
SensorScheme: Supply Chain Management Automation
using Wireless Sensor Networks

L. Evers P.J.M. Havinga J. Kuper M.E.M. Lijding
N. Meratnia

University of Twente
Drienerlolaan 5

7522 NB Enschede, the Netherlands
{l.evers, p.j.m.havinga, j.kuper, m.e.m.lijding, n.meratnia}@utwente.nl

Abstract

The supply chain management business can benefit
greatly from automation, as recent developments with
RFID technology shows. The use of Wireless Sensor Net-
work technology promises to bring the next leap in effi-
ciency and quality of service. However, current WSN sys-
tem software does not yet provide the required function-
ality, flexibility and safety. This paper discusses a sce-
nario showing how WSN technology can benefit supply
chain management, and presents SensorScheme, a plat-
form for realizing the scenario. SensorScheme is a gen-
eral purpose WSN platform, providing a safe execution
environment for dynamically loaded programs. It uses
high level programming primitives like marshalled com-
munication, automatic memory management, and multi-
processing facilities. SensorScheme makes efficient use of
the little available memory present in WSN nodes, to allow
larger and more complex programs than the state of the
art. We present a SensorScheme implementation and pro-
vide experimental results to show its compactness, speed
of operation and energy efficiency.

1. Introduction

Supply chain management is a complex business, in-
volving many parties and high volumes of goods. Not
surprisingly, manual handling of transported goods leads
to human errors accounting for significant loss in rev-
enue. Automation can improve supply chain visibility, ef-
ficiency and yield higher turnovers. The recent application
of RFID technology is already making a great impact on
the retail supply chain, according to a recent study ([13]).

Other recent developments in low power wireless com-
munication has spawned a new technology: Wireless
Sensor Networks, consisting of small computing devices
equipped with tiny sensors and wireless communication
capabilities. Different from RFID, these devices are
battery-operated, and can communicate with any other de-

vice nearby, sense their environment, and continuously
reason upon the perceived state of the world around them.

Wireless sensor networks hold a great promise for the
supply chain management business. WSN nodes can be
attached to crates, roll containers, pallets and shipping
containers to function as Active Transport Tracking De-
vices as we call them. These devices can actively moni-
tor the transportation process, and verify proper handling
conditions of goods like temperature for fresh foods. Fur-
thermore, these devices can detect damage due to sudden
shocks, or opening of containers and other forms of con-
tract breach. This results in significant quality of service
improvements and greater efficiency which in turn lead to
lower transport cost.

Although current wireless sensor network hardware
platforms are suitable as Active Transport Tracking De-
vices, the state of the art in WSN system software is lack-
ing the right set of features.In this paper we present a
platform called SensorScheme that is able to deliver on
the requirements posed by active tracking logistics sce-
narios. SensorScheme is an interpreter to execute dynami-
cally loaded application code for WSN platforms based on
the Scheme programming language. It presents a safe ex-
ecution environment, in which malfunctioning programs
cannot crash the device, and is equipped with high-level
programming facilities such as garbage collection, com-
munication by automatic marshalling of data items, and
co-routines to implement multiple threads of control and
enable blocking I/O calls. Besides tracking logistical pro-
cesses, SensorScheme can find good use in many other,
more ‘traditional’ WSN applications.

The rest of the paper is organized as follows: Sec-
tion 2 presents an application scenario, followed by a re-
view of the state of the art for realizing this application
in section 3. Next, section 4 describes the design of Sen-
sorScheme, followed by a discussion of implementation
techniques for the scenario in section 5. Then we evaluate
SensorScheme’s performance in section 6, and conclude
and give future directions (section 7).1-4244-0826-1/07/$20.00 © 2007 IEEE 448

2 Scenario

The technology of Wireless Sensor Networks can pro-
vide great benefit to the supply chain management in-
dustry, when used as active transport tracking devices
(ATTDs) attached to returnable transport items (RTIs),
such as crates, rolling containers, pallets and shipping
containers. To illustrate the use of how ATTDs we will
now discuss a small transportation scenario. Consider a
shipment of bananas as it travels from the farm near Rio
de Janeiro, Brazil to a supermarket distribution center in
Rotterdam. The bananas are packed in boxes stacked onto
pallets, each equipped with a tracking device. Early in the
morning, these pallets travel in trucks (owned by the Ba-
nana Transportation Company, or BTC) from the farm to
a loading dock at the harbor, where they are loaded into
shipping containers that carry them all the way to the su-
permarket chain’s distribution center. During the whole
trip, the bananas need to be kept cool, between 10 and 15
degrees Celsius, and away from sources of ethylene gas,
such as fresh coffee beans, that adversely influence the
ripening process.

During the transportation process from the farm to the
distribution center – which we’ll call a journey – a number
of things are monitored:

1. Temperature sensors on the ATTDs measure the am-
bient temperature at 1 minute intervals, and store the
measured temperature in the device’s log file. If the
temperature exceeds the allowed range, the device
will signal an alarm, so measures can be taken im-
mediately.

2. Each pallet’s tracking device communicates with
others around it to verify whether any of those is
transporting coffee beans or other harmful products.
When a pallet is loaded into a container, the device
also requests whether the container can find other
containers carrying harmful products within a certain
distance (of say 10 meters). If coffee beans are found
nearby, the tracking device stores this in its log file
and signals an alarm.

3. During the entire journey, the ATTD on each pallet
checks for adherence to the transportation plan. At
every stage of the journey, it verifies whether it is
loaded into the right truck, and unloaded at the cor-
rect warehouse, as is depicted in figure 1. Every tran-
sition into a new stage of the journey is logged, and
the devices signal an alarm whenever the transport
is not carried out correctly, or within the given time
constraints.

Our bananas pass through a number of stages during
their transport from farm to distribution center, as figure
1 shows. At every stage, a different method of verifica-
tion will have to be carried out, depending on the local
circumstances.

1. at farm

among peer nodes?

2. in truck

3. on harbor dock

at good position?

4. inside container

detect truck

Log company, truckNo

detect absence of truck

 and harbor access

detect container:

shippingID

detect distribution

center access point

5. at distribution center

Figure 1. State diagram of the transporta-
tion process

While a pallet is waiting at the farm to be loaded into
the truck it tries to verify whether it is positioned correctly,
near other pallets that are to be loaded into the same truck.
It does this by comparing its destination and contents with
(the majority of) peer nodes on other pallets nearby. When
a pallet is not positioned correctly or no peer nodes are
found, it should raise an alert.

Next, the pallets are loaded into the truck transport-
ing them to the harbor. Nodes can detect being loaded by
‘hearing’ another device, placed inside the truck. When
in the truck, each pallet device requests from the truck de-
vice the company and truck IDs and records these into the
log file (along with the current time). Pallet devices are
programmed with the information that they will be trans-
ported with any of the trucks of the BTC company before
6 am, and will signal an alarm if either condition is not
met.

While in the truck, pallet nodes do not have to verify
anything, since no change in state will take place until
they are taken out. They do have to detect being taken
out of the truck, however, which can be concluded from
absence of the truck, and presence of the wireless infras-
tructure (access point) of the harbor loading dock. If the
right dock is not detected, or it takes too long before the
pallets arrive, an alarm needs to be signaled.

When unloaded on the dock, the ATTDs again verify
whether they are positioned correctly to be reloaded into
shipping containers. The dock is equipped with advanced
electronic infrastructure capable of tracking each pallet’s
location, and based on this, each pallet verifies whether it
is at the correct position. When placed incorrectly, it can
directly send an alert message to the dock infrastructure

2

449

that will inform workers to correct it. Unlike trucks, ac-
cess points can be out of direct radio connectivity, only
connected through multiple hops, and will need different,
multi-hop communication protocols to communicate with.

For the last stage of the transport, the pallets are loaded
into containers. These can be recognized by a match-
ing shipping ID programmed into each container. Finally,
when the container arrives in the distribution center, pal-
let ATTDs sense the distribution center access point and
make the state transition. Being the home base for this
transport, the Rotterdam distribution center access point
uses proprietary wireless protocols, to allow access only
to the supermarket chain’s owned goods. Again this re-
quires different communication protocols to perform the
journey’s verification.

When errors are detected during the journey, the
ATTDs signal alarms. Different methods of raising the
alert are required, depending on the transport stage. While
pallets are outside the truck, waiting to be loaded, a beep-
ing sound and blinking lights attract the attention of work-
ers that can correct the problem. But when inside the
truck, the alert should be notified to the driver in the truck
cabin instead. At the start of each new stage, the proper
alert procedure is selected to be used by any of the sources
of error that can occur in the device, including the temper-
ature and coffee proximity processes.

2.1. Programming ATTDs
Now that we’ve outlined the functionality ATTDs

should demonstrate, the question arises of how to program
the devices to achieve this behavior. Simple implementa-
tions might involve a fixed program embedded in the de-
vices, to be supplemented with a few parameters, like the
content, destination, transport carrier details. These would
be programmed in when the shipment is sent off. For a
number of limited transportation scenarios this might suf-
fice, but this will certainly not satisfy the worldwide sup-
ply chain management business in all its diversity. Maxi-
mum flexibility is achieved by maximum freedom, ie. to
specify the entire journey verification program, and install
it in each node before the start of the journey.

This flexibility opens up the possibility for many other
verification methods for ATTDs. For example, opening
of container doors can be detected from a sudden change
in ambient temperature. Alternatively, using acceleration
sensors, sudden shocks can be detected and logged, to
find which transporter is responsible for damaged frag-
ile goods like consumer electronics. Furthermore, with
the support of local infrastructure, ATTDs can be pro-
grammed to connect home through a internet connection
to report their status.

Safety must also be considered. Usually, pallets are
owned and managed by a pool organization. Only if users
(transporters) will not be able to ‘break’ the devices (ie.
modify their software operation) can this scenario be a re-
alistic one. Now all that’s needed is a way to express these
itinerary programs that is expressive, compact, and safe.

3. Application requirements and state of the
art

From the scenario described above we can distill a
number of requirements a possible implementation must
meet. We will discuss these and review to what extent the
current state of the art has addressed these issues. As an
implementation platform for active transport tracking de-
vices we assume stock WSN hardware, such as the mica
motes [9].

At the start of each journey, each ATTD needs to be re-
programmed for the upcoming journey, using the wireless
interface. Several wireless code update mechanisms have
been developed already for Wireless sensor network plat-
forms. These work by replacing the entire program image
as a whole. The TinyOS platform [8] for sensor networks
includes XNP [3] and Deluge [10] as two of such tech-
nologies. Unfortunately, this approach is not suitable for
our scenario for a number of reasons.

First, program images typically are a few tens of kilo-
bytes in size, and transporting this much data takes time in
the order of minutes (according to [10], [14]). This can be
improved somewhat by using one of various compression
and differential algorithms (RSYNC [11], MOAP [17],
FlexCup [14]).

Second, these code update mechanisms aim at replac-
ing the entire binary with a new one, including the oper-
ating system that controls task scheduling, low level hard-
ware access, network protocols, and even the code update
mechanism itself, which should not be modifiable by the
ATTD users. Several WSN platforms provide runtime
loadable modules (Contiki [4], SOS [7]), but these still
give unrestricted access to the entire device.

A more suitable approach is the use of an interpreter
or virtual machine. On the one hand, only the application
code needs to be transported to the devices, which sig-
nificantly reduces the size of transported code. Moreover,
since code representation is a design variable, rather than a
hardware characteristic, it can be engineered specifically
to be compact for the kinds of programs expected to be
built for it.

Additionally, the interpreter or virtual machine acts as
what is usually called a ‘sand box’, shielding off the hard-
ware from the interpreted applications. Misbehaving or
buggy applications are thus prevented from modifying any
state besides their own, and cannot crash a device or dam-
age the device’s critical functions.

The most well-known and frequently used virtual ma-
chine architecture in mainstream computing is Sun’s Java
Virtual Machine. It has found use as a sensor network
platform already (Sun SPOTs [18]). SensorWare [2] is
another platform based on interpretation and sandboxing
for WSN’s, using the TCL language. However, both of
these require more resource-rich platforms than the ones
we consider for our application scenario.

Maté / Bombilla [12] is a virtual machine designed
specifically for memory-constrained WSN devices. Un-

3

450

fortunately, Maté can contain only truly tiny applications.
Programs are organized in contexts associated to event
sources, containing a 128 byte instruction array that is
run in response to triggered events. Each context (6 in
total) has its own operand stack, set of 8 local (integer)
variables and a packet buffer. An implementation of our
scenario does, however, require memory allocation by
the loaded program, and dynamic loading of procedures
and custom communication protocols, as demonstrated in
section 5. These severe complexity restrictions exclude
our application scenario from being implemented on top
of MatéḞurthermore, Maté’s concurrency model does not
support multiple independent tasks running in parallel.

4. SensorScheme

We propose SensorScheme as a novel interpreted plat-
form for WSN’s that can be used to implement our ap-
plication scenario. SensorScheme is designed for use on
WSN hardware platforms, taking into account their re-
source restrictions. Most importantly, memory – espe-
cially RAM, is in short supply, and no mechanisms like
virtual memory exist to extend memory use beyond what
is physically available. Furthermore, wireless communi-
cation consumes the majority of energy compared to com-
putation, and should be minimized as much as possible.

The SensorScheme platform uses execution semantics
of the programming language Scheme, hence its name. It
is not an implementation of the Scheme language, how-
ever, and creating SensorScheme programs does not re-
quire the use of the Scheme language or syntax. Instead, a
more familiar C-inspired syntax will be available to users
of the system. The code examples in the following sec-
tions do use Scheme syntax, as the ‘assembly language’
of the SensorScheme runtime engine.

4.1. Memory
SensorScheme is designed specifically for the small

memory size of WSN platforms. All memory is allocated
from a single pool of small equally-sized cells. These
cells correspond to Scheme cons-cells, each containing
two data members which can be a reference to any other
value, such as another cons-cell, a number, booleans (#t,
#f) or the empty list (()). Cells can be combined to form
lists, trees, association lists, and so on.

The global memory pool stores application data as well
as program code and interpreter state like the call stack,
local and global variable bindings and scheduling queues.
Garbage collection reclaims unused cells in the memory
pool.

4.2. Program representation and execution semantics
SensorScheme programs take the shape of a specially

formatted linked list of memory cells, containing the ab-
stract syntax tree (AST) of the program. Figure 2 lists
a grammar of the SensorScheme syntax tree (written in

exp ::= sym
| (exp exp ...)
| (lambda (sym ...) exp)
| (define sym exp)
| (set! sym exp)
| (if exp exp exp)
| (quote exp)
| (prim exp ...)
| num | #t | #f | ()

prim ::= cons | car | cdr | set-car! | set-cdr! | ...
| null? | pair? | symbol? | number? | ...
| + | - | * | / | < | = | > | ...
| eval | apply | call/cc | ...
| call-at-time | bcast | sensor | ...

Figure 2. A grammar for SensorScheme

Scheme bracket notation). The operational semantics of
these rules is as in regular Scheme.

The first rule, exp, describes the set of legal Sen-
sorScheme expressions. Its first three constructs repre-
sent SensorScheme’s lambda-calculus core: variable ref-
erence, application and lambda abstraction. The next
four constructs are the special forms needed to make a
minimally complete Scheme implementation: global vari-
able definition, variable assignment, conditional evalua-
tion, and literal quotation. Then primitive procedure invo-
cation, and the last four rules represent constant reference
(numbers, true, false, empty list).

The set of defined primitives, some of which are given
by the second rule includes most of the common Scheme
primitives, and includes (line by line): cons-cell manipu-
lation, type predicates, arithmetic, flow-control, and I/O.

For a description of the Scheme execution semantics,
we refer the reader to [5].

4.3. Task scheduling
WSN nodes have an inherently reactive or event-based

nature. This is reflected in today’s WSN operating sys-
tems. Program execution is organized in a number of
short-running tasks, which can be scheduled to execute in
response to some event. In general, tasks run until com-
pletion, starting after the previous one has ended.1

SensorScheme is designed to run on event-based WSN
operating systems like TinyOS [8] or Contiki [4]. Sen-
sorScheme defines its own scheduling mechanism on top
of the OS. When an event occurs, a SensorScheme task is
scheduled. These tasks are handled in FIFO order. The
kinds of events that can occur in SensorScheme are 1) fir-
ing a timer, 2) reception of a network message and and 3)
hardware events originating from sensors.

Timer events perform a computation scheduled at a
predetermined moment in time. SensorScheme provides

1With the exception for interrupt handlers or other high-priority
tasks, which can interrupt running tasks.

4

451

(a)
(define (time-loop)

(call-at-time (+ (now) 5) time-loop)

(bcast (list ’gossip 1 2 3)))

(b)
(define-handler (gossip a b c)

; react to the gossip message

; variable src is bound to ID of sender

...)

Figure 3. Example code snippets showing
the use of timer and communication events

a primitive procedure call-at-time that takes as pa-
rameters the scheduled time and the computation as a
zero-argument function. At the scheduled time, the com-
putation is executed as an event handler.

Use of timer events is best illustrated by an example. In
the code sample in figure 3(a) the time-loop function
repeatedly schedules itself at 5 second intervals to broad-
cast a message.

4.4. Communication
Wireless network communication is one of the crucial

components to WSN platforms. In SensorScheme com-
munication is designed to be compact and easy to use.

All SensorScheme data is contained in memory cells
of a small set of data types, tagged with a type code. Us-
ing this runtime type information devices transform a data
structure into a linear representation suitable for network
communication. Upon reception the receiver can recreate
(a copy of) the same data structure from the linear rep-
resentation. This is a familiar technique known as mar-
shalling, also used in other technologies like CORBA or
Java RMI.

SensorScheme communication operates similar to
TinyOS’s Active Message paradigm. A message consists
of a header symbol and a number of data items. The mes-
sage header is a symbol that refers to the global function
that will handle the message, and the data items in the
message act as parameters to the handler function. The
primitive procedure bcast simply sends a message to all
nodes within transmission range. It accepts a single pa-
rameter: a list containing the message content. See figure
3 for a code sample containing bcast. The bcast prim-
itive encodes the message content in linear form into one
or more physical packets, depending on the size of the
message content.

Receivers of this message decode the content of each
packet into the corresponding data items. Then the mes-
sage handler denoted by the header symbol is looked up
and scheduled to run as an event handler. The code sample
of figure 3 (which is loaded at all nodes in a WSN) shows
how communication takes place. Nodes broadcast a mes-
sage containing header gossip and three data items, the
values 1, 2 and 3. Receiving nodes schedule procedure

gossip, which takes the source ID of the sending node
as an implicit parameter bound to src, and bind the three
data items of the message to a, b, and c.

Communication of SensorScheme application code is
straightforward: the data structure describing the code can
be packed inside a SensorScheme message, and on re-
ception ‘eval’-ed to load and execute. There is a prim-
itive procedure called eval-handler, that performs
only that, making it possible to bootstrap an ‘empty’ Sen-
sorScheme node. The eval-handler primitive is defined as:

(define-handler (eval-handler sexpr)
(eval sexpr))

and can be used in the following way:

(bcast (list ’eval-handler
’(define sqr (lambda (x) (* x x)))))

Note that the SensorScheme communication interface
poses no restrictions on the number of data items, or the
size of each data item in a message. Hence, the message
contents can not be assumed to fit inside a single packet
used by the physical network interface, and multiple pack-
ets must be used. We will not discuss the details of encod-
ing and packing of these messages and correct unpacking
on the receiver in this paper due to space constraints.

5. Discussion

Using SensorScheme, ATTDs can be programmed to
perform the tasks discussed in section 2. To illustrate
this we now discuss a SensorScheme implementation of
a part of this scenario. The example shows how Sen-
sorScheme enables easy construction of communication
protocols and blocking call creation, especially useful for
communication-oriented WSN applications.

Recall that while pallets with bananas are at the farm,
waiting to be loaded into trucks, they will check with each
other to verify correct placement. Pallets are placed cor-
rectly if their destination and content matches that of their
peers.

The SensorScheme code presented in figure 4 contains
a number of procedure references defined in the Scheme
standard [1] or one of the srfi’s [16], and we will use them
without further mention of their operation.

Figure 4 shows a SensorScheme implementation of
procedure called peer-verify. The procedure accepts
an association list2 of key-value pairs, and communicates
with all direct neighbors to find their dictionary entries of
given keys. If any of the neighbors’ values are different
from the given parameters, the current alerter function is
called (see lines 2-7).

2An association list is a list of pairs or cons-cells each containing the
key in the car and the value in the cdr of the cell.

5

452

1 (define (peer-verify alist)
2 (if (not (every (lambda (kv)
3 (every (lambda (v)
4 (eq? v (cdr kv)))
5 (peer-dict 5 (car kv))))
6 alist))
7 (alerter ’itinerary-error ’peer-verify)))
8
9 ; requests the value of given keys from all neighbors
10 (define (peer-dict timeout key)
11 (let ((reqid (rand)))
12 (bcast (list ’peer-dict-hdl reqid key))
13 (set! waiting-reqs (cons (cons reqid ())
14 waiting-reqs))
15 (call/cc
16 (lambda (k)
17 (call-at-time (+ (now) timeout)
18 (lambda ()
19 (k (cdr (assoc-and-remove!
20 reqid waiting-reqs)))))
21 (exit)))))
22
23 ; handler invoked at neighbors
24 (define-handler (peer-dict-hdl reqid key)
25 (bcast (list ’peer-dict-rpl src reqid
26 (cdr (assoc key global-dict)))))
27
28 ; handler receiving values from neighbors
29 ; called at requesting node
30 (define-handler (peer-dict-rpl dst reqid val)
31 (when (= dst id)
32 (let ((req (assoc reqid waiting-reqs)))
33 (set-cdr! req (cons val (cdr req))))))

Figure 4. Example program source code

Most of the actual work is done in procedure
peer-dict (lines 10-21). This is a blocking call that
takes a key and timeout value as parameters, and returns
after timeout seconds with the associated values of all its
neighbors.

SensorScheme provides continuations, that can be used
to implement a light-weight concurrency mechanism. It
allows an arbitrary number of simultaneous outstanding
blocking I/O operations, without using more memory than
strictly needed to contain application state. We will not
discuss the semantics of continuations and the call/cc
primitive here; for a thorough description of continuations
we refer the reader to [6].

Function peer-dict sends a request to all neighbors
(line 12) containing a unique request ID (created at line
11) and the requested key, and stores the request ID in the
waiting-reqs dictionary (line 13-14). The call/cc
invocation on line 15 creates a continuation, used to return
to the function’s caller after the timeout. At line 17 a timer
is set up to signal the end of the timeout. Finally, a call to
exit (line 21) aborts the current task, allowing other events
to be processed while peer-dict is blocked.

The message broadcast at line 12 is handled by
the peer-dict-hdl handler at all receiving nodes
(lines 24-26). These nodes simply reply with a
peer-dict-rpl message containing the senders’ ID,
the original request ID and their global dictionary value
associated with the key.

Upon reception of peer-dict-rpl messages at the
requesting device (lines 30-33), it looks up the request ID

in the waiting-reqs dictionary, and extends the value
list with the value just received (line 33).

When after timeout seconds the timer expires (line 18-
20), the request ID is once more looked up, and removed
from the dictionary. Then, with a call to the continuation
bound to variable k, procedure peer-dict is returned,
with the value list created in subsequent invocations of
peer-dict-rpl as return value.

The absence of error checking code is intentional and
illustrates one of the consequences of the use of Sen-
sorScheme. For example, in the peer-dict-hdl han-
dler, if the requested key entry does not occur in the dic-
tionary, no reply message should be sent. This can be
achieved without any explicit error detection or handling
code: Assoc returns #f (false), and taking the cdr of #f
results in an error, which immediately aborts the handler,
without sending any message.

6. Evaluation

We have implemented SensorScheme on a sensor net-
work hardware platform and used it to analyze memory
use, interpretation overhead and energy cost while run-
ning the example application of figure 4.

6.1. Implementation
We have built an initial SensorScheme implementa-

tion on a wireless sensor network platform based on an
MSP430 microcontroller, containing 10 KB of RAM and
48 KB program flash. The device contains a Nordic
nRF905 transceiver chip, communicating at 50 Kbps.

The implementation has not received much attention
towards speed optimizations, leaving significant room for
improvement on the runtime statistics presented later in
this section.

Cells take up 4 bytes each, and are aligned at 4 byte
addresses. The total address space of cells in RAM is
addressed using only 13 bits. SensorScheme values are
expressed in 15 bits, with the low 2 bits available as type
tags for the four possible SensorScheme data types: sym-
bols, short numbers, long numbers and cons cells. The
other 2 bits per cons cell are used for memory allocation
and garbage collection, which is a simple mark and sweep
collector, similar to the original Deutsch-Schorr-Waite al-
gorithm [15].

Table 1 shows the memory use details of the imple-
mentation. The SensorScheme runtime environment, in-
cluding the primitive procedure implementations, is very
small, using only 7.7 KB of program memory. Most of the
10 KB of RAM is available for the shared pool; the rest is
allocated by the OS and network buffers.

6.2. Code size and memory use
Before we will discuss the performed evaluations, we

first consider the size of the program code, shown in ta-
ble 2. To enable running the program presented in figure
4, some standard library functions are also made available

6

453

SensorScheme runtime 7750 bytes Flash
– garbage collector 294 bytes
– cell allocator 122 bytes
– (un)marshaller 1640 bytes
– primitives 3728 bytes

MSP430 memory 10240 bytes RAM
OS and buffers 830 bytes
runtime state 10 bytes
memory pool (2350 cells) 9400 bytes

Table 1. Memory use of SensorScheme im-
plementation

Code size program library all
Source code 963 1032 1991 chars
Net-encoded 176 186 362 bytes
In memory 181 194 375 cells
Available 1975 cells

Table 2. Code sizes of example program

on the nodes, like every and assoc. Table 2 shows that
the library code is just slightly larger than the application
itself. Compared to the source code, the compact network
encoding used reduces it to less than a fifth during trans-
mission across the network. In memory, the program code
size is larger, since it is contained in memory cells, and
consumes a total of 1500 (375 × 4) bytes. That leaves
another 1975 cells available for additional program code
and for use during program execution, by the call stack,
global and local variables, scheduling and timer queues
and application data.

Especially during transmission of program code, Sen-
sorScheme produces a very compact representation that
enables fast and energy-efficient reprogramming.

6.3. Runtime performance and energy use
We have measured memory use and the impact of eval-

uation overhead and garbage collection on total computa-
tion time, which are in short supply on WSN platforms.
Energy use is a crucial performance factor as well, so
we will measure the energy used by execution of Sen-
sorScheme programs.

For computation time measurements we used a proces-
sor emulator in a simulated network of 20 nodes, each pe-
riodically calling the peer-verify function of figure
4. This represents a real-world situation, since only one
itinerary verification would be taking place at any given
time.3 All energy calculations are based on the data sheets
of the hardware components of our implementation plat-
form.

Table 3 (a) lists some results of the running time per in-
vocation of the peer-verify function. For each such

3Other verification tasks might also be active, each taking roughly
similar execution time.

(a)

cycles ms mJ
Execution time and energy 1245483 208 1.27
Fraction spent in allocation 25.2%
Fraction spent in GC 31.4%
– # collections 6.43
– execution time / collection 10.1 ms
– avg. used cells 395 cells
– max. used cells 429 cells

(b)

Comm. energy TX RX total
peer-dict-hdl 2 12.6 msgs
peer-dict-rpl 12.4 107 msgs
OS time 41.4 88.9 130 ms
OS energy 0.25 0.54 0.80 mJ
message size 160 153 bits / msg
air time 89 365 455 ms
radio energy 2.41 14.04 16.45 mJ

(c)

Total energy used
program execution 1.27 mJ 7%
OS communication 0.80 mJ 4%
radio TX / RX 16.45 mJ 89%
Total 18.52 mJ

Table 3. Time and energy use of example
program evaluation

a period, the SensorScheme code takes only 208 ms ex-
ecution time. With a period duration of 10 seconds (the
minimum with twice a timeout of 5 seconds) this is just
two percent of CPU time spent.

A large fraction (about 57%) of execution time is spent
on memory allocation and garbage collection. This is a
logical consequence of the design of SensorScheme; pro-
gram data as well as stack frames are allocated from the
memory pool. This quickly consumes all memory, after
which a garbage collection cycle is necessary. Garbage
collection itself causes application pauses of only 10 ms,
an acceptable delay for most WSN applications.

At the end of every garbage collection the average
number of cells used is 395, and the maximum is 429.
Considering the 375 cells used to store the program, be-
tween 20 and 54 cells are taken for program data and run-
time structures. Altogether, less than one fifth of the to-
tal memory is needed by this application, leaving ample
space for other larger or more complex applications.

Communication takes a significant fraction of the total
energy use on WSN nodes. Table 3 (b) shows the number
of messages sent and received per period, and the energy
spent on additional computation by the OS, based on es-
timations, and the energy use of the radio during sending
and receiving. (Before sending, the radio needs to power
up taking an additional 3 ms, included in the air time.)

Finally, taking these three sources of energy use to-
gether, table 3 (c) shows the relative cost of each of those.
It shows that most energy is used by the radio power dur-

7

454

ing communication (89 %), while computation time takes
only 7 % of the total energy spent. We have not taken into
account other sources of energy use like MAC protocol
overhead (idle listening) and sensor readouts, which only
reduce the fraction of energy used by program interpreta-
tion. In conclusion, the effect of interpretation overhead
on the total energy budget is minimal, accounting for no
more than 7 percent.

7. Conclusion and future directions

This paper identifies supply chain management as an-
other application area of wireless sensor networks. We
have outlined the possibilities of Active Transport Track-
ing Devices that can greatly enhance efficiency and quality
of service for the transport and logistics industry. Further-
more, we have discussed a typical use case for ATTDs
and analyzed how this might be implemented using cur-
rent WSN technology. Current WSN system software has
high resource requirements, or provides too little function-
ality to satisfy the application requirements, mainly due to
memory-starved WSN platforms.

SensorScheme is our proposed platform for imple-
menting active transport tracking functionality on stock
WSN hardware. Based on the semantics of the program-
ming language Scheme, it brings the benefits of high level
languages, like garbage collection, concurrency, and auto-
matic marshalling of messages, together resulting in even
smaller program sizes. Still, the SensorScheme imple-
mentation is small and efficient. By making better use of
the little available memory, SensorScheme is able to pro-
vide a wider range of functionality. SensorScheme causes
only marginal additional energy use and no significant de-
lays due to program interpretation and garbage collection.

Still, research challenges remain. Additional security,
like tamper-proof operation and secrecy of log data should
also find their way into the SensorScheme platform. Fur-
thermore, dynamic memory allocation causes a degree of
unpredictability, possibly causing nodes to fail at arbitrary
moments when no more free memory remains. Methods
to alleviate this issue will greatly increase usability of the
platform.

Acknowledgement

This work was partly funded by the European 6th Frame-
work Programme as part of the projects CoBIs (IST-2-
004270) and e-SENSE (IST-4-027227).

References

[1] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I.
AdamsIv, D. P. Friedman, E. Kohlbecker, J. G. L. Steele,
D. H.Bartley, R. Halstead, D. Oxley, G. J. Sussman, G. B.
andC. Hanson, K. M. Pitman, and M. Wand. Revised re-
port on the algorithmic language scheme. Higher Order
Symbol. Comput., 11(1):7–105, 1998.

[2] A. Boulis, C.-C. Han, and M. B. Srivastava. Design
and implementation of a framework for efficient and
programmablesensor networks. In MobiSys ’03: Pro-
ceedings of the 1st international conference on Mobile
systems,applications and services, pages 187–200, New
York, NY, USA, 2003. ACM Press.

[3] Crossbow Technology. Mote in-network programming
user reference, 2003. http://www.tinyos.net/
tinyos-1.x/doc/NetworkReprogramming.
pdf.

[4] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny net-
workedsensors. In Proceedings of the First IEEE Work-
shop on Embedded Networked Sensors (Emnets-I), Tampa,
Florida, USA, Nov. 2004.

[5] R. K. Dybvig. The Scheme Programming Language. The
MIT Press, 2003.

[6] D. Ferguson and D. Deugo. Call with current continua-
tion patterns. In 8th Conference on Pattern Languages of
Programs, Sept. 2001.

[7] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivas-
tava. A dynamic operating system for sensor nodes. In
MobiSys ’05: Proceedings of the 3rd international confer-
ence on Mobile systems,applications, and services, pages
163–176, New York, NY, USA, 2005. ACM Press.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E.Culler, and
K. S. J. Pister. System architecture directions for net-
worked sensors. In Architectural Support for Program-
ming Languages and Operating Systems, pages 93–104,
2000.

[9] J. L. Hill and D. E. Culler. Mica: A wireless platform
for deeply embedded networks. IEEE Micro, 22(6):12–
24, 2002.

[10] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programmingat scale.
In Proceedings of the 2nd international conference on
Embedded networked sensorsystems, pages 81–94. ACM
Press, 2004.

[11] J. Jeong and D. Culler. Incremental network programming
for wireless sensors. In First IEEE Comm. Soc. Conf. on
Sensor and Ad Hoc Communications and Networks, 2004.

[12] P. Levis, D. Gay, and D. Culler. Bridging the gap: Pro-
gramming sensor networks with application specificvirtual
machines. Technical Report CSD-04-1343, UC Berkeley,
Aug 2004.

[13] LogicaCMG. Making waves: Rfid adoption in returnable
packaging, 2004.

[14] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder,
O. Saukh, and K. Rothermel. Flexcup: A flexible and ef-
ficient code update mechanism for sensor networks. In
Proceedings of the Third European Workshop on Wireless
Sensor Networks (EWSN2006), pages 212–227, February
2006.

[15] H. Schorr and W. M. Waite. An efficient machine-
independent procedure for garbage collection in various
list structures. Commun. ACM, 10(8):501–506, 1967.

[16] SRFI. Scheme requests for implementation. http://
srfi.schemers.org/.

[17] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote
code update mechanism for wireless sensor networks.
Technical Report CENS-TR-30, University of California,
Los Angeles, Center for Embedded Networked Comput-
ing, November 2003.

[18] Sun SPOTs. http://www.sunspotworld.com/.

8

455

