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ABSTRACT The nonlinearity of the switching process in DC-DC converters can result in the inaccuracy 
and invalidation of traditional stability criterion based on linear modeling, which is very harmful in practice, 
especially for the DC-DC converters with high stability requirements. In this paper, the describing function 
method is adopted for the modeling of switching process, namely, pulse width modulation (PWM), in DC-
DC converters, and the describing function of PWM is derived in detail. Considering the nonlinear items in 
the obtained describing function of PWM, the selection of the parameters in these nonlinear items are firstly 
provided and proved in this paper. With the obtained describing function, the stability of PWM DC-DC 
converter can be analyzed exactly. Taken a PWM boost converter as an example, the nonlinear model based 
on describing function and the linear model are established, respectively, further, the stability analysis 
based on these two kinds of models are carried out. Comparing with the traditional linear stability criterion, 
the simulation and experimental results validate the effectiveness and accuracy of the stability analysis 
based on describing function method. Further, the transition interval of the PWM DC-DC converter from 
stable region to unstable region can be determined exactly by the proposed stability analysis method, which 
is helpful to determine the stability margin in real engineering applications. Therefore, this paper provides a 
practical stability analysis method for PWM DC-DC converters. 

INDEX TERMS DC-DC Converter, Describing Function, Nonlinear Modeling, Stability Analysis 

I. INTRODUCTION  
As the most common and practical topology of the power 
converters, DC-DC converters have the advantages on simple 
structure, low cost and high conversion efficiency. DC-DC 
converters have been widely used in household appliances, 
electrical industries, aerospace and other fields [1-5]. Today, 
pulse width modulation (PWM) is widely adopted in DC-DC 
converters. In addition, the traditional linear modeling and 
stability analysis methods are usually used for DC-DC 
converters, such as the average state space method [6]. But as 
the rapid development of power electronic technologies, the 
requirements of power electronic systems or equipment on 
stability, reliability and electrical performance have become 
stricter and stricter. The traditional linear modeling and 

analysis methods more and more cannot satisfy these 
requirements due to the nonlinearity of power converters [7]. 
In recent decades, the nonlinear behaviors of the power 
converters have been gradually revealed [8, 9]. The 
application of nonlinear theories in the field of power 
electronics has become a hot topic and received wide 
attention both at home and abroad [10-14]. At present, the 
common nonlinear analysis methods include analytical 
method [15, 16], phase plane method [17], switch signal flow 
graph method [18, 19], describing function method [20, 21], 
etc. The analytical method solves the state-space averaged 
equations directly, which is suitable for the one or second-
order system. But, the analytical method is very complicated 
for the high order systems [22]. The phase plane method is a 
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graphic analysis method, and it transforms the movement of 
the first or second order system to a trajectory about position 
and velocity in phase plane, which is intuitive but also 
disabled for the high order systems [23]. The switch signal 
flow graph method is a nonlinear graphical modeling method, 
by which, the switching process can be equivalent as two 
linear branches in turn-on or turn-off periods [18, 19]. But 
the dedicated graphic computer simulation software is 
needed for the analysis. The three methods mentioned above 
all use the concept of averaging for system modeling and 
analysis, which can neither reflect the frequency 
characteristic of the nonlinear link nor be used in high order 
system.  

Fortunately, Professor PJ Daniel proposed describing 
function method in 1940, which is not only suitable for high 
order systems, but also can reflect the fundamental frequency 
characteristic of the nonlinear link. Therefore, it has been 
mainly used to analyze the stability of the systems with 
nonlinear link and self-oscillation problems in control 
domain. In recent years, the describing function method has 
been found and applied into electrical engineering [24-29]. In 
[24-26], the describing function method has been mentioned 
for modeling the whole system of power converter under 
frequency modulation. In [27], a two-rules fuzzy controller is 
modeled by describing function. In [28, 29], the transfer 
functions of PWM link were deduced by describing function 
method, but only a few frequency components are considered. 
Until now, the describing function in power converters is 
mainly used for obtaining an improved transfer function 
under the traditional Nyquist criterion, and is not used for 
stability analysis directly yet. The describing function and its 
deducing method for the nonlinear switching link in power 
converters are still not mature. 

In this paper, a PWM boost converter is taken as an 
example, and the describing function of the switching 
process in DC-DC converters is firstly deduced. Its 
traditional linear model and the nonlinear model based on 
describing function method are established, respectively. 
Finally, the simulation and experimental results are given to 
validate the correctness and effectiveness of nonlinear 
stability analysis based on describing function.  

II. MODELING AND STABILITY CRITERION FOR THE 
DC-DC CONVERTERS 

It is well known that boost converter is a basic topology of 
DC-DC converters, which has gained wide application in 
photovoltaic inverters, wind power generations in recent 
years. In this paper, a boost converter is taken as an example 
for modeling and stability analysis. 

The boost converter with its closed-loop control is shown 
in Fig. 1(a), where, its control is a voltage closed-loop 
including a PI controller.  

1) The linear model of the boost converter and its stability 
criterion: The small signal modeling method is adopted in 
the boost converter for linear modeling. The small signal 

diagram of the boost converter [30] is shown in Fig. 1(b), 
which can be further simplified as shown in Fig. 1(c) [31]. 
The transfer function of each link in Fig. 1 can be expressed 
in (1). 
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In Fig. 1(c), K represents the switching process of S in the 
boost converter, which is a nonlinear link. But in the linear 
model, the switching process is averaged and is expressed by 

1

mV . 
In traditional Nyquist stability analysis method, when the 

transfer functions of a system are obtained, the Nyquist plot 
can be drawn out to determine the stability of the system [32]. 
For the boost converter system shown in Fig. 1(c), its closed 
loop transfer function can be expressed as (2). 


 

(a) The closed-loop circuit of boost converter with PI controller 

ˆ ( )refv s ˆ ( )ev s ˆ ( )cv s
( )cG s ( )mG s ( )vdG s

ˆ( )d s

( )H s

ˆ ( )ov s

 
(b) The block diagram of the boost converter 

ˆ ( )refv s ˆ ( )ov s

 
(c) The simplified diagram of the boost converter 

FIGURE 1.  The structure diagram of boost converter. 
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The characteristic equation of (2) is 1 ( ) 0KG s  , or 

 
1

( ) 0G s j
K

    (3) 

Therefore, the stability of the boost converter can be 
judged by the position relationship between the Nyquist plot 

of G(s) and the point of 
1

( , 0)j
K

 . 

2) The nonlinear model based on describing function of 
the boost converter and its stability criterion: The basic idea 
of the describing function (DF) method is to replace each 
nonlinear link with a describing function, which is a ratio of 
the first harmonic of the nonlinear link output and a 
sinusoidal signal input [33]. According to the obtained 
describing function, the fundamental frequency characteristic 
of the nonlinear link can be derived. 

Giving a sinusoidal input signal Asin to the nonlinear link, 
the Fourier transform of the nonlinear link output y can be 
expressed as: 
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When the A0 = 0 and n > 1, Yn are usually very small, the 
sinusoidal response of the nonlinear element can be 
approximately replaced by the first harmonic: 

 1 1 1 1( ) cos sin sin( )y t A t B t Y t        (5) 

According to [21], the describing function can be defined 
as the plural ratio of the first harmonic of nonlinear link 
output and the sinusoidal input signal: 

 1( ) 1 1 1( ) ( ) jj N A Y B jA
N A N A e e

A A
 

    (6) 

where, A is the amplitude of the sinusoidal input signal. 
Fig. 1(c) shows the linear model of the boost converter. To 

get the nonlinear model based on DF method, N(A), the 
describing function of the switching process, is used to 
replace the K in Fig. 1(c), and the nonlinear model is shown 
in Fig. 2. 

( )N A ( )G j
ˆ ( )refv j ˆ ( )ov j

 
FIGURE 2.  The nonlinear model of the boost converter. 
 

Similar to the linear system, the closed loop transfer 
function of the model can be derived as (7). 

 
ˆ ( ) ( ) ( )
ˆ ( ) 1 ( ) ( )

o

ref

v j N A G j

v j N A G j

 
 


  (7) 

According to (7), its characteristic equation can be 
expressed as 1 ( ) ( ) 0N A G j  , or: 
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Then, the Nyquist plot of ( )G j  and 
1

( )N A
  can be 

drawn in complex plane. So, the stability of the converter can 
be determined by observing the positional relationship of 
these two curves. As shown in Fig. 3, if the ( )G j  curve 

separates from the 
1

( )N A
  curve, the system is stable; if the 

( )G j  curve surrounds the 
1

( )N A
  curve, the system is 

unstable; and if the two curves intersect, the system is critical 
stable [31], [34], [35]. 
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FIGURE 3.  Stability analysis for describing function method. 

 

Comparing the linear model with the nonlinear model 
based on the describing function method, it can be found that 
the transfer function of the linear links are the same, namely, 

( ) ( )G j G s  . Therefore, ( )G j , the point 
1

( , 0)j
K

  and 

the 
1

( )N A
  can be plotted in the same complex plane. By 

observing the positional relationship of ( )G j , 
1

( , 0)j
K

  

and the 
1

( )N A
 , the stability can be determined by the 

traditional linear method and describing function method, 
respectively. 

III. THE DESCRIBING FUNCTION DERIVATION OF THE 
SWITCHING PROCESS 
In the linear model of boost converter, the switching process 
is averaged. But because the switching process is nonlinear in 
essence, the averaged model cannot fully express the 
characteristics of the switching process. Therefore, a 
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nonlinear model based on describing function is constructed 
in this paper. 

According to the definition of the describing function, 
assuming that the input of the switching link is sinusoidal 
signal: cosinv A y , where, 0y t , as shown in Fig. 4. In 
addition, the peak-to-peak value of the triangle carrier used in 
PWM is mV and the frequency of the triangular carrier is c . 
Finally, the output waveform of the PWM link is a square 
wave with amplitudes of ±Vd, which can be further expanded 

to a Fourier series: 0
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where, cx t , as shown in Fig. 4. 
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FIGURE 4.  Triangular carrier compared with low frequency signal to 

generate the PWM waveforms. 

 

There is no direct component in ( )pv t , so 0 0a  . After 

calculation, ( )pv t  can be expressed as [36]: 

 

0
1

1 1

2 cos 4 1
( ) sin cos

2

4 1
sin [ ]

2

          cos( ) cos( )

d d
p

mm m

d
n

m n m

V A y V A
v t J m m mx

V m V

V A
J m m n

m V

mx ny mx ny











 

 

 
   

 
       

  
   



 (9) 

Because carrier frequency c is normally much greater 

than the modulation waveform frequency 0 , let 

0

c y
x ky




  , and 1k  . After substitution, the (9) can be 

expressed as (10): 
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In order to get the fundamental components in (10), item1-
item4 should be considered separately. For item1, it is a 
fundamental component obviously. For item2 and item3, no 
fundamental component is included in these two items 
because it is impossible to make cos coskmy y  and 

cos( ) coskmy ny y  , since m and n are positive integers 

and 1k  . For item4, it has fundamental component when 
cos( ) coskmy ny y  , that is when 1km n  . Then, the 

fundamental components of the output ( )pv t  can be 

expressed as (11) by substituting 1km n   into item4 of 
(10). 

1
1

2 cos
( )

4 1
      sin [( 1) 1] cos

2

d
p

m

d
km

m m

V A y
v t

V

V A
J m k m y

m V











        
  


(11) 

According to the practical application, Vd can be set to be 
0.5. Then, the describing function of the nonlinear link is the 
ratio between ( )pv t  and the input signal cosA y , namely, 

( )N A . 
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In (12), A is the amplitude of the modulation waveform, 

1km
m

A
J m

V

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 is the first kind Bessel function. 

When the expression of N(A) is obtained, as given in (12), 
the following question is how to determine the parameters of 
N(A) in practice, since N(A) includes k, A and an infinite 
series. With these parameters, the output range of N(A) will 
thereby be determined and drawn up. 
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IV. PARAMETER DETERMINATION FOR THE 
DESCRIBING FUNCTION OF THE SWITCHING 
PROCESS 
For the N(A), the upper limit of m should be infinite, k ranges 
from kmin to infinite and A ranges from 0 to infinite. 

To obtain the effective and practical function describing 
function of the switching process, firstly, the limit of the 
obtained describing function is proved and calculated in this 
paper. 

A.  Determination for the range of m 
1) The proof of convergence for the describing function: 

For any determined k and A, the 
1
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 and 

2

A
 do not affect 

the convergence of N(A), so the convergence of series 
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Assuming that mN   is the absolute value of Nm: 
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According to the theory of Bessel functions [37], [38], it 
can be concluded that: 
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where, mN   and mN   are both positive series. 
For the maximum value of Bessel’s function, there is 

  3
max
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 , as shown in Fig. 5. 
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Theorem I: If both 
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convergent, then the 
1

n
n

u



  is convergent [39].  

According to Theorem I, mN   is convergent, so mN   and 

mN   are convergent. 

Theorem II: If the series 
1

n
n

u



  is absolute convergence, 

the series 
1

n
n

u



  must be convergent [39].  

According to Theorem II, when mN   is convergent, mN  is 
also convergent. 

2) Comparison of rate of convergence between mN   and 

mN : Because sinusoidal function does not affect the rate of 
convergence, so the sinusoidal component is neglected for 
the comparison: 
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Since 1 1 max( ) ( )km kmJ x J x   always stands up, so r ≤ 1. It 

means that the rate of convergence of mN  is faster or same 

with mN  . So, the upper limit of m can be determined by mN  . 
3) Determination of the upper limit of m: Assuming that k 

= 1, the changing curve of mN   with the increase of the upper 
limit of m is shown in Fig. 6. The inflection point of the 
changing curve of mN   is about 800, so the upper limit of m is 
taken as 800. 
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FIGURE 6.  The changing curves of mN   with the increase of the upper 

limit of m. 
 
So, the range of m is 1-800. 

B.  Determination for the range of k 

In this paper, 
0

ck



 , which means the ratio between the 

carrier frequency and the frequency of the input sinusoidal 
signal. In practice, k is always a big number, therefore, it can 
be thought a number larger than 10, that is kmin = 10. 

Constraint relation of k and A: For a certain frequency, 
when A increases to Amax, the switching pulse square 
waveforms will be the same for all the A > Amax, as shown in 
Fig. 7. So, A should be less than Amax. 

 

0sinA t

mV

m cV
y t






0/ck  

 
FIGURE 7.  Triangular carrier wave and low frequency signal input. 

 

From that max 0sin m cV
A t t





 , 

2 c

t



 , the constraint 

relation of k and A can be expressed as: 

 
2sin( 2 )

mV
A

k
  (16) 

To simplify the calculation, Vm is set as 1 in this paper. 

Therefore, for all 
1

2sin( 2 )
A

k
 , there is 1

m

A
km m

V
  , 

which means 1

2
0km

m

A
J m

m A V


 

 
 

 
. 

1) Determination for the upper limit of k: Because 

1

2
0km

m

A
J m

m A V


 

 
 

 
 and Vm = 1, there is: 

1
1

1
1

1 2
( ) sin [( 1) 1]
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        .
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A
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  

 
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 




 

Let x = mπA, there is 

    1
1

1 1 max

22
( ) 1 1 .km

km
m m

J x
N A J x

x x

 



 

 
     

 
   (17) 

Since 
 1

1 max

2
( ) km

m

J x
y k

x






 
  

 
  is a monotone decreasing 

function, the range of N(A) can be approximately determined 
by 1 ( )y k  and 1 ( )y k , as shown in Fig. 8. 

 
FIGURE 8.  The function curves which are used to determine the range of 

N(A). 
 
When k is taken from 10 to 42, the actual region of N(A) is 

shown in Fig. 9. When k = 42, the N(A) curve intersects with 
1 ( )y k  and 1 ( )y k , which means the region of N(A) for 
all the k > 42 will be included in the region of N(A) for 10 ≤ k 
≤ 42. So kmax = 42. So, the range of k is 10-42. 

k
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y
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FIGURE 9.  The curves of 1 ± y(k) and N(A) with the changing of k. 

 

C.  Determination for the range of A 

As mentioned above: 
2sin( 2 )

mV
A

k
 . Taken Vm = 1 and 

k = 42, the maximum value of A can be determined: Amax = 
14. 

For the lower limit of A, it can be determined by the 
following proof.  
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  (18) 

In (18), the first kind Bessel function 1( )km
m

A
J m

V
  can 

be expanded to Taylor series, as shown in (19), 
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In (20),  
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As mentioned above: the range of m is 1-800, and the 
range of k is 10-42, so 10km  , which means ( ) 0km   
and ( ) 0a km   , then (21) can be calculated as 
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According to (18)-(22), when A=0, N(A) can be expressed 
as: 

1
( )

m

N A
V

                                   (23) 

Therefore, the range of A is 0-14.  
According to the above mathematical analysis, the regions 

of the parameters in N(A) can be determined as follows: the 
upper limit of m is determined as 800, the range of k is 
determined as 10-42, and A is determined as 0-14. 

Fig. 10 gives the plot of 
1

( )N A
  with different A and k, in 

which The projection of the 3D plot on z axis actually is the 

curve of 
1

( )N A
 . 

 

FIGURE 10.  The plot of 
1

( )N A
  with different A and k. 

 
Therefore, the describing function of the PWM switching 

process can be expressed as: 

800

1
1

1 2 1
( ) sin [( 1) 1]

2km
mm m

A
N A J m k m

V A m V


 



         
  

 (24) 

     It should be noticed that (18) not only can be used for the 
boost converter in this paper, but also can be used for other 
PWM DC-DC converters.  

V. SIMULATION AND EXPERIMENTAL VERIFICATION 
In this paper, MATLAB is used to draw the Nyquist curve, 
and PSIM is used to simulate the boost circuit. Finally, the 
results are validated by experiment. The simulation and 
experimental parameters are shown in Table I, the 
experiment platform is shown in Fig. 11. Under the 
parameters, the stability of the system can be determined by 
determining the positional relationship between the Nyquist 

curve of G(s) and 
1

( )N A
 . 

TABLE I 
SIMULATION AND EXPERIMENTAL PARAMETERS 

Input 
Voltage(V) 

Output 
Voltage(V) 

Switching 
Frequency (Hz) 

Capacitance 
(μF) 

12 24 100k 280 

Inductance 
(mH) 

Load 
Resistance (Ω)

PWM Amplitude 
(V) 

Sampling 
Ratio 

0.4 6 1 1 
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FIGURE 11.  The experiment platform of the boost converter. 

 
Since the proposed describing function method focuses on 

the nonlinear PWM link, and the models for the other linear 
links are all obtained by the traditional linear modeling, the 
stability analysis based on describing function method will be 
compared with the traditional Nyquist method. 

In order to compare the result of the traditional Nyquist 
method and the describing function method in the stability 
analysis of the boost converter, the PI parameters Kp and Ti in 
Gc(s) are modified continuously to make the intersection 
point of the Nyquist curve G(s) and real axis move in the 
negative direction. And the system state changes from stable 
mode to unstable mode, as shown in Fig. 12. 

 
FIGURE 12.  The 3 dimension Nyquist plot with the changing Kp. 

 
Four typical cases are listed in Table II. 

TABLE II 
COMPARISONS OF THE RESULTS OBTAINED BY DIFFERENT METHODS 

Methods Case I Case II Case III Case IV 

Traditional linear 
method 

stable stable unstable unstable 

Describing function 
method 

stable 
critical 
stable 

critical 
stable 

unstable 

Simulation 
experiment results 

stable 
critical 
stable 

critical 
stable 

unstable 

 
Case I: Kp = 0.003, Ti = 0.0005 

Fig. 13(a) shows the Nyquist curve of G(s) and 
1

( )N A
 , 

Fig. 13(b) shows the simulation waveform and Fig. 13(c) 
shows the experimental waveform of the output voltage. 

Under the Case I, the Nyquist curve of G(s) does not 

surround the point (-1, j0) and the 
1

( )N A
  curve. Due to the 

traditional Nyquist stability criterion and the method of 
describing function criterion, the system is stable. 

 
(a) The Nyquist plot in Case I 

 
(b) The simulation waveform of the output voltage 

 
(c) The experiment waveform of the output voltage 

FIGURE 13.  The Nyquist plot and waveforms under Case I. 

 

Case II: Kp = 0.0051, Ti = 0.0005 

Fig. 14(a) shows the Nyquist curve of G(s) and 
1

( )N A
 , 

Fig. 14(b) shows the enlarged drawing of the crossing point. 
Fig. 14(c) shows the simulation waveform and Fig. 14(d) 
shows the experimental waveform. And the bottom right 
corners show the enlarged drawing.  

Under the Case II, the Nyquist curve of G(s) does not 

surround the point (-1, j0) but intersects the 
1

( )N A
  curve. 

The system is stable with the traditional Nyquist stability 
criterion, but critical stable with the describing function 
criterion. 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2857846, IEEE
Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2018 9 

 
(a) The Nyquist plot in Case II 

 
(b) The enlarged drawing of the crossing point 

 
(c) The simulation waveform of the output voltage 

 
(d) The experiment waveform of the output voltage 

FIGURE 14.  The Nyquist plot and waveforms under Case II. 

 

Case III: Kp = 0.0055, Ti = 0.0005 

Fig. 15(a) shows the Nyquist curve of G(s) and 
1

( )N A
 . 

Fig. 15(b) shows the simulation waveform and Fig. 15(c) 
shows the experimental waveform. And the bottom right 
corners show the enlarged drawing.  

Under the Case III, the Nyquist curve of G(s) surrounds 

the point (-1, j0) and intersects the 
1

( )N A
  curve. The 

system is unstable with the traditional Nyquist stability 
criterion, but critical stable with the describing function 
criterion. 

 
(a) The Nyquist plot in Case III 

 
(b) The simulation waveform of the output voltage 

 
(c) The experiment waveform of the output voltage 

FIGURE 15.  The Nyquist plot and waveforms under Case III. 

 

Case IV: Kp = 0.0065, Ti = 0.0005 

Fig. 16(a) shows the Nyquist curve of G(s) and 
1

( )N A
 . 

Fig. 16(b) shows the simulation waveform and Fig. 16(c) 
shows the experimental waveform.  

Under the Case IV, the Nyquist curve of G(s) surrounds 

both the point (-1, j0) and the 
1

( )N A
  curve. The system is 

unstable due to the two stability criterion. 
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(a) The Nyquist plot in Case IV 
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(b) The simulation waveform of the output voltage 

 
(c) The experiment waveform of the output voltage 

FIGURE 16.  The Nyquist plot and waveforms under Case IV. 

 
In summary, in Case I and IV, the stability analysis results 

are same with both the traditional Nyquist analysis and the 
describing function method, the simulation and experimental 
results demonstrate the validity of the analysis. In Case II and 
III, according to traditional Nyquist analysis, the system is in 
stable state and unstable state, respectively; but according to 
the describing function method, the system is both in critical 
stable state. From the simulation and experimental 
waveforms, in the two cases, the output voltage has low 
frequency oscillation phenomena, but the voltage waveform 
is not divergent yet, which confirms that the analysis of the 
describing function method is more accurate. Case II and III 
are set in the transition interval from stable region to unstable 
region, and the stability analysis based on describing function 
method can determine the transition interval while traditional 
Nyquist stability analysis cannot determine it. 

VI. TRANSITION INTERVAL DETERMINATION 
According to the analysis in section V, it is obvious that 
finding the transition interval from stable region to unstable 
region, namely, the critical stable range, is very important.  

Because this critical stable range can be regarded as the 
stability margins in the traditional linear stability analysis. 

With the obtained describing function N(A) of the 
switching process for the boost converter, it can be found that 

1

( )N A
  is a line on the real axis, and the range of 

1

( )N A
  

can be obtained easily, as shown in Fig. 17. According to 

calculation and Fig. 10, 
min

1
1.174

( )N A

 
   
 

 and 

max

1
0.97

( )N A

 
   
 

 in this paper. 

 
FIGURE 17.  The Nyquist plot of the boost converter. 

 
Further, according to the stability criterion in Fig. 3, if 

G(jω) and 
1

( )N A
  intersect, the boost converter is critical 

stable. Therefore, the point Q, the intersection point between 
the curve of G(jω) and real axis, should be determined. 
Obviously, Im[G(jωQ)] = 0, here, ωQ means the frequency at 
the point Q. According to Im[G(jωQ)] = 0, the frequency ωQ 
can be calculated, as given in (25). 
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. 

Then, substituting the obtained ωQ into G(jω) in (1), the 
real part of the point Q can be expressed by a function of 
control parameters Kp and Ti, as given in (26). 
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According to Fig. 3 and Fig. 17, when 

min max

1 1
Re[ ( )]

( ) ( )QG j
N A N A


   
      
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, this boost 
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converter will be under critical stable mode. Therefore, the 
ranges of Kp and Ti in critical stable mode, i.e. in the 
transition interval, can be calculated. 

In this paper, with Ti = 0.0005, when 0.0050 ≤ Kp ≤ 0.0061, 
this boost converter will be under critical stable mode; with 
Kp = 0.003, when 0.000238 ≤ Ti ≤ 0.000289, this boost 
converter will be under critical stable mode. For other 
situations, the control parameter range can be determined 
according the above mentioned method. 

VII. FURTHER VERIFICATION 
To further verify the accuracy and correctness of the 
proposed stability analysis based on describing function 
method, the bifurcation diagram of the output voltage is also 
plotted by iterative equations of the boost converter. 

Assuming that [ ]T
C LX v i , the state equations of the 

boost converter can be expressed as (27): 
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So, for a whole period, during the switch on time and 
switch off time: 
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Then, the relationship of the state variable between nT and 
(n + 1)T can be expressed as: 

 2 1 2 1 2( ) ( ) [ ] iX nT T N N X nT N M M V     (29) 

In (23), 1
1

nA d TN e , 2 (1 )
2

nA d TN e  , 

1 1
(1 ) 0

0

nd T

RCRC eM B
dT

 
 

  
, 2 (1 )1

2 2 2( )nA d TM A e I B  . 

For the control loop, the duty ratio can be derived by a 
switching function: 

 ( , ) 0n n con rampS X d v v    (30) 

vcon is the control signal generated by PI controller, and 
vramp is the value of PWM comparator. In (31), UH and UL are 
the high and low peak value of the PWM wave. 
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

 

  

   

  (31) 

Base on (29) and (31), the bifurcation diagram of the 
output voltage is plotted in Fig. 18. 

 
FIGURE 18.  The bifurcation diagram of the output voltage with changing 

Kp. 

 
From Fig. 18, it is obvious that the output voltage is stable 

when Kp is less than 0.0051. With the gradual increase of Kp, 
the oscillation phenomenon will appear in output voltage, 
and the region of oscillation is from 0.0051 to 0.006 
according to Fig. 18. This region is basically the same with 
the simulation results, the region of oscillation is from 0.0049 
to 0.006, obtained by PSIM. According to the PSIM 
simulation results with Kp = 0.0049-0.006, the range about 
the intersection point of the Nyquist curve and real axis is [-
1.154, -0.942]. 

Therefore, the transition interval from stable region to 
unstable region, i.e. the critical stable range, can be obtained 
by simulation, traditional Nyquist analysis and the describing 
function method, respectively, as given in Table III. 

TABLE III 
THE CRITICAL STABLE RANGE DETERMINED BY SIMULATION, 

TRADITIONAL NYQUIST AND DESCRIBING FUNCTION 

Methods 
The critical stable 
range in real axis 

The critical stable range 
of Kp with Ti = 0.0005 

PSIM Simulation [-1.154, -0.942] [0.0049, 0.006] 

Traditional Nyquist [-1] [0.0052] 

Describing 
Function 

[-1.174, -0.97] [0.0050, 0.0061] 

 

Traditional Nyquist analysis can only determine the 
critical stable state with a demarcation point. And the 
transition interval determined by describing function method 
is close to the circuit simulation result. So the stability 
analysis based on describing function method is more 
accurate in the transition interval from stable region to 
unstable region. And the obtained transition interval can also 
be regarded as the stability margin for the system. 
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VIII. CONCLUSION 
In this paper, the describing function of PWM switching 
process has been derived, comparing with the traditional 
linear modeling and stability analysis method, the critical 
range of the DC-DC converter system has been extended to a 
curve, instead of a point (-1/K, j0). The transition interval 
from stable range to unstable range can be determined 
exactly by the proposed stability analysis method, which is 
very helpful for determining the stability margin in real 
engineering applications. The simulation and experimental 
results validate the effectiveness and accuracy of the stability 
analysis based on describing method. Therefore, this paper 
gives a new choice for the stability analysis of PWM DC-DC 
converters. 

REFERENCES 
[1] R. D. Middlebrook, “Small-signal modeling of pulse-width 

modulated switched-mode power converters,” Proc. IEEE, vol. 76, 
no. 4, pp. 343-354, Apr. 1988. 

[2] S. Cuk and R. D. Middlebrook, “Advances in switched-mode power 
conversion part I,” IEEE Trans. Ind. Electron., vol. IE-30, no. 1, pp. 
10-19, Feb. 1983.  

[3] M. Kumar and R. Gupta, “Stability and sensitivity analysis of 
uniformly sampled DC-DC converter with circuit parasitic,” IEEE 
Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 11, pp. 2086-2097, 
Nov. 2016. 

[4] M. M. Peretz and S. B. Yaakov, “Time-domain design of digital 
compensators for PWM DC-DC converters,” IEEE Trans. Power 
Electron., vol. 27, no. 1, pp. 284-293, Jan. 2012. 

[5] A. K. Mishra and B. Singh, “Design of PV powered SR motor driven 
irrigation pumps utilizing boost converter,” in Proc. IEEE Uttar 
Pradesh Section Int. Conf. Electr., Comput. Electron. Eng., Dec. 
2016, pp. 264-268. 

[6] R. D. Middlebrook and S. Cuk, “A general unified approach to 
modeling switching-converter power stages,” in Proc. IEEE Power 
Electron. Spec. Conf., Jun. 1976, pp. 18-34. 

[7] E. Rodriguez, A. El Aroudi, F. Guinjoan, and E. Alarcon, “A ripple-
based design-oriented approach for predicting fast-scale instability in 
DC-DC switching power supplies,” IEEE Trans. Circuits Syst. I, Reg. 
Papers, vol. 59, no. 1, pp. 215-227, Jan. 2012. 

[8] K. Mehran, D. Giaouris, and B. Zahawi, “Stability analysis and 
control of nonlinear phenomena in boost converters using model-
based takagi–sugeno fuzzy approach,” IEEE Trans. Circuits Syst. I, 
Reg. Papers, vol. 57, no. 1, pp. 200-212, Jan. 2010. 

[9] J. H. B. Deane and D. C. Hamill, “Instability, subharmonics, and 
chaos in power electronic systems,” IEEE Trans. Power Electron., 
vol. 5, no. 3, pp. 260-268, Jul. 1990. 

[10] D. Dai, C. K. Tse, and X. Ma, “Symbolic analysis of switching 
systems: application to bifurcation analysis of DC/DC switching 
converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 8, 
pp. 1632-1643, Aug. 2005. 

[11] C. K. Tse and M. Di Bernardo, “Complex behavior in switching 
power converters,” Proc. IEEE, vol. 90, no. 5, pp. 768-781, May 
2002. 

[12] A. El Aroudi, M. Debbat, R. Giral, G. Olivar, L. Benadero, and E. 
Toribio, “Bifurcations in DC-DC switching converters: review of 
methods and applications,” Int. J. Bifur. Chaos, vol. 15, no. 5, pp. 
1549-1578, May 2005. 

[13] A. El Aroudi, D. Giaouris, H. H. Iu, and I. A. Hiskens, “A review on 
stability analysis methods for switching mode power converters,” 
IEEE J. Emerg. Topics Circuits Syst., vol. 5, no. 3, pp. 302-315, Sep. 
2015. 

[14] H. Wu, V. Pickert, D. Giaouris, and B. Ji, “Nonlinear analysis and 
control of interleaved boost converter using real-time cycle to cycle 
variable slope compensation,” IEEE Trans. Power Electron., vol. 32, 
no. 9, pp. 7256-7270, Sep. 2017. 

[15] V. Vorperian, “Simplified analysis of PWM converters using model 
of PWM switch part I: continuous conduction mode,” IEEE Trans. 
Aerosp. Electron. Syst., vol. 26, no. 3, pp. 490-496, May 1990. 

[16] P. T. Krein, J. Bentsman, R. M. Bass, and B. L. Lesieutre, “On the 
use of averaging for the analysis of power electronic systems,” IEEE 
Trans. Power Electron., vol. 5, no. 2, pp. 182-190, Apr. 1990. 

[17] R. W. Erickson, S. Cuk, and R. D. Middlebrook, “Large-signal 
modeling and analysis of switching regulators,” in Proc. IEEE Power 
Electron. Spec. Conf., Jun. 1982, pp. 240-250. 

[18] Y. Ma and K. M. Smedley, “Switching flow-graph nonlinear 
modeling method for multistate-switching converters,” IEEE Trans. 
Power Electron., vol. 12, no. 5, pp. 854-861, Sep. 1997. 

[19] M. Veerachary, “General rules for signal flow graph modeling and 
analysis of dc-dc converters,” IEEE Trans. Aerosp. Electron. Syst., 
vol. 40, no. 1, pp. 259-271, Jan. 2004. 

[20] J. H. Taylor, Describing Functions, 1th ed., New York: John Wiley 
& Sons, 1999, pp. 6-10. 

[21] R. Sridhar, “A general method for deriving the describing functions 
for a certain class of nonlinearities,” IRE Trans. Automat. Control, 
vol. 5, no. 2, pp. 135-141, Jun 1960. 

[22] T. Nabeshima and K. Harada, “Large-signal transient responses of a 
switching regulator,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-
18, no. 5, pp. 545-551, Sep. 1982. 

[23] Y. Chen, C. K. Tse, S. Qiu, L. Lindenmuller, and W. Schwarz, 
“Coexisting fast-scale and slow-scale instability in current-mode 
controlled DC/DC converters: analysis, simulation and experimental 
results,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 10, pp. 
3335-3348, Nov. 2008. 

[24] J. Li and F. C. Lee, “Modeling of V2 current-mode control,” IEEE 
Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 9, pp. 2552-2563, 
Sep. 2009. 

[25] S. L. Tian, F. C. Lee, Q. Li, and Y. Y. Yan, “Unified equivalent 
circuit model of V2 control,” in Proc. IEEE Appl. Power Electron. 
Conf. Expo., Mar. 2014, pp. 1016-1023. 

[26] F. Yu, F. C. Lee, and P. Mattavelli, “A small signal model for V2 
control with composite output capacitors based on describing 
function approach,” in Proc. IEEE Energy Conv. Congr. Expo., Sep. 
2011, pp. 1236-1243. 

[27] S. Gomariz, F. Guinjoan, E. Vidal-Idiarte, L. Martinez-Salamero, and 
A. Poveda, “On the use of the describing function in fuzzy controller 
design for switching dc-dc regulators,” in Proc. IEEE Int’l Symp. 
Circuit and Systems, May 2000, pp. 247-250. 

[28] Y. Qiu, M. Xu, K. Yao, J. Sun, and F. C. Lee, “Multifrequency 
small-signal model for buck converter and multiphase buck 
converters,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1185-
1192, Sep. 2006. 

[29] S. F. Hsiao, D. Chen, C. J. Chen, and H. S. Nien, “A new multiple-
frequency small-signal model for high-bandwidth computer V-core 
regulator applications,” IEEE Trans. Power Electron., vol. 31, no. 1, 
pp. 733-742, Jan. 2016. 

[30] R. W. Erickson and D. Maksimovic, Fundamentals of Power 
Electronics, 2nd ed., Secaucus: Kluwer Academic Publishers, 2000, 
ch. 9, pp. 335-337. 

[31] H. Li, S. Wang, J. Lu, X. You, and X. Yu, “Stability analysis of the 
shunt regulator with nonlinear controller in PCU based on 
describing function method,” IEEE Trans. Ind. Electron., vol. 64, no. 
3, pp. 2044-2053, Mar. 2017 

[32] K. Ogata, Modern Control Engineering, 5th ed., Englewood Cliff: 
Prentice Hall, 2010, ch. 7, pp. 445-450. 

[33] S. C. Chung, S. R. Huang, and C. I. Ln, “Applications of describing 
functions to estimate the continuous and discontinuous conduction 
mode for a DC-to-DC buck converter,” IET Electr. Power Appl., vol. 
147, no. 6, pp. 513-519, Nov. 2000. 

[34] S. Wang, X. You, H. Li, R. Hao, and T. Q Zheng, “Stability analysis 
of the shunt regulator in PCU with describing function method,” in 
Proc. IEEE Energy Conv. Congr. Expo., Sep. 2013, pp. 5385-5389. 

[35] J. Shang, H. Li, X. You, T. Q. Zheng, and S. Wang, “A novel 
stability analysis approach based on describing function method 
using for DC-DC converters,” in Proc. IEEE Appl. Power Electron. 
Conf. Expo., Mar. 2015, pp. 2642-2647. 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2857846, IEEE
Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2018 9 

[36] D. Holmes and T. Lipo, Pulse Width Modulation for Power 
Converters: Principles and Practice, 1st ed., Hoboken: John Wiley 
& Sons, 2003, ch. 3, pp. 73-84. 

[37] S. S. Bayin, Essentials of Mathematical Methods in Science and 
Engineering, 1st ed., Hoboken: John Wiley & Sons, 2008, ch. 11, pp. 
510-518. 

[38] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., 
Cambridge: Cambridge University Press, 1966, ch. 3, pp. 38-40. 

[39] D. D. Bonar and M. J. Khoury, Real Infinite Series, 1st ed., 
Washington: Mathematical Association of America, 2006, ch. 1, pp. 
23-35. 

 
 
 
 

Hong Li (S’07–M’09–S’18) received the B.Sc. 
degree in electrical engineering from Taiyuan 
University of Technology, Taiyuan, China, in 
2002, the M.Sc. degree in electrical engineering 
from South China University of Technology, 
Guangzhou, China, in 2005, and the Ph.D. 
degree in electrical engineering from 
Fernuniversität in Hagen, Germany, in 2009. 

Currently, she is a Professor in the School of 
Electrical Engineering, Beijing Jiaotong 
University, Beijing, China. She has published 1 

book, 25 journal papers, and 41 conference papers. She has also applied 
for 20 patents. Her research interests include nonlinear modeling, analysis 
and its applications, EMI suppressing methods for power electronic 
systems, wide-bandgap power devices, and applications. 

Dr. Li is an Associate Editor of IEEE Transactions on Industrial 
Electronics, an Associate Editor of the Chinese Journal of Electrical 
Engineering, and the Vice Chairman of Electromagnetic Compatibility 
Specialized Committee of China Power Supply Society. 

 
 
 
 

Jianing Shang received the B.S. and M.S. 
degrees in electrical engineering from Beijing 
Jiaotong University, Beijing, China, in 2013 and 
2016, respectively.  

His research interests include power 
electronics, nonlinear modeling, analysis and its 
applications.  

 
 
 
 
 

 
 
 
 

Bo Zhang (M'03-SM'15) was born in 
Shanghai, China, in 1962. He received the B.S. 
degree in electrical engineering from Zhejiang 
University, Hangzhou, China, in 1982, the M.S. 
degree in power electronics from Southwest 
Jiaotong University, Chengdu, China, in 1988, 
and the Ph.D. degree in power electronics from 
Nanjing University of Aeronautics and 
Astronautics, Nanjing, China, in 1994.  

He is currently a Professor and the Deputy 
Dean of the School of Electric Power, South 
China University of Technology, Guangzhou, 
China. He has authored or coauthored more 

than 450 papers and 101 patents. He has published 2 English monographs 
in Wiley and 1 English monograph in Springer. His research interests 
include nonlinear analysis and control of power supplies and ac drives. 

 

Xingran Zhao received the B.S. degree in 
electrical engineering from Beijing Jiaotong 
University, Beijing, China, in 2016, where she is 
currently working toward the M.S. degree in 
electrical engineering. 

Her research interests include the modeling and 
application of wide-bandgap power devices. 

 
 
 

 
 
 
 
 

Nanlin Tan was born in 1958. He received the 
B.S. degree from Southwest Jiaotong University 
in 1982, the M.S. degree from the Nanjing 
University of Science and Technology in 1987, 
and the Ph.D. degree from the Nanjing 
University of Aeronautics and Astronautics, 
China, in 1994.  

He is currently a Professor and Ph.D. 
Supervisor at Beijing Jiaotong University, Beijing, 
China. He is the author or coauthor of more than 
100 papers and is the holder of five patents. His 

research interests include safety technology and engineering, control theory, 
and pattern recognition. 
 
 
 
 

Chen Liu received the B.S. degree in electrical 
engineering from Wuhan University of 
Technology, Wuhan, China, in 2017. He is 
currently working toward the M.S. degree in 
electrical engineering at Beijing Jiaotong 
University, Beijing, China.  

His research interests include nonlinear 
modeling, analysis and its applications. 

 
 
 

 


