeking =
#⟨P1 = defect,H = risk_seeking⟩

⟨H = risk_seeking⟩

= F (P1 = defect,H = risk_seeking) (14)

which leads to the parametrisation made in the Bayesian net-
work model in Fig. 2. In the next section, we will try to find an
estimation for the functions F (P1 = i,H = j), F (P1 = i,H = j)
and for parameter K (H = j) that can explain both observed and
unobserved conditions for the Prisoner’s Dilemma game.

4.1. Estimating the parameters

In order to find a classical Bayesian network that can explain
the paradoxical results in Table 1, one needs to fit the conditional
probabilities F (P1 = i,H = j), F (P1 = i,H = j) and the prior
probability K (H = j). In order to simulate the three conditions
of the Prisoner’s Dilemma game experiment, we need to satisfy
two sets of conditions: one when the player does not know the
decision of the first player and another onewhen the player knows
the decisions of the first player.

These conditions can be taken from the computation of the full
joint probability of the Bayesian network in Fig. 2. The full joint
probability distribution of a Bayesian network corresponds to the
multiplication of each assignment of a random variable with its
parents.More specifically, for a set of randomvariablesX thatmake
up a Bayesian network, the full joint probability is given by Russel
and Norvig (2010):

Pr(X1, . . . , Xn) =

n∏
i=1

Pr(Xi|Parents(Xi)). (15)

We can specify the full joint probability of the Bayesian network
in Fig. 2, through Eq. (15) by Table 2.

Note that throughout this work, we will address to risk_averse
by ra, risk_seeking by rs, defect by d and cooperate by c.

The unobserved conditions correspond to the third condition of
the experiment in which the participant does not know the deci-
sion of the first player. That is the same as computing the probabil-
ity of a participant choosing to defect without further information:
Pr(P2 = defect). This results in the following conditions:

Pr(P2 = defect) = Pr(H = ra, P1 = d, P2 = d)

+ Pr(H = ra, P1 = c, P2 = d)+

Pr(H = rs, P1 = d, P2 = d) + Pr(H = rs, P1 = c, P2 = d).

(16)

In the same way, one can specify the probability of the participant
choosing to cooperate, Pr(P2 = cooperate), as
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Table 2
Full joint probability distribution for the general Bayesian network from Fig. 2, which models the Prisoner’s Dilemma
game. Note that rs stands for risk_seeking, ra for risk_averse, d for defect and c for cooperate.

H P1 P2 Pr(H, P1, P2)

risk_averse Defect Defect K (H = ra) F (P1 = d,H = ra) G(P2 = d,H = ra)
risk_averse Defect Cooperate K (H = ra) F (P1 = d,H = ra) G(P2 = c,H = ra)
risk_averse Cooperate Defect K (H = ra) F (P1 = c,H = ra) G(P2 = d,H = ra)
risk_averse Cooperate Cooperate K (H = ra) F (P1 = c,H = ra) G(P2 = c,H = ra)
risk_seeking Defect Defect K (H = rs) F (P1 = d,H = rs) G(P2 = d,H = rs)
risk_seeking Defect Cooperate K (H = rs) F (P1 = d,H = rs) G(P2 = c,H = rs)
risk_seeking Cooperate Defect K (H = rs) F (P1 = c,H = rs) G(P2 = d,H = rs)
risk_seeking Cooperate Cooperate K (H = rs) F (P1 = c,H = rs) G(P2 = c,H = rs)

α1 =
1∑

p∈{d,c}
∑

h∈{ra,rs} K2(H2 = h) F2(OutP1 = d) G(P2 = p,OutP1 = d,H = h)

α2 =
1∑

p∈{d,c}
∑

h∈{ra,rs} K2(H2 = h) F2(OutP1 = c) G(P2 = p,OutP1 = c,H = h)
.

Box I.

Pr(P2 = cooperate) = Pr(H = ra, P1 = d, P2 = c)

+ Pr(H = ra, P1 = c, P2 = c)+

Pr(H = rs, P1 = d, P2 = c) + Pr(H = rs, P1 = c, P2 = c).

(17)

Using the full joint probability in Table 2, one can rewrite Eqs. (16)
and (17) and set the probabilities Pr(P2 = defect), Pr(P2 =

cooperate) to the experimental values of the Prisoner’s Dilemma
game. For the case of the work of Shafir and Tversky (1992), then
we should guarantee that Pr(P2 = defect) = 0.63, Pr(P2 =

cooperate) = 0.37.

Pr(P2 = defect)

= K (H = ra) F (P1 = d,H = ra) G(P2 = d,H = ra)

+ K (H = ra) F (P1 = c,H = ra) G(P2 = d,H = ra)

+ K (H = rs) F (P1 = d,H = rs) G(P2 = d,H = rs)

+ K (H = rs) F (P1 = c,H = rs)

× G(P2 = d,H = rs) = 0.63

(18)

Pr(P2 = cooperate)

= K (H = ra) F (P1 = d,H = ra) G(P2 = d,H = ra)

+ K (H = ra) F (P1 = c,H = ra) G(P2 = d,H = ra)

+ K (H = rs) F (P1 = d,H = rs) G(P2 = d,H = rs)

+ K (H = rs) F (P1 = d,H = rs) G(P2 = d,H = rs) = 0.37.

(19)

Eqs. (18) and (19) specify the unobserved conditions for the
Prisoner’s Dilemma Game and to satisfy them, we need to set
their parameters in the following way (note that the following
values represent one possible solution, however this solution is not
unique).

K (H = rs) = 0.5 F (P1 = d,H = rs) = 0.1
G(P2 = d,H = rs) = 0.36
K (H = ra) = 0.5 F (P1 = d,H = ra) = 0.9
G(P2 = d,H = ra) = 0.9.

(20)

This means that there is indeed a classical model that explains
the paradoxical findings of the Prisoner’s Dilemma Game, which
violate the laws of classical probability theory. However, we also
need to satisfy the conditions when the player knows the decisions
of the first player. For this, we will need to change the model.

Consider the Bayesian network in Fig. 3, which represents a clas-
sical Bayesian network to model the observed conditions for the
Prisoner’s Dilemma Game. In this network, OutP1 and P2 are both
random variables that represent the outcome (or decision) of the
first player and the decision of the second player. H2 represents a
latent unmeasurable variable that corresponds to the personality
of the second player: either risk averse or risk seeking.

Since the second player will have access to the first player’s
decision, then we will need to make add a dependency between
the nodes OutP1 and P2. Using the same line of thought, since we
know the outcome of the first player, then we do not need any de-
pendency between this node and the latent variable (since, for this
experimental condition, it will only affect the second player). Using
this model, the observed conditions for the Prisoners Dilemma
game are given by the probabilities Pr(P2|OutP1 = defect,H2),
when the player is informed that the first player chose to defect
and Pr(P2|OutP1 = cooperate,H2), when the player is informed
that the first player chose to cooperate.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr(P2 = d|P1 = d) = α1[K2(H2 = ra) F2(OutP1 = d)
×G(P2 = d,OutP1 = d,H = ra)
+ K2(H2 = rs) F2(OutP1 = d)
×G(P2 = d,OutP1 = d,H = rs)] = 0.97

Pr(P2 = c|P1 = d) = α1[K2(H2 = ra) F2(OutP1 = d)
×G(P2 = c,OutP1 = d,H = ra)
+ K2(H2 = rs) F2(OutP1 = d)
×G(P2 = c,OutP1 = d,H = rs)] = 0.03

(21)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr(P2 = d|P1 = c) = α2[K2(H2 = ra) F2(OutP1 = c)
×G(P2 = d,OutP1 = c,H = ra)
+ K2(H2 = rs) F2(OutP1 = c)
×G(P2 = d,OutP1 = c,H = rs)] = 0.84

Pr(P2 = c|P1 = c) = α2[K2(H2 = ra) F2(OutP1 = c)
×G(P2 = c,OutP1 = c,H = ra)
+ K2(H2 = rs) F2(OutP1 = c)
×G(P2 = c,OutP1 = c,H = rs)] = 0.16.

(22)

In Eqs. (21) and (22), the variable α is the normalisation factor
due to Naïve Bayes independence assumptions and is defined by
α1 and α2 given in Box I.

In order to satisfy the observed conditions, we need to set
their parameters in the following way (note that the following
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Fig. 3. Classical Bayesian network to model the observed conditions for the Prisoner’s Dilemma Game. OutP1 and P2 are both random variables that represent the outcome
(or decision) of the first player and the decision of the second player. The decisions can either be defect , which is represented by d or cooperate, represented by c .H2 represents
a latent (hidden) unmeasurable variable that corresponds to the personality of the second player: either risk averse (ra) or risk seeking (rs).

values represent one possible solution, however this solution is not
unique).

K2(H = rs) = 0.5 F2(OutP1 = d) = 0.9
G2(P2 = d,OutP1 = d,H = rs) = 0.97
K2(H = ra) = 0.5 F2(OutP1 = c) = 0.1
G2(P2 = d,OutP1 = c,H = ra) = 0.84.

(23)

This means that there is also a classical model that explains the
observed findings of the Prisoner’s Dilemma Game, which violate
the laws of classical probability theory. But is there a single clas-
sical model that can accommodate both observed and unobserved
conditions?

Let us go back to the Bayesian network in Fig. 2 (the one we
used to compute the unobserved conditions). In order to satisfy the
experimental results for the Prisoner’s Dilemma game, one needs
to find values for the parameters K (H = j), F (P1 = d,H = j)
and G(P2 = d,H = j), for j ∈ {ra, rs}, such that all observed and
unobserved conditions are satisfied.

Making the calculations, one finds that the only way to satisfy
both conditions, would be to set the parameters to:

K (H = rs) = 0.9999 F (P1 = d,H = rs) = −3442.8
G(P2 = d,H = rs) = 0.6301
K (H = ra) = 0.0001 F (P1 = d,H = ra) = −3443.8
G(P2 = d,H = ra) = 0.3699.

(24)

This is an impossible statement, because F (P1 = d,H = ra) =

−3443.8 is violating the positivity axiom of classical probability
theory. Moreover, the parameter G(P2 = d,H = ra) = 0 does
not make sense, because it would imply that a player with a risk
averse personality would always choose to cooperate, which is a
contradiction. A risk averse player would prefer to defect, which
is the action that leads to a higher utility. This shows that in a
classical Bayesian networkwith latent variables, we can either find
the conditional probability tables to accommodate the paradoxical
findings of the Prisoner’s Dilemma game or to accommodate the
observed conditions. Satisfying both conditions in a single model
is not possible.

4.2. Increasing the dimensionality of a classical Bayesian network

One can argue that adding another layer of hidden variables
might solve the problem at hand andwewould be able to simulate
both observed and unobserved conditions. Although this line of
thought is legitimate, it still does not solve the problem. Con-
sider Fig. 4, which presents a classical Bayesian network. We have
introduced a latent variable H2 that joins the models that can
address the paradoxical findings and the models that can address
the observed conditions of the Prisoner’s Dilemma game. This
means that by increasing the dimensionally of the model, we

can obtain a network that takes into account both observed and
unobserved conditions. In Fig. 4,H1 andH2 are latent variables that
express both unobserved and observed conditions for the Prisoner’s
Dilemma game. Random variables P1U and P1 represent the first
player’s decision according to the unobserved and observed condi-
tions, respectively. Random variables P2U and P2 represent the
second player’s decision according to the unobserved and observed
conditions, respectively. The assignments ra stand for risk averse,
rs risk seeking, d defect and c cooperate.

In order to address all conditions for the Prisoner’s Dilemma
game, we need to find the values for parameter φ0 that would lead
to the experimental outcomes of Shafir and Tversky (1992) work
reported in Table 1. There are two possible ways to get a value for
φ0, but they both lead to a contradiction to the decision model.

1. Setting φ = 1, would make Pr(P2 = defect|P1 = defect) =

0.97, Pr(P2 = defect|P1 = cooperate) = 0.84 and Pr(P2U =

defect) = 0.63. This reflects the observations of Shafir and
Tversky (1992) experiments, however we have two prob-
lems. First, setting a latent variable to a 100% probability
goes against its definition, since we would be implying that
this hidden variable that affects the player’s decisions is al-
ways present. This leads to the second problem. Under such
parameterisation, we would not be able to justify the prob-
ability Pr(P2U = defect) = 0.63, because we would always
be under an observed condition (and P2U represents the
actions of the second player under unobserved conditions).

2. Setting φ = 2/3, which represents the experimental setup:
two experiments for observed conditions, and one exper-
iment for the unobserved condition. With this parameter-
isation, the only way to meet the results for the observed
conditions, would be if we know that H2 = obs. That is,
only by computing the probability Pr(P2 = defect|P1 =

defect,H2 = obs) we would obtain the experimental values
from Shafir and Tversky (1992) work. This again is a con-
tradiction, because a latent variable can never be used as a
piece of absolute information during an inference process.
Since it is a hidden variable, it is not measurable.

One should also take into account that by adding extra hid-
den variables to a Bayesian network model, one is exponentially
increasing the complexity of the model. For N binary random
variables, if no information is observed,wewould need to compute
a full joint probability distribution with 2N entries. The Prisoner’s
Dilemma game is just a small decision scenario and to attempt
to accommodate all experimental observations, we required 6
binary random variables, which leads to a full joint probability
distribution with 26

= 64 entries to be stored in memory. For
more complex decision scenarios, these computations grow expo-
nentially large and the inference process becomes intractable.
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Fig. 4. A general classical Bayesian network with two latent variables, H1 and H2, to express both unobserved and observed conditions for the Prisoner’s Dilemma game.
Random variables P1U and P1 represent the first player’s decision according to the unobserved and observed conditions, respectively. Random variables P2U and P2 represent
the second player’s decision according to the unobserved and observed conditions, respectively. The assignments ra stand for risk averse, rs risk seeking, d defect and c
cooperate.

In the next section, we propose an alternative model based
on quantum probability theory that can take into account both
observed and unobserved conditions in general and compact way.

5. Quantum-like Bayesian networks as an alternative model

A more recent work from Moreira and Wichert (2014) sug-
gested defining the quantum-like Bayesian network in the same
way as a classical Bayesian network, but replacing real probability
numbers by quantum probability amplitudes.

In this sense, we can build a quantum-like Bayesian network
by applying Born’s rule (Deutsch, 1988), that is by replacing
the classical full joint probability distribution and the classical
marginal probability distribution by quantum complex ampli-
tudes. Then, we just apply the squared magnitude to the equation.
The quantum-like full joint probability distribution is given by
Eq. (25).

Pr(X1, . . . , Xn) =

⏐⏐⏐⏐⏐
N∏
i=1

ψ(Xi|Parents(Xi))

⏐⏐⏐⏐⏐
2

. (25)

Just like it is mentioned in the works of Moreira and Wichert
(2014, 2016a), the general idea of a quantum-like Bayesian
network is that,whenperformingprobabilistic inference, the prob-
ability amplitudes of each assignment of the network are prop-
agated and influence the probabilities of the remaining nodes,
causing quantum interference effects to occur. In other words,
every assignment of every node of the network is propagated until
the node representing the query variable is reached.

By applying Born’s rule, one can get the quantum counterpart of
the classical marginal probability distribution. In other words, one
can obtain a quantum-like version of the classical exact inference
formula in the following way:

Pr(X |e) = α

⏐⏐⏐⏐⏐ ∑
y

N∏
x=1

ψ(Xx|Parents(Xx),e,y)

⏐⏐⏐⏐⏐
2

. (26)

Expanding Eq. (26), it will lead to the quantum interference
formula:

Pr(X |e) = α

⎛⎝ |Y |∑
i=1

⏐⏐⏐⏐⏐
N∏
x

ψ(Xx|Parents(Xx),e,y=i)

⏐⏐⏐⏐⏐
2

+ 2 · Interference

⎞⎠

Interference =

|Y |−1∑
i=1

|Y |∑
j=i+1

⏐⏐⏐⏐⏐
N∏
x

ψ(Xx|Parents(Xx),e,y=i)

⏐⏐⏐⏐⏐
·

⏐⏐⏐⏐⏐
N∏
x

ψ(Xx|Parents(Xx),e,y=j)

⏐⏐⏐⏐⏐ · cos(θi − θj).

(27)

In the end, we need to normalise the final scores that are
computed to achieve a probability value, because we do not have
the constraints of double stochastic operators. In classical Bayesian
inference, normalisation of the inference scores is also necessary
due to assumptions made in Bayes rule. The normalisation factor
corresponds to α in Eq. (27).

Note that, in Eq. (27), if one sets (θi − θj) to π/2, then cos(θi −
θj) = 0, which means that the quantum Bayesian network col-
lapses to its classical counterpart. That is, they can behave in a
classical way if one sets the interference term to zero. Approaches
to tune those parameters under a quantum-like Bayesian network
approach are still an open research question, however someworks
have proposed to set these parameters though heuristic func-
tions (Moreira & Wichert, 2015, 2016a, 2017). In the quantum-
like Bayesian network, if there are many unobserved nodes in
the network, then the levels of uncertainty are very high and the
interference effects produce changes in the final likelihood of the
outcomes, making it possible to explain the paradoxical results
found in the literature.

The full joint probability distribution of the quantum-like
Bayesian network in Fig. 5 is given by Table 3.

Using the quantum-like Bayesian network in Fig. 5, one can
compute the probability of P2 = defect in the following way:

Pr(P2 = defect) = α

⎛⎝∑
p∈P1

|ψ(P1 = p, P2 = d)|2

+ 2 |ψ(P1 = d, P2 = d)|

× |ψ(P1 = c, P2 = d)| Cos (θd − θc)

⎞⎠ (28)

= α (ψ(P1 = d, P2 = d) + ψ(P1 = c, P2 = d)
+ 2 |ψ(P1 = d, P2 = d)|
× |ψ(P1 = c, P2 = d)| Cos (θd − θc)) . (29)

The quantum interference term θd − θc can either be set manually
according to the experimental observations or it can be estimated
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Fig. 5. Example of a quantum-like Bayesian network. The terms ψ correspond to quantum probability amplitudes. The variables P1 and P2 correspond to random variables
representing the first and the second player, respectively.

Table 3
Full joint probability distribution table of the quantum-like Bayesian network in Fig. 5.

P1 P2 ψ(P1, P2)

Defect Defect ψ(P1 = d)ψ(P2 = d | P1 = d) =
√
0.5

√
0.97 = 0.6964

Defect Cooperate ψ(P1 = d)ψ(P2 = c|P1 = d) =
√
0.5

√
0.03 = 0.1225

Cooperate Defect ψ(P1 = c)ψ(P2 = d|P1 = c) =
√
0.5

√
0.84 = 0.6481

Cooperate Cooperate ψ(P1 = c)ψ(P2 = c|P1 = c) =
√
0.5

√
0.16 = 0.2828

using the similarity heuristic proposed in Moreira and Wichert
(2016a). In this work, to be fair with the previously presented clas-
sical model, we will set the quantum parameter directly according
to the experimental setting. That is, the quantum interference pa-
rameter is given by θd − θc = 2.8151. Continuing the calculations,

Pr(P2 = defect) = α(
(√

0.5
√
0.97

)2
+

(√
0.5

√
0.84

)2
+ 2

√
0.5

√
0.97

√
0.5

√
0.84 Cos (2.8151) ) = α 0.05.

(30)

In the same way, we compute the probability of the second
player choosing to cooperate:

Pr(P2 = cooperate)

= α

⎛⎝∑
p∈P1

|ψ(P1 = p, P2 = c)|2

+ 2 |ψ(P1 = d, P2 = c)|

× |ψ(P1 = c, P2 = c)| Cos (θd − θc)

⎞⎠ (31)

Pr(P2 = cooperate) = α(
(√

0.5
√
0.03

)2
+

(√
0.5

√
0.16

)2
+ 2

√
0.5

√
0.03

√
0.5

√
0.16 Cos (2.8151) ) = α 0.0294.

(32)

Making the calculations we would end up with the probabilities

Pr(P2 = defect) = 0.63 Pr(P2 = cooperate) = 0.37,

which simulate the results obtained in the work of Shafir and
Tversky (1992) described in Table 1 under unobserved events.

If it is known the action of Player 1, then the probability of Player
2 choosing to defect is given by:

Pr(P2 = defect|P1 = defect) = α|ψ(P1 = d, P2 = d)|2 = 0.97

Pr(P2 = defect|P1 = cooperate)

= α|ψ(P1 = c, P2 = d)|2 = 0.84.

This shows that the quantum-like Bayesian network is a general a
suitable model to be applied in scenarios with high levels of un-
certainty that violate the laws of classical probability theory, since
it can account for both observed and unobserved events without
requiring hidden variables.

Table 4 shows which values the quantum interference param-
eter must have to simulate several works over the literature that
report violations to the Sure Thing Principle. A method to estimate
these parameters through heuristic functions has been proposed
in the work of Moreira and Wichert (2016a).

In Table 4, the column θi − θj represents the value of the
quantum parameters of Eq. (27) that need to be set to explain the
paradoxical findings reported in the several works of the litera-
ture. The column Pr(P2 = Defect) corresponds to the probability
of the second player choosing the action defect (the unobserved
condition). The columns Pr(P2 = Defect |P1 = Defect) and
Pr(P2 = Defect |P1 = Cooperate) correspond to the probability
of the second player choosing to defect, given that it is known that
the first player chose the actions defect and cooperate, respectively
(the observed conditions).

It is important to note that the quantum-like Bayesian network
is just an example of a quantum-like model that is able to express
both observed and unobserved conditions of the prisoner’s dilemma
game. However, it is not the only model capable of achieving
this. We chose this model, because it represents the quantum
counterpart of the classical Bayesian network with latent variables
that we are proposing in this work. There are other quantum-like
models, which are able to accommodate the paradoxical situations
found in the prisoner’s dilemma game. The most representative
ones correspond to the application of the quantum dynamical
model (Busemeyer et al., 2006; Pothos & Busemeyer, 2009) and the
quantum-like approach (Khrennikov, 2009b).

The quantum dynamical model takes into account time evolu-
tion to express the participants’ beliefs and decisions throughout
time using unitary operators (Busemeyer et al., 2009; Wang &
Busemeyer, 2016). This dynamical representation also enables the
simulation of dissonance effects. That is, the participants might
have been confronted by some information that conflicted with
his/her existing beliefs. In the end, the Quantum Dynamical model
shows that quantum probability is a very general framework and
can also accommodate both observed and unobserved experimental
conditions of the prisoner’s dilemma game.

The quantum-like approach (Khrennikov, 1999, 2001, 2003,
2005a, 0000) is another example of a quantum model that can
represent both paradoxical findings and observed conditions in a
single model. The quantum-like approach makes use of contexts to
model decision scenarios. The context relates to the circumstances
of setting an event in terms of which it can be fully understood,
clarifying the meaning of the event. More specifically, it is a com-
plex of conditions under which a measurement is performed. For
instance, in domains outside of physics, such as cognitive science,
one can have mental contexts. In social sciences, we can have
a social context. And the same idea is applied to many other
domains, such as economics, politics, game theory, biology, etc.
These contexts will enable the representation of interferences be-
tween quantum states, whichwill allow the accommodation of the
paradoxical findings.
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Table 4
Analysis of the quantum θx parameters computed for each work of the literature in order to reproduce the observed and unobserved conditions of the Prisoner’s Dilemma
Game.

Literature θi − θj Pr(P2 = Defect) Pr(P2 = Defect | P1 = Defect) Pr(P2 = Defect | P1 = Cooperate)

Shafir and Tversky (1992) 2.8151 0.6300 0.9700 0.8400
Li and Taplin (2002)a 3.3033 0.7200 0.8200 0.7700
Busemeyer et al. (0000) 2.9738 0.6600 0.9100 0.8400
Hristova and Grinberg (0000) 2.8255 0.8800 0.9700 0.9300

a Corresponds to the average of all seven experiments reported.

6. Discussion about the complexity of classical and quantum-
like Bayesian networks

It is straightforward that quantum-like Bayesian networks suf-
fer the same problem of the exponential increase of complexity
(expressed as the dimension of the state space) as the classi-
cal Bayesian networks. Indeed, in what concerns the complex-
ity of the inference problem, Bayesian networks (either classical
or quantum-like) will always be NP-Hard. This means that exact
inference on Bayesian networks are part of a class of problems
that are extremely hard for a computer to solve, because it takes
an exponential number of computational steps to perform the
computations. The hardness of the exact inference comes precisely
in the computation of the full joint probability distribution, which
takes atmost 2N

−1, computational steps assuming that all random
variables of the network are binary, for N being the number of
nodes in the network. This gives a complexity of O(2N ). If random
variables are not binary, then the exact inference process becomes
even worse with a complexity of O(MN ), whereM is the number of
assignments that the random variables can have.

This work shows that in order for a classical Bayesian network
to reproduce the unobserved experimental conditions that lead
to the violations of the Sure Thing Principle, one needs to add
an extra random variable to the model. This means that just to
accommodate these paradoxical findings, exact inference on a
classical network would require 2(N+1) computational steps, and
with the disadvantage of only being able to explain the paradoxical
results of Shafir and Tversky (1992) experiments. To explain the
results of the observed conditions, we would need another net-
work representation of the problem. To sum up, to explain Shafir
and Tversky (1992) experiments, we would need two Bayesian
networks (one for the observed conditions and another for the
paradoxical findings), where one of the networks would need an
increase of complexity to explain the violations of the Sure Thing
Principle.

The quantum-like Bayesian network, on the other hand, has
advantages towards the classical network for two reasons: (1) only
one model is required to reproduce both observed and unobserved
conditions of Shafir and Tversky (1992) experiments and (2) the
quantum interference terms can be computed in quadratic time
with an addition of m(m + 1)/2 − m operations, where m is the
size of the marginal probability distribution using the heuristic
proposed in the previous study of Moreira and Wichert (2016a).
This means that, to accommodate violations to the Sure Thing
Principle, the computation of the heuristic and the quantum in-
terference terms is much less costly than performing inference on
a classical Bayesian network with an additional random variable:
O(2N

+m(m+1)/2−m) < O(2(N+1)). Although inferences are NP-
hard in Bayesian networks, it is still possible (and manageable) to
perform inferences in scenarios for a largeN (for instance, a finiteN
repeated prisoner’s dilemmagame,medical decision-making, etc.).
So far, preliminary research shows that quantum-like inferences
over Bayesian networks with 21 nodes (which result in a full joint
probability table with 6 291 456 entries) is manageable (Moreira,
Haven, Sozzo, & Wichert, 0000).

Summarising, exact inference on a quantum-like Bayesian net-
work can predict the observed and unobserved conditions of Shafir

and Tversky (1992) experiments in a single model, without the
need of adding extra random variables and with a reduced com-
plexity when compared with the classical model.

7. Conclusion

The application of quantum principles to model decision-
making scenarios emerged in the scientific literature as a way to
explain and understand human behaviour in situations with high
levels of uncertainty that lead to the violation of the classical laws
of probability theory and logic. However,many researchers are still
resistant in accepting the promising advantages of these quantum-
like models towards modelling decision-making scenarios. Many
times it is argued that classical models can simulate these decision
scenarios under high levels of uncertainty adding extra variables
to the model that are not directly observed through data. That is,
by including extra latent (or hidden) variables it was believed that
the model could represent uncertainty in the same way as in a
quantum-likemodel, despite the complexity of the classicalmodel.

In this work, we study this classical conception and make a
mathematical comparison between a classical Bayesian network
with Latent variables with the quantum-like Bayesian network
previously proposed in the work of Moreira and Wichert (2016a).
Latent Variables can be defined as variables that are not directly
observed from data, but they can be inferred using the information
of the variables that were recorded. For a complete dataset and
given the full network structure, latent variables can be estimated
by simply counting howmany times they can be inferred fromeach
assignment of the observed random variables.

We also validated these two models against the Prisoner’s
Dilemma Game, which is highly mentioned in the Cognitive Psy-
chology domain Busemeyer et al. (0000), Conte et al. (2007),
Crosson (1999), Hristova and Grinberg (0000), Li and Taplin (2002)
and Shafir and Tversky (1992). This experiment is suitable to val-
idate both classical and quantum-like models, because it violates
the classical laws of classical probability theory and, consequently,
it cannot be simulated by pure classical models.

Experimental results show that, although the classical model
with latent variables could explain the paradoxical findings under
the Prisoner’s Dilemma game, the same model could not simulate
the choice of the player when a piece of evidence was given, that
is, when it was known which action the first player chose. This
leads to the dilemma: either one creates a classical model just to
account for observed evidence or one creates the model just to
explain the paradoxical findings. Of course, one could argue that
adding another extra Hidden latent variable to the network, one
could re-estimate the conditional probability tables to account for
both observed and unobserved phenomena. However, one must
also take into account the exponential increase of complexity
of the model. For N binary random variables, if no information
is observed, we would need to compute a full joint probability
distribution with 2N entries, which means that the number of
computations required grow exponentially large and the inference
process becomes intractable.

On the other hand, it was already shown in previous litera-
ture that the quantum-like Model can account for both observed
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and unobserved phenomena in a single model with a low error
percentage (Moreira & Wichert, 2016a). Since no extra nodes are
incorporated in thenetwork (when compared to the classical latent
variable model), then the quantum model has also the advantage
of a reduced complexity towards its classical counterpart.

Summarising, in this work we conclude that the quantum-like
Bayesian network model poses advantages towards the classical
model with latent variables, since it can simulate both observed
and unobserved phenomena in a single network, in contrast with
the classical model would need extra hidden nodes (contributing
to a decrease in efficiency) and cannot simulate both phenomena
on the same model.
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