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paved the way for newborn frameworks that target hardware and software co-design. This
paper confirms that a unified statistical framework can successfully classify algorithms
based on a combination of the heterogeneous characteristics of their hardware and soft-
ware implementations. The proposed framework produces customizable indicators for any

ﬁiyavl;osric:s. hybridization of processing systems and can be contextualized for any area of application.

Hardware The framework is used to develop the Lightness Indicator System (LIS) as a case-study

Software that targets a set of cryptographic algorithms that are known in the literature to be tiny

Gate arrays and light. The LIS targets state-of-the-art multi-core processors and high-end Field Pro-

Algorithms grammable Gate Arrays (FPGAs). The presented work includes a generic benchmark model

Cryptography that aids the clear presentation of the framework and extensive performance analysis and
evaluation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

With the advancements in high-performance computing, algorithms have a wide range of efficient implementation op-
tions. Current computers can be equipped with multi-core processors, Graphics Processing Units (GPUs), and high-end pro-
grammable devices, such as, FPGAs. The variety of processing options are supported by a wealth of co-design tools that
facilitates hardware and software implementations [1,2]. Nevertheless, several questions remain on what algorithm is the
best to suite an implementation option, and vice-versa. How would an algorithm perform within hybrid processing systems,
and how to make an evaluation based on heterogeneous performance measurements?

The core of any performance measurement includes measures, metrics, and indicators. Indicators are defined as qual-
itative or quantitative factors, or variables that provide simple and reliable means to measure achievement. A qualitative
performance indicator is a descriptive characteristic, an opinion, a property or a trait. However, a quantitative performance
indicator is a specific numerical measurements resulted by counting, adding, averaging numbers or other computations [3].
Qualitative and quantitative measurements can be combined to define measurement frameworks and benchmarks [4]. There
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is a large number of hardware and software benchmarks in the literature. Yet, limited research work is reported to address
developing analysis frameworks for heterogeneous hardware and software implementations.

In this paper, we present a statistical analysis framework for performance profiling of related algorithms running un-
der different hardware and software subsystems. The framework comprises criteria, indicators, and measurements obtained
from heterogeneous sources. The measurements are statistically combined to produce indicators that capture the algorith-
mic, software, and hardware characteristics of the assessed algorithms. The developed framework enables the deep and
thorough reasoning about each hardware and software subsystem, and combines heterogeneous characteristics to provide
overall ratings, rankings, and classifications. The proposed framework is customizable for any hybridization of processing
systems and can target any model of computation or area of application.

The paper includes the development of a generic benchmark model that serves as a specification pattern of analysis
and evaluation frameworks. The model captures the activities, resources, implementation, mathematical formulation, and
intended measurements of an analysis framework or a benchmark. The developed model can be used to describe any bench-
mark with simplicity and clarity. The model is adopted to present the proposed analysis framework.

To validate the proposed framework in application, a case-study is carried out with application from cryptography. The
case-study enables the development of theLIS with its bouquet of statistical indicators. The LIS formulates the proposed
framework within the context of lightweight cryptographic algorithms. The proposed performance analysis classifies the
investigated algorithms into a combination of their mathematical, software, and hardware characteristics. The two main tar-
geted high performance computing devices are multi-core processors for software implementations and FPGAs for hardware
implementations.

The rest of the paper is organized so that Section 2 surveys the literature. In Section 3, the motivation, research ques-
tions, and the paper contribution are presented. In Section 4, the generic benchmark model and the analysis framework are
presented. Section 5 introduces the LIS according to the generic model. A thorough performance analysis and evaluation is
presented in Section 6. Section 7 concludes the paper and sets the ground for future work.

2. Related work
2.1. Benchmarks

Benchmarks are widely addressed in the literature. Famous benchmarks include Whetstone, LINPAC, Dhrystone, Standard
Performance Evaluation Corporation (SPEC), etc [5-7]. Several developments of embedded systems Benchmarks are lead by
the Embedded Microprocessor Benchmark Consortium (EEMBC). EEMBC helps system designers in selecting the optimal pro-
cessors, smartphones, tablets, and networking appliances. EEMBC mainly targets embedded system’s hardware and software.
EEMBC organizes its benchmark suites targeting automotive, digital media, multi-core processors, networking, automation,
signal processing, hand-held devices, and browsers. The benchmarks developed by EEMBC include AutoBench, BrowsingBench,
AndBench, and MiBench [8]. Cryptography benchmarks are designed to measure the performance of different cryptographic
algorithms running under different systems, such as, GPUs or other processors. Rukhin et al. in [9] presents a statistical
test suite for random and pseudorandom number generators for cryptographic applications. Yue et al. in [10] presents a
cryptographic benchmark suite for network processors (NPCryptBench).

2.2. Hardware/software co-design evaluation frameworks

Performance analysis and evaluation within hardware/software (HW/SW) co-design investigations are usually based on
a variety of metrics. Besides standard metrics, such as execution time, maximum frequency, throughput, hardware resource
utilization, power consumption, etc., several metrics are identified within the context of application. Jain-Mendon and Sass
in [11] proposed a HW/SW co-design approach for implementing sparse matrix vector multiplication on FPGAs. Within the
context of application, the authors evaluated their approach by analyzing the hardware and software implementations in
terms of the speed of processing floating point operations, bandwidth efficiency, data block size, communication time, etc.
Lumbiarres-Lopez et al. [12] implemented, within a co-design environment, a countermeasure against side-channel analysis
attacks. The used application-specific metrics comprise the difference in change of input current over time and correlations
between data and power consumption. All the aforementioned investigations employed the standard co-design metrics.
In [13], the performance of block tridiagonal solvers was evaluated under heterogeneous multi-core processors and GPUs.
The evaluation was mainly based on analyzing memory performance and measuring the total execution times of different
scenarios.

The standard metrics of co-design applies to partitioned hardware and software implementations. The focus in parti-
tioned implementation is the analysis and evaluation of the developed subsystems with an aim to find the best possible
partitioning strategy. Wu et al. [14] studied the performance and algorithmic aspects of a proposed heuristic partitioning
algorithm. The produced implementations were analyzed with-respect-to execution time, resource utilization, and the at-
tained solution quality as related to the smallest possible error. In [15], Jemai and Ouni proposed a partitioning strategy
based on control data graphs. The partitioning algorithm was deployed within three different case-studies. The metrics an-
alyzed across the three studies comprised the number of partitions, software execution time, hardware resource utilization,

Please cite this article as: I. Damaj, S. Kasbah, An analysis framework for hardware and software
implementations with applications from cryptography, Computers and Electrical Engineering (2017),
http://dx.doi.org/10.1016/j.compeleceng.2017.06.008



http://dx.doi.org/10.1016/j.compeleceng.2017.06.008

JID: CAEE [m3Gsc;June 13, 2017;6:1]

I. Damaj, S. Kasbah/Computers and Electrical Engineering 000 (2017) 1-13 3

software resource utilization, etc. The authors adopted a pattern chart that summarizes the performance analysis results and
aids the evaluational of the algorithm.

Nevertheless the evaluation approaches for HW/SW co-design considered various aspects, limited attempts were made
to combine multiple measurements and characteristics in unified indicators. Spacy et al. in [16] investigated the automatic
quantification of acceleration opportunities for programs across a wide range of heterogeneous architectures. The investiga-
tion focused on allowing designers to identify promising implementation platforms before investing in a particular HW/SW
co-design and a specific partitioning scenario. The authors unified many hardware and software characteristics into a single
execution time estimate. The incorporated hardware characteristics included cycle time, number of parallel execution units,
execution efficiency, bus latency, bus width, and hardware size capacity. The employed software characteristics included the
execution time, the number of parallel execution slots, program code unit iterations, control flows, data flows, and size of
codes. Additional composite indicators were developed to calculate speedup factors. The combined characteristics were used
to calculate co-design performance estimates and evaluating opportunities for hardware acceleration.

3. Research objectives

The modern trend in computer systems is clearly in the direction of further hybridization using high-end co-processing
systems. Hybrid systems are mainly studied within HW/SW co-design and co-analysis frameworks. To increase the effective-
ness of co-analysis and accordingly co-design, the following research opportunities are highlighted:

o The identification of commonly-used metrics in HW/SW co-design

o Addressing the need for the contextualization of application-specific metrics, properties, and key indicators in HW/SW
co-design applications

« Evaluating implementations-given the heterogeneous characteristics of the targeted systems

o The identification of optimized combinations of hardware and/or software implementations based on co-analysis

o The limited attempts in the literature to combine multiple measurements and characteristics in unified indicators that
can rank, rate, classify, and evaluate algorithms for hardware and software implementations

e The limited work in the literature to develop co-analysis frameworks that target cryptographic algorithms

The research objective of this paper is mainly to develop a statistical framework that can combine heterogeneous char-
acteristics of algorithms and their implementations in hardware and software. The framework aims at being portable across
different hardware and software systems, customizable, scalable, and able to target any area of application. In addition, the
framework aids the composition of a bouquet of indicators to capture specific desirable properties and enable classifying,
ranking, rating, and evaluating algorithms and implementations. In addition, the objectives include the follows:

o Provide a generic benchmark model that serves as a specification pattern of analysis and evaluation frameworks. The
developed model aims at being clear, simple, and highly reusable. The model is used to present the developed analysis
framework.

» Validate the proposed framework by developing the Lightness Indicator System for cryptographic ciphers.

o Perform a thorough analysis and evaluation based on the LIS system for a set of cryptographic ciphers.

o Studying the integration of the developed framework within and Integrated Development Environment (IDE) that can
connect to various hardware and software implementation and analysis tools.

The paper includes a thorough evaluation of the framework and a discussion on its usefulness.
4. The generic model and the analysis framework
4.1. The generic benchmark model

The proposed generic model diagrams the continuum of important elements of benchmarks and analysis frameworks. The
generic model defines the goal, inputs, activities, output, outcomes, and the desired performance profile of a benchmark. The
model captures the relationships among the resources, implementation, mathematical formulation, and the obtained results.
Moreover, it standardizes the evaluation process that can be applied to any benchmark. The proposed model consists of the
following six elements; the model elements are diagrammed in Fig. 1:

1. Goal: is the definition of the aim of the benchmark, or the analysis framework, and what does it mainly provide.

. Input: is the identification of the algorithms under study, implementation environments, reference algorithm, perfor-
mance metrics, etc.

. Activities: are the implementations of the algorithms under the identified environments and collection of results.

. Output: is the formulation of the key indicators and development of their rubrics-if any.

. Outcomes: are the formulations of the statistical assessment as combinations of the Output.

. Performance: is the application of the developed assessment framework to profile and classify algorithms according to
the obtained results.

N

(o206, IV N OV

The proposed model provides a generic profiling pattern than can be used for any benchmark or analysis framework.
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Fig. 1. The six elements diagram of the Generic Benchmark Model with the required specifications.

4.2. The analysis framework

The proposed analysis framework classifies the heterogeneous sources of measurements into analysis profiles (APs), such
as, general algorithmic, hardware, and/or software. The development of each profile includes the identification of a set of
Key Indicators (KIs). The indicators are the most extensive part of the measurement framework and should be carefully
developed within the context of application. The measurements associated with the identified indicators may include quan-
tities, scores from scale-rubrics, etc. The measured indicators are then each divided by a measurement from a reference
algorithm for normalization and for producing performance ratios. Accordingly, Combined Measurement Indicators (CMIs)
are calculated using the Geometric Mean of KI ratios. The generic equation of CMIs is as follows:

CMI = {/ratio; x ratio, x ...ration
KI; ;
K
ij
KI;; is the ith KI of the jth AP,
and KIZf is the reference measurement of the indicator KI;;

The Geometric Mean is used, in the CMI equation, as it is able to measure the central tendency of data values that are
obtained from ratios. Using the Geometric Mean insures the following two important properties [17-19]:

Where ratio; =

o Geometric Mean of the ratios is the same as the ratio of Geometric Means.
» Ratio of the Geometric Means is equal to the Geometric Mean of performance ratios; which implies that when comparing
two different implementations’ performance, the choice of the reference implementation is irrelevant [19].

The developed statistical framework can be applied in different areas of applications and using different APs. The appli-
cation includes contextualizing the KIs of every AP according to the characteristics of the targeted area.

5. The application of the LIS system to cryptographic algorithms

In the following sections, we present the LIS based on the generic model.
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Table 1
The rubric of the complexity analysis indicator.
General Scale
Indicator Logarithmic low  Logarithmic high Linear  Almost quadratic Higher than quadratic
Complexity analysis  O(logn) w(logn) but better than Linear  6(n) 0(n?) but worse than Linear  w(n?)
5.1. Goal

The LIS is a HW/SW statistical framework that provides performance profiling for lightweight cryptographic algorithms
running under different hardware and software systems. The LIS combines a bouquet of performance metrics that include
speed, algorithmic complexity, memory efficiency, algorithmic strength, hardware size, etc.

5.2. Input

The input identifies the targeted algorithms, computing systems, and the performance metrics. The LIS targets a set of
cryptographic algorithms that are specific for applications running on low resources. The selected ciphers are classified, in
the literature, as tiny, small, lightweight, or ultra-lightweight ciphers. The targeted ciphers are Skipjack, 3-WAY, XTEA, KATAN
and KTANTAN, and Hight. The reference cipher is the AES [20].

The two targeted high performance computing devices are the Dell Precision T7500 with its dual quad-core Xeon processor
and 24 GB of RAM. The targeted FPGA is Altera Stratix-IV.

The identified performance metrics of the LIS are classified into general algorithmic, hardware, and software profiles.
The general algorithmic profile includes the complexity of the algorithms and their security strength. Within the multi-
core environment, the software profile includes execution times, clocks per instruction, throughput, and a cache analysis.
Within the FPGA environment, the hardware profile includes the resource utilization, propagation delay, throughput, power
consumption, etc.

5.3. Activities

The activities includes software implementations under C and hardware implementations under VHDL. The Software tools
used for software and hardware implementations and profiling are Quartus, ModelSim, and Intel VTune Amplifier under Visual
Studio.

5.4. Output

The outputs of the analysis framework are measures and indicators. The measures are the general algorithmic, hard-
ware, and software profiles. The indicators of the general algorithmic profile intend to capture the complexity and ciphering
strength of the algorithm; the KIs include the following in bold:

o Algorithm Complexity (AC): Asymptotic complexity analysis using the Big-O, small-w, and 6 notations
o Cipher Strength: based on Key Size (KS), Number of Rounds (NR), and the text Block Size (BS)

Complexity analysis of algorithms is the determination of the amount of resources necessary to execute them. To analyze
the complexity of studied algorithms, we study their asymptotic behavior. The asymptotic behavior classifies algorithms
according to their rate of growth with respect to the increase in input size. The following standard complexity analysis
classification is adopted [21]:

e O(f(n)): The rate of growth of an algorithm is asymptotically no worse than the function f{n) but can be equal to it.
o w(f(n)): The rate of growth of an algorithm is asymptotically no better than the function f{(n).
e O(f(n)): The rate of growth of an algorithm is asymptotically equal to the function f(n).

Here, n is the size of input.

To facilitate the assessment of the studied ciphers, a rubric is created. The rubric scale points are logarithmic low (LL),
logarithmic high (LH), Linear (L), Almost Quadratic (AQ), and Higher than Quadratic (HQ). For instance, LL describes the
case when the complexity is asymptotically no worse than logn but can be equal to it; such a complexity is formulated as
O(logn). The complete description of the rubric is shown in Table 1. In preparation for the statistical formulation, we map
this qualitative properties onto quantities. For every point in the scale, we map it onto a fixed number. Hence, each point
in the scale is mapped onto the values 20%, 40%, 60%, 80%, and 100%.

Cipher Strength is an assessment of the algorithm based on a variety of aspects that can include Key Size, the Number
of Rounds, and the Block Size [22]. Key size or key length is the size measured in bits of the key used in cryptographic
algorithms. The security of the cryptographic algorithms is function of the length of its key. For some algorithms, such as
those targeted in this investigation, the longer the key, the more resistant is the algorithm [23]. However, in the broader
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context, the relation between key lengths and security could be more delicate [24]. For example, key sizes of 80, 160, and
1024 bits, nevertheless different, they imply comparable security when 80 is for a symmetric cipher, 160 is for a hash
length, and 1024 is for RSA modulus [24]. In addition, Elliptic Curve Cryptography (ECC) is famous for its strength that can
be attained at relatively small key sizes. For instance, a comparable security level can be achieved using RSA with a key size
of 15,360 bits and ECC with a key size of only 512 bits [25]. Investigations relating the level of security, and the strength of
the algorithm, to the key size are given wide and careful attention in the literature [24-26]. The most recent standardized
key size requirements for security are published at [26].

Furthermore, block ciphers transform a plain-text block of several bits into an encrypted block. The block size cannot
be too short in order to secure the cryptographic scheme. In other words, the larger the block size is, the greater the
cipher strength [23]. In addition, rounds are important to the strength of ciphers; a single round is usually responsible for
mixes, permutations, substitutions, and shifts in the text being encrypted. Mostly, more rounds lead to greater confusion
and diffusion and hence stronger security. Indeed, indicators like the Key Size, Number of Rounds, and Block Size should be
carefully adopted and specified within the scope of the targeted cryptographic algorithms. The proposed indicators are not
necessarily applicable to all cryptographic algorithms.

The software profile includes the following indicators[27]:

o Execution Time (ET): the time between the start and the completion of a task.

o Throughput (TH): the total amount of work done in a given time.

¢ Clock Cycle per Instruction (CPI): the average number of clock cycles each instruction takes to execute.
o Cache Miss Ratio (CMR): the ratio of memory accesses cache miss.

The hardware profile includes ET, TH and the following indicators:

Propagation Delay (PD): the time required for a signal from an input pin to propagate through combinational logic and
appear at an external output pin.

Look-Up Table (LUT): the number of combinational adaptive lookup tables required to implement an algorithm in hard-
ware. The number of LUTs is an indicator of the size of hardware in Altera devices. In other devices, the area could be
measured in terms the total number of gates, logic elements, slices, etc.

Logic Register (LR): the total number of logic registers in the design.

* Power Consumption (PC): the power consumption of the developed hardware in Watts.

5.5. Outcomes

The Outcomes element is the formulation of CMIs as function of KIs. The Lightness Indicator LI is the main CMI calculation
in the presented statistical analysis framework. The LI is calculated in terms of several APs; three for the current study,
namely the General Algorithmic Profile (GAP), Software Profile (SWP), and Hardware Profile (HWP). The simplified form of LI
is shown in Eq. (1):

LI :\’/ratiol - ratio, - ratios . ..ratio; (1)
and hence
I
L= (T] ratioi)%
i=1

Where [ is the number of key indicators.
The weighted version of LI is denoted by wLI in Eq. (2). The weighted version enables the emphasis of specific indicators.
If all the assigned weights are equal, the wLI is the same as LI.

I {
. Wk
wiLl = (]_[ ratzo;:"k) k=t (2)
k=1

Where wj, is the weight of the kth ratio.

The LIS enables the classification of cryptographic algorithms according to their lightness. A higher LI is achieved through
a higher throughput, a more efficient memory performance, more compact size, less complexity, less power consumption,
and less resource utilization. The LI is either directly or inversely proportional to the indicators. The aim of the chosen
proportion is to emphasize lightness; the proportions could be modified to capture other properties. The master LIS formula
using the developed indicators is shown in Eq. (3). The indicators that are common to the Software (sw) and Hardware (hw)
profiles are labeled with the profile name.

Ll = ¥YGAP-SWP.HWP
ACref KSref NRues BSps
CAP = AC KS NR ' BS
SWP = ETsw,ref ) THsy . CPIref ) CMRref
ETyy THyes CPI CMR
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Goal
2 e  HW/SW Co-Analysis
g — e Lightness Indicator System
% | Y
= Input
a e Targeted algorithms: Cryptographic algorithms that are known to be of lightweight,
3 namely, Skipjack, 3-Way, XTEA, KATAN, KATANTAN, and Hight.
e  Computing systems: Dell Precision T7500 Multi-core Processor, Dual quad-core Xeon
processor, 24 GB RAM. Stratix IV High-density FPGA.
e  Performance metrics: Complexity, security strength, execution times, throughputs, cache
analysis, CPI, resource untilization, propagation delay, power consumption
- Y
Activities
e Implementation tools: C under Visual Studio and VHDL under Quartus
e  Analysis tools: Altera Quartus, Altera ModelSim, Intel VTune Amplifier
- °
Qutput
e Key measures: General algorithmic profile, hardware profile, software profile
e Key indicators: AC, KS, NR, BS, ETj, TH,y, CPI, CMR, ET}, THy,, PD, LUT, LR, PC
e Rubrics: Qualitative and quantitative
- .
Outcomes
e Analysis equations: The geometric mean of ratios of all key indicator to calculate the main
combined measurement indicator LI, besides the CI, SSI, HLI, SLI, and SI.
(. °
Performance
e Analysis results: Measurements for all key indicators and calculations for all combined
indicators.
e Ratings, rankings, and/or classifications:
The best LI, CI, SSI, HLI, SLI, and ST are achieved by the 3-Way algorithm.
The best SLI is achieved by the Hight algorithm.
The Skipjack algorithm achieved the highest Software Throughput.
The KTANTAN-48 achieved the highest Hardware Throughput.
The 3-Way achieved the smallest Hardware Area.
The targeted algorithms are successfully rated, ranked, and classified according to
all KIs and CMIs.
Fig. 2. The six elements diagram of the LIS.
HWP = EThw,ref Tth . PDref . LUTref . LRref . PCref (3)

ETwy THuwe; PD  LOT IR PC

The LIS provides the following set of combined statistical indicators:
Complexity Indicator (CI):

Cl—= s/ AC__ KS __NR _BS _CPI
ACor " KSyey  NRyy ' BSyp ' TPl

Security Strength Indicator (SSI):

SSI = 4 AC_ . KS ~ _NR . BS
Acref Ksref NRref Bsref

Hardware Lightness Indicator (HLI):

HL[— 6 EThw,ref . Tth . PDref . LUTref . LRref . PCref
- ETpyy Tth,ref PD T LR PC

Software Lightness Indicator (SLI):

SLI = 4 ETsw,ref . _THw . Cplref . CMRref
- ETsw THyy, ref CPI CMR

Speed Indicator (SI):

Sl = 5 ETSw.ref . _THsw _EThw,ref . THyy, 3 PDref
- ETsw Tst.ref EThw Tth,ref PD

5.6. Performance

The analysis based on the LIS Output and Outcomes provides measurements for all KIs and enables the calculation of
the defined CMIs. The results include rating, ranking, and classifying the targeted algorithms. The analysis and evaluation of
results are presented in Section 6. The six elements of the LIS are summarized in Fig. 2.
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Table 2
General Algorithmic profile.

Algorithm name  AC Mapped AC  KS NR BS

Skipjack AQ 08 80 32 64
XTEA AQ 08 96 64 64
3-WAY AQ 08 128 11 96
HIGHT AQ 08 128 32 64
KATAN-32 AQ 038 80 254 32
KATAN-48 AQ 08 80 254 48
KATAN-64 AQ 08 80 254 64
KTANTAN-32 AQ 08 80 254 32
KTANTAN-48 AQ 08 80 254 48
KTANTAN-64 AQ 08 80 254 64
AES AC 08 192 12 128

5.7. Programming interface

The developed statistical framework is embedded in a sample co-design IDE. The IDE is implemented using Java under
Netbeans. Moreover, the code editor is implemented using RSyntaxTextArea Java framework, while the IDE theme is imple-
mented using JTattoo Java framework. The used implementation and performance evaluation tools comprise Altera Quartus
and Altera ModelSim for Hardware implementation and analysis, and Intel vTune Amplifier under Visual Studio for Software
analysis. The developed IDE connects to Altera Quartus using TCL commands to synthesize and generate timing analyses, pin
assignments for FPGA boards, and generate bit files to program the targeted FPGAs. The IDE connects to Intel vTune Amplifier,
using Command Line and Batch Files, to perform the software analysis and calculating the total execution time, CPI, etc. The
generated hardware and software analysis files are exported to MS Excel to produce the complete analysis profile and charts.

6. Analysis and evaluation
6.1. Performance analysis

The LIS is an application of an analysis framework that can be the core part of a benchmark within HW/SW co-design.
The developed framework is applied by developing the LIS on several cryptographic ciphers that are presented in the liter-
ature as lightweight, tiny, small, or minute. The developed system enables the validation of the lightness of the algorithms
through measurements and statistical analysis.

In accordance with our generic benchmark model, and upon the identification of the system Goal and Input, the Activities
are done according to the following procedure:

. Implement hardware using VHDL under Quartus

. Analyze the hardware profile using Quartus and ModelSim

. Implement software using C-language under Visual Studio and its integrated Intel VTune Amplifier
. Analyze the software profile using Intel VTune Amplifier

. Derive and analyze the general algorithmic profile

. Combine and analyze the results from all profiles using a statistical software tool

DU A WN =

With the finalization of Activities, the following steps complete the elements of the framework:

7. Produce the Output key indicators
8. Calculate the combined indicators of the Outcomes
9. Build the overall Performance report

Tables 2-4 present the derivation and implementation results of the general algorithmic, software, and hardware profiles.
On the simple indicators level, the Skipjack algorithm achieved the highest software execution throughput of 156.098Mbps,
while the highest hardware execution throughput, 480 Mpbs is achieved by the KTANTAN-48 algorithm. The 3-Way algorithm
attained the smallest hardware area of 77ALUTs and 167LRs.

The Lightness, Complexity, Security Strength, Hardware Lightness, Software Lightness, and Speed indicators are shown in
Table 5. The algorithm that attained a larger indicator value is lighter, of a less complexity, of a higher security strength,
or faster than the algorithm with a lower indicator value. Figs. 3-6 present a per-CMI comparison. The 3-Way got the best
lightness index of 2.52, while KATAN — 64 attained the lowest with an index of 0.76. The best CI index is 1.19; attained
by the 3-Way algorithm. The best SSI, HLI, and SI indices are 1.16, 5.24, and 5.08; all attained by the 3-Way algorithm. The
HIGHT algorithm achieved the highest SLI index of 3.4.
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Table 3
Software profile.
Algorithm name  BS ET(usec)  TH(Mbps)  CPI CMR
Skipjack 64.000 0.410 156.098 1327 0.164
XTEA 64.000 2.570 24.903 0.729 0.033
3-WAY 96.000 2.320 41.379 1107 0.036
HIGHT 64.000 8.640 7.407 1.330 0.000
KATAN-32 32.000 27460 1165 0.634 0.006
KATAN-48 48.000 40.330 1190 0.634  0.004
KATAN-64 64.000 52.830 1.211 0.627 0.003
KTANTAN-32 32.000 791.080 0.040 0.986 0.001
KTANTAN-48 48.000 803.320 0.060 0.975 0.001
KTANTAN-64 64.000 821.830 0.078 0.965 0.001
AES 128.000 23.210 5.515 1.235 0.004
Table 4
Hardware profile.
Algorithm name  ET(usec)  TH(Mpbs)  PD(nsec)  ALUT LR PC(mW)
Skipjack 7.49 8.55 11.90 554.00 142.00 331.01
XTEA 6.18 10.35 11.10 2799.00 135.00 332.77
3-WAY 0.80 120.00 3.82 77.00 167.00 331.01
HIGHT 185 34.59 127.78 2036.00 72.00 332.66
KATAN-32 1.47 21.77 43.57 2145.00 540.00 328.63
KATAN-48 1.89 25.40 79.94 3982.00 556.00 329.95
KATAN-64 2.38 26.89 78.31 4315.00 572.00 330.94
KTANTAN-32 0.09 372.09 40.03 1947.00 112.00 328.58
KTANTAN-48 0.10 480.00 72.78 3662.00 128.00 329.81
KTANTAN-64 0.15 438.36 79.30 4075.00 144.00 331.00
AES 1.46 6.83 5.35 3998.00 750.00 654.87
Table 5
Indicators.
Algorithm name LI Cl SSI HLI SLI SI
Skipjack 1.57 111 116 142 2.46 2.81
XTEA 1.22 1.05 0.93 118 1.70 1.48
3-WAY 2.52 119 122 5.24 175 5.08
HIGHT 193 1.01 1.03 2.02 3.40 143
KATAN-32 0.89 0.98 0.82 112 0.69 0.59
KATAN-48 079 090 074 090 070 047
KATAN-64 0.76 0.85 0.69 0.86 0.71 0.44
KTANTAN-32 1.04 0.89 0.82 3.88 0.18 0.48
KTANTAN-48 0.95 0.83 0.74 3.14 0.20 0.47
KTANTAN-64 0.89 0.78 0.69 2.76 0.21 0.44
AES 1.00 1.00 1.00 1.00 1.00 1.00
LI LI
o~
0 Skipjack
i 3.00
a AES XTEA
~ —
n
— m <
= Q o o 2 L 2 8 KTANTAN-64 . 3-WAY
I I 0.00
I KTANTAN-48 PO e = HIGHT
@“ & \y* (;5\ ISR AN N e éé KTANTAN-32 KATAN-32
SRRSO
O AV & Q& K& K& K
S & IS S KATAN-64 KATAN-48
AT AT K
SOUENG RS
Fig. 3. The lightness indicator classification.
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Fig. 5. The complexity and security strength indicator classifications.

6.2. General evaluation

The current investigation can be evaluated at the levels of the framework development, application, and contextualiza-
tion. The developed framework is unique in combining algorithmic, hardware, and software characteristics to provide unified
performance evaluation criteria and useful performance indicators. The framework addresses the need for methods that can
analyze the performance and deal with the hybrid nature of modern computing systems. The investigation proposes the
creation of unified indexes/indicators that can capture specific qualities in terms of a wide range of heterogeneous key per-
formance indicators, such as the LIS. The LI served as a master CMI while an indicator like the SI is developed with focus
on speed. Indeed, the framework is scalable and upgradeable without changing the statistical computation or the struc-
ture of the measurement. For instance, an additional AP can be incorporated into the calculations of the LIS to include the
performance characteristics of GPUs.

At the application level, the developed framework can be used to examine qualities of importance and interest to de-
velopers or users. For example, the presented LIS enables the indexing and classifying of cryptographic algorithms. Here,
the qualities of importance are the lightness, speed, complexity, and security strength. The LIS can be applied to examine
the same qualities for a similar area of application, such as, signal processing. In signal processing, the SLI and HLI can be
reused. However, the LI and CI needs to be redefined within the context of signal processing, and the SSI is not applicable.
Signal processors are usually embedded within real-time application and characterized by their numerical accuracy, accel-
eration schemes, and the ability to perform fast computations and data access. A Reliability and Accuracy Indicator (RAI) CMI
can be created to combine the desired characteristics and capture, index, and aid in the classification of signal processing
algorithms.

The contextualization of the framework in relation to the targeted area of application produces a rich and comprehensive
set of reference Kis. KIs, such as ET, TH, CPI, CMR, PD, LUT, LR, and PC, are independent of the context of application and thus
highly reusable. Other KIs, such as KS, NR, and BS are specific to cryptographic algorithms. KIs can measure quantities or
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Fig. 6. The speed indicator classification.

describe qualities. Qualities can be easily specified using rubrics and mapped onto quantities that can be substituted into
the indicator equations. KIs should be carefully identified and developed by experts in the targeted area of application, and
supported by evident applicability. The contextualization of the application for the proposed RAI, in signal processing, can
comprise KIs, such as, Memory Access Time as a quantitative measurement. The availability of Specialized Addressing Modes
can be captured as a qualitative indicator.

This paper presents a generic model that specifies the elements of benchmarks and/or analysis frameworks. The bench-
mark model is used to present the LIS, nevertheless the model can be used to describe any benchmark. The developed
model is generic, simple, concise, and aids the clear description of benchmarks using a unified pattern.

The developed statistical framework is applied through a case-study that targets a class of cryptographic algorithms.
The selected algorithms are presented in the literature as tiny, small, minute, and light. The case-study provided a unified
classification criteria that include LI. The proposed framework successfully classified the targeted algorithms according to
their hardware, software, and algorithmic characteristics. The addressed algorithms are widely implemented, analyzed, and
evaluated in the literature. The work presented in the literature is limited to single algorithm evaluation, single system
implementation, such as either hardware or software, and still make holistic claims of lightness based on limited number
of indicators. The used reference implementation is the AES cipher with a key size of 192 bits. The use of other key sizes,
such as 256 bits, doesn’t change the algorithm classifications or falsify the analysis as it is consistently applied for all the
targeted algorithms. However, different indicator values are expected.

The developed framework is intended to capture hardware and software properties. The current investigation is limited to
non-partitioned implementations, where the whole computation is delegated to a co-processor. Partitioned implementations
can be evaluated, based on the proposed framework, by analyzing the KIs of the hardware and software subsystems. The
obtained KI measurements capture the subsystem characteristics. In addition, carefully defined CMIs can rank, rate, and
classify different partitioning strategies per optimization target, such as, area, speed, power consumption, etc.

An example similar investigation is presented by Spacey et al. in [16]. The authors combined several hardware and soft-
ware characteristics within a heuristic to produce a single execution time estimate. The best time estimate is identified
based on heterogeneous performance and architectural characteristics of different hardware and software partitions. Our
proposed framework would, with no doubt, enrich such investigations and provide versatile estimates with CMIs such as
HLI, SLI, CI, SI, and/or other customized indicators.

7. Conclusion

Modern high-performance computers are hybrids of multi-core processors, GPUs, FPGAs, etc. In this paper, a statistical
framework is developed to provide thorough analysis and evaluation of algorithms and their implementations on different
processing systems. A generic benchmark model is created to present the framework with clarity. The framework categorizes
processing subsystems into profiles, where each can be contextualized according to a specific application. The statistical
framework is adopted to analyze and evaluate a set of cryptographic algorithms that are claimed to be small in size, tiny, and
efficient. The proposed framework enabled the creation of several key indicators including the lightness, complexity, security
strength, and speed indicators. The two main targeted high-performance computing devices are multi-core processors for
software implementations and high-end FPGAs for hardware implementations. The developed lightness indicator ranks the
3-Way algorithm as the lightest among all with an LI of 2.52. Hight achieves the second best lightness with a score of
1.93. The lowest score of 0.79 was attained by KATAN-64. The case-study validates the statistical framework and leads to
a successful classification of the targeted algorithms. The obtained results are based on a combination of three profiles
including the algorithmic, software, and hardware profiles. The presented framework enjoys being scalable, upgradeable,
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and portable across-applications. Future work includes incorporating additional processing systems, targeting other areas of
application, and embedding the framework within a co-design IDE and target partitioned implementations.
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