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Abstract
The seismic bearing capacity of shallow strip footings located on homogeneous soils is studied extensively. But the effect

of building height and layering is not included in those studies. In this paper two-layered cohesive soils are studied along

with building height effect. The formulation of the problem is derived by extending the limit equilibrium method

developed by Merlos and Romo (J Soil Dyn Earthq Eng 26(2):103–114, 2006) for two-layered soils. A log-spiral potential

failure surface is assumed, and the inertia forces are applied directly to the building and the failure block soil mass. The

position of the failure surface is obtained by a minimization process for every earthquake shaking acceleration. Results

show that the potential failure surface moves upward and its length shortens as the peak ground acceleration (PGA)

increases, reducing the bearing capacity. Also, the effects of building height, PGA, ratio of cohesion of the layers and the

thickness of the top layer on seismic bearing capacity factor (Nce) are studied.
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1 Introduction

The most severe loading condition a foundation undergoes

is what happens during an earthquake. Thus, the design of

foundations in seismic areas needs special consideration

compared to the static case. Some researchers have studied

the seismic bearing capacity of shallow strip footings,

either theoretically or experimentally. Three main approa-

ches are followed in theoretical studies: pseudo-static,

pseudo-dynamic and full dynamic analysis. In pseudo-sta-

tic approach, horizontal and vertical accelerations are

applied to the center of gravity of the structure or at the

foundation level, and the problem is reduced to a static case

of bearing capacity with inclined eccentric loads. In most

of these solutions, the inertia of the soil mass is not

included. In a pseudo-dynamic approach, the failure sur-

face developed during dynamic condition is assumed to be

similar to the one under static loading and the equation of

motion is derived from the dynamic equilibrium

conditions. In this context, the effect of the earthquake on

supporting soil is included in the equilibrium equation.

Also, the distribution of earthquake acceleration is inclu-

ded. The full dynamic approach is based on time-history

analysis using numerical methods.

The majority of the earlier studies are analytic in the

context of pseudo-static approach. These studies use sev-

eral different solution methods such as limit equilibrium,

stress characteristics, limit analysis and variational meth-

ods. The first studies performed in limit equilibrium con-

text did not include the inertia force on soil (Triandafilidis

1965). Subsequent studies considered the seismic forces

both on the structure and on the supporting soil mass

(Sarma and Iossifelis 1990; Richards et al. 1993; Kumar

and Kumar 2003; Tiznado and Paillao 2014). In most of

these cases, the failure surface is assumed to be a constant

log-spiral (Fig. 1), the focus of which is at the edge of the

footing, which is not supported by the actual performance

of foundations. Merlos and Romo (2006) presented a new

method in which time-varying inertia forces are applied

directly to the building. This method is capable of esti-

mating vertical displacements and foundation tilting by

integrating the angular moment equilibrium differential

equation. The position of the failure surface was obtained
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by a minimization process at every time increment. Results

showed that under an earthquake loading the potential

failure surface moves upward and its length shortens as the

seismic accelerations increase, reducing the bearing

capacity. Some researchers used the upper bound theorem

of limit state analysis (Richards et al. 1993; Dormieux and

Pecker 1995; Paolucci and Pecker 1997; Soubra 1999;

Ghazavi and Parsapajouh 2006) to study the problem in a

more rigorous way. The shear resistance of the soil mass

above the footing level has not been incorporated in the

previous analyses. Using upper bound theorem and

including this shear resistance Kumar and Ghosh (2006)

provided the values of the seismic bearing capacity factors

for footing embedded on the sloping ground surface. Far-

zaneh et al. (2013) developed a rigorous lower bound

solution using finite elements modified by extension ele-

ments which are used to extend the stress field into a semi-

infinite domain. Using the homogenization technique and

stress characteristics line method Keshavarz et al. (2011)

modeled the seismic behavior of reinforced soil and cal-

culated the pseudo-static earthquake coefficients. Soubra

and Regenass (1992) used variational method, in which

equilibrium and Mohr–Coulomb equations are the con-

straint functions and the bearing capacity function is min-

imized. This method is in good compatibility with

observations of slip surface. Various numerical methods

were applied utilizing realistic constitutive equations and

accounting for earthquake characteristics including finite

difference method (Kholdebarin et al. 2008), discrete ele-

ment method (Majidi and Mirghasemi 2008) and finite

element method (Shafiee and Jahanandish 2010; Elia and

Rouainia 2014). Shafiee and Jahanandish (2010) used the

finite element method for a wide range of friction angles

and seismic coefficients, and compared to available

solutions in the literature, the results showed that the soil

inertia does not have any significant impact on the seismic

bearing capacity. Also, many experimental studies are

performed on small-scale models, among which Vesic

et al. (1965), Das and Maji (1994), Boulanger and Idriss

(2007) and Castelli and Lentini (2012) are notable. Using

high-speed video, PIV and photogrammetry, Knappett

et al. (2006) observed that the failure mechanism is similar

to the surface assumed in the static case. It was observed

that the failure mechanism changes during each cycle of

the earthquake and as the earthquake PGA is increased the

rotation center moves from the foundation corner toward

its center.

The previous studies assume a homogenous and iso-

tropic soil. Also, the effect of building is not included

directly. In this study, the Merlos–Romo’s approach is

modified and used to include both soil layering and

building effects in calculating the seismic bearing capacity

of the foundations on cohesive soils. The effects of struc-

ture height, PGA, the ratio of cohesion of layers and the

thickness of the first layer are studied.

2 Method of Analysis

Pseudo-static approach and limit equilibrium method are

utilized for the calculation of seismic bearing capacity

factors of two-layered cohesive soil. The soil in each layer

is assumed to be homogeneous and isotropic. The soil is

assumed as rigid-perfect-plastic material satisfying the

Mohr–Coulomb failure criterion. The values of soil

parameters, cohesion c and density of soil c, are assumed to

stay constant during an earthquake. Uniform seismic

accelerations are assumed in the domain under

Fig. 1 Geometry of critical slip surface according to Sarma and Iossifelis (1990)
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consideration. The horizontal seismic accelerations are

considered both on the foundation and within the soil mass

beneath the foundation seismic. Also, it is assumed that for

seismic loading the failure surface changes in shape, length

and depth depending on the horizontal acceleration applied

to the system. This assumption improves the results.

2.1 Formulation of the Problem

According to D’Alembert’s principle, an inertia force, Fhe,

is developed in opposite direction of the action of seismic

force when the soil mass beneath the foundation moves due

to earthquake loading and a logarithmic spiral potential

failure surface is formed as shown in Fig. 2. The governing

equations of the system are developed by considering the

rotational equilibrium of the acting and resisting moments

on the spiral center, 0. The acting forces include the

building weight, We; the weight of the surrounding soil,

Wsa; and the weight of the rotating soil mass, Ws.

When the acting moments exceed the resisting

moments, the failure surface develops, and the system

starts rotating as shown in Fig. 3a, where w is the rotation

angle about the vertical line. Also, the dimensions of the

building are given by width, B, height, He, foundation

depth, Df, and center of gravity, Heq. Its length, B1, and

coordinates of center of rotation xgi and ygi present the

geometry of failure surface with a and b angles defining the

log-spiral shape.

The D’Alembert’s inertial force, Fhe, is equal to:

Fhe ¼ meae ¼
qBL

g
ae; ð1Þ

where me is the mass of the structure and ae is the applied

acceleration at the mass center of gravity and q is the

pressure inserted by the structure on the foundation due to

its weight. The horizontal and vertical distances of log-

spiral center with respect to the point of application of

horizontal earthquake force, xd and yd, can be calculated as:

xd ¼ B

2
� xgi ¼

B� 2xgi

2
ð2Þ

yd ¼ Heq � ygi; ð3Þ

where xgi and ygi are the coordinates of the center of log-

spiral with respect to the edge 1 of the building and Heq is

the height of the point of application of earthquake with

respect to foundation edge, as shown in Fig. 3b.

2.1.1 Driving Moments

The driving moments include the one due to the weight of

the structure and the one due to earthquake and rotation of

the structure. The driving moment due to the weight of the

structure is:

Mawe ¼ Wexd ¼ qBL
B� 2xgi

2

� �
: ð4Þ

The driving moment due to the horizontal force of

earthquake is calculated as follows:

Mafh ¼ Fheyd ¼ qBL

g
aeyd: ð5Þ

The driving moment due to the tilting of the structure

under the static service loads is:

Maie ¼ WeHeqw ¼ qBLHeqw; ð6Þ

where w is the clockwise tilt angle as shown in Fig. 3. In

this study it is assumed that the initial tilt of the structure is

negligible.

2.1.2 Resisting Moments

The equation of log-spiral failure surface is:

r ¼ r0eh tanu; ð7Þ

in which r is equal to r0 if h is equal to zero. Also, it can be

calculated as:

r0 ¼ r1

eb�tanu
; ð8Þ

where r1 is the distance between the rotation center and

building edge 2 and b is the angular between r1 and r0. For

practical problems, it is necessary to study the layered

soils. Extending the Richards’ formulation, Ghazavi and

Parsapajouh (2006) studied the two-layered sandy soils.

But the two-layered clayey soils were not studied earlier.

Assuming a layered undrained clayey soil with zero

internal friction angle (/ = 0) the failure mechanism

Fig. 2 Geometry of critical slip surface
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degenerates to a circular arc, the center of which is to be

determined through minimization of bearing capacity.

The equation of the circle is written as:

r ¼ r0; ð9Þ

in which r0 is the radius of failure surface. The geometric

and mechanical properties are presented in Fig. 4. The

necessary condition for the failure to pass through the

second layer is:

r0 � ygi

� �
� H1 � Dfð Þ; ð10Þ

in which H1 is the thickness of the upper layer.

2.1.3 Two-Layered Soil

Considering the geometry of two-layered soil problem, if

the foundation is seated in the first layer, Df\H1, the

resisting moment due to cohesion can be written as:

Mrsf ¼ 2 c1r
2
0L h� h1ð Þ þ c2r

2
0Lh1

� �
; ð11Þ

in which c1 and c2 are the cohesions of upper and lower

layers, respectively. In OFE triangle it is evident that:

cos h ¼ ygi

r
: ð12Þ

Also, in OIG triangle:

cos h1 ¼ ygi þ h

r
: ð13Þ

The resisting moment due to internal friction of the soil

is negligible. However, the resisting moment due to the

weight of the surrounding the foundation can be calculated

as:

Mrsa ¼
c1DfL

2
B2

1 � x2
gi

� �
; ð14Þ

where c1 is the unit weight of the upper layer. In case that

the failure surface is complete in the first upper layer, the

condition presented in Eq. (10), the problem is reduced to a

single clayey layer.

2.1.4 Seismic Bearing Capacity

At limit equilibrium the resisting moments and driving

moments are equal. The seismic bearing capacity is derived

by equating these two:

que ¼
P

Mr ¼ Mras þMrsf

BL xd þ jaej
g
yd

h i ; ð15Þ

where xd and yd are the coordinates of the center of gravity

of the failure surface in the minimization region as shown

in Fig. 3b. Using Eqs. (13) and (17) for moments, one can

reach:

(a) Geometric parameters of the soil-building system (b) Region of the center of failure surface

ψ

Fig. 3 a Geometric parameters of the soil–building system; b region of the center of failure surface

Fig. 4 Geometric and mechanical parameters of two-layered soil–

building system
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que ¼
c1Df

2
B2

1 � x2
gi

� �
þ 2 c1r

2
0 h1 � h2ð Þ þ c2r

2
0h1

� �
B xd þ jamaxj

g
yd

h i : ð16Þ

In this study the seismic bearing capacity is not constant

and varies due to changes of the coordinates of the center

of rotation and the extent of failure surface (Merlos and

Romo 2006). It is clearly evident that earthquake acceler-

ation has an inverse relation with the seismic bearing

capacity. Therefore, the ultimate bearing capacity corre-

sponds to peak ground accelerations. Assuming a peak

ground acceleration, an optimization process is conducted

in order to minimize the surcharge, which is calculated by

Eq. (16) and considered as the ultimate bearing capacity at

that specific horizontal acceleration. Also, the corre-

sponding failure surface is considered as the critical sur-

face. This is performed by using a computer program

which changes the center of failure surface in the lower

half of the structure for all points. Any point not in the

shaded rectangular area in Fig. 4b, used as the center of

failure surface, will give a higher bearing capacity, which

is not on the safe side.

The results of calculations can be presented in a series of

the non-dimensional format of graphs. The general non-

dimensional form is given in (17):

que

c1

¼ F
He

B
;
H1

B
;
c1

c2

;
Df

B
;
C1

C2

;
amax

g

� �
; ð17Þ

where F denotes the function of seismic bearing capacity.

In case of cohesive soils (/ = 0) this equation reduces to:

Nce ¼
que

c1

: ð18Þ

3 Results and Discussion

3.1 The Homogenous Soil

A homogenous soil foundation is modeled by assuming

equal cohesion for both layers of the soil.

3.1.1 Comparison with Other Researches

The majority of researches in seismic bearing capacity are

related to granular soils, and the results on cohesive soils

are limited. Also, the effect of building height and layered

soils is not studied in any previous research. In Fig. 5,

available research and this method are compared for

homogenous soils. The effect of building height is not

included in other methods, such as Askari et al. (2005) and

Kumar and Mohan Rao (2002). At low building heights the

results are very close. This verifies the method used in this

study. But a notable reduction in bearing capacity is pre-

dicted as the building height is increased. Also, the

reduction is downsized as the peak acceleration is

increased. This shows that ignoring the impact of building

height can lead to an unsafe design.

3.1.2 The Effect of Building Height

The results of calculations for the case of buildings of

different heights in a homogenous soil are presented in

Fig. 6. It is evident that increasing the height of the

structure reduces the seismic bearing capacity at any

specific PGA. Similarly, increasing the PGA of earthquake

reduces the seismic bearing capacity.

3.1.3 The Effect of Building Embedment

The effect of foundation embedment depth (Df), for a wide

range of building heights and foundation embedments and

widths, is presented in Fig. 7. This shows that at similar

conditions of building height, He, and foundation width, B,

the foundation depth has a negligible effect on the seismic

bearing capacity factor, Nce.
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Fig. 5 Comparison of building height with other researches in

homogeneous soils

0

1

2

3

4

5

6

1 2 3 4 5

N
ce

He/B

0.5g

0.4g

0.3g

0.2g

0.1g

sta�c
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3.2 Two-Layered Soil

The extended formulation was used for reviewing the

effect of a few influential parameters on the seismic bear-

ing capacity. These parameters are usually ignored in such

studies. The results are calculated for a broad range of

values of different parameters involved, and only a few are

presented in the following. Due to number and complexity

of the problem and interaction of the parameters, the results

presented in each part are for some practical values.

3.2.1 The Effect of Building Height and PGA

Figure 8 presents the effect of the height of the structure

and PGA on the seismic bearing capacity for a variety of

top layer thicknesses and the ratio of cohesion of the layers.

As expected, increase in the height of the structure and

PGA reduces the seismic bearing capacity. Also, for a

certain thickness-to-width ratio (H1/B) and cohesion ratio

(C1/C2), the coefficient NCE reduces to some limit as the

building height is increased. This can be due to the fact that

in those cases the failure mechanism becomes shallow and

locates in the top layer. Therefore, it is less affected by the

cohesion of the lower layer. Furthermore, as the height of

the structure is increased the effect of PGA becomes more

prominent, as the failure mechanism becomes shallower at

lower PGA. It is interesting that at C1/C2\ 1, the coeffi-

cient NCE is less than that of corresponding values for

lower thickness ratio, H1/B. However, in cases of C1/

C2[ 1, the coefficient NCE becomes higher than that of

corresponding values for higher thickness ratio, H1/B. This

issue is due to the penetration of failure surface into the

lower layer. When the top layer is thicker, its penetration is

less into the lower stronger layer. It is found that at a

certain height-to-width ratio, (He/B), and top layer thick-

ness-to-width ratio, (H1/B), increasing PGA drives the

failure mechanism up and increases the effect of the upper

layer. Also, the results compare well with the experimental

results presented in Vesic et al. (1965) and Kumar and

Mohan Rao (2002).

3.2.2 The Effect of the Ratio of Cohesions of the Layers

As the ratio of cohesion has a complex effect on the seis-

mic bearing capacity ratio, as presented in Fig. 9, for a

certain configuration and PGA, three features are encoun-

tered: initial constant part, quadratic decreasing part and

final asymptotic part. The general trend is that as the

cohesion ratio increases the failure surface penetrates more

in the lower layer and, on the contrary, it becomes shal-

lower as the ratio reduces down to about 1. At lower values

of cohesion ratio, the failure surface remains in the upper

layer. Therefore, the cohesion of the lower layer has no

effect on the results. At high cohesion ratios as the failure

surface penetrates deep into the lower layer, the effect of

cohesion of upper layer has a very low effect on the results.

Meanwhile, at intermediate cohesion ratios, the reduction

trend is quadratic.

3.2.3 The Effect of the Thickness of the Top Layer

Considering the results presented in Fig. 10, it is concluded

that increasing the thickness of the top layer decreases the

influence of the lower layer. In case the ratio of thickness to

width of the structure equals 1, the seismic bearing

capacity ratio becomes constant as the whole failure

mechanism locates in the top layer. The constant value

depends on other effective parameters. Also, for a specific

PGA and height-to-width ratio of the structure, the seismic

coefficient ratio increases as the thickness of the top layer

is increased if the top layer is stronger, C1/C2[ 1. If the

top layer is weaker than the lower layer, C1/C2\ 1, and its

thickness is enough, H1/B[ 0.5, the seismic coefficient

becomes constant regardless of the cohesion ratio, C1/C2,

as the failure surface does not penetrate into the lower

layer.

3.2.4 The Effect of the Building Embedment

The failure mechanism is assumed to extend only to the

foundation level, and the soil above the foundation depth is

assumed only as a surcharge. Therefore, if the foundation

depth is greater than the thickness of the top layer, the

problem would reduce to a single-layer case. Figure 11

presents the results for a broad range of data showing the

effect of building embedment. The trend for other data is

very similar. As seen, at a certain thickness of the top layer,

H1/B, increasing the foundation depth, Df/B, will increase

the effect of the lower layer as the failure mechanism

penetrates more in the lower layer. If the top layer is

weaker, C1/C2\ 1, then the seismic bearing capacity

Fig. 7 Effect of building embedment on seismic bearing capacity in

homogeneous soils
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factor, Nce, will increase. However, if the top layer is

stronger, C1/C2[ 1, the seismic bearing capacity factor,

Nce, will decrease. Also, if both H1/B and Df/B increase

equally then the seismic factor increases only equal to

increase in cDf. In this study, the results of the Df/B = 0

and H1/B = 0.5 are very similar to the results of Df/

B = 0.25 and H1/B = 0.75, as the increase in cDf is very

small due to small foundation width assumed for simula-

tions. Since both the higher buildings, higher He/B, and

higher earthquake PGA, higher amax/g, drive the failure

mechanism upward, the difference between a shallower

foundation and deeper one will reduce as these are

increased.

4 Conclusions

Using the limit equilibrium method and pseudo-static

method of analysis, an extension of Merlos and Romo

model is developed for considering the effect of soil lay-

ering and height-to-width ratio of building on the seismic

bearing capacity of shallow strip foundations. These were

not considered in earlier studies. The material is assumed

to be rigid-perfect-plastic. The model was verified by

comparing with the results of homogeneous soils. Also, the

effects of some effective parameters on the seismic bearing

capacity factor are studied and compared to experimental

results. The results emphasize that the bearing capacity is

reduced mainly due to the horizontal force of earthquake

under seismic loading, which drives the failure surface

upward. The results, also, clearly show that the failure

surface position and size and the seismic safety of the

foundations depend on the acceleration magnitudes devel-

oped throughout the seismic event as shown in Figs. 7, 8

and 9. This is supported by the experiments presented in

Boulanger and Idriss (2007), Knappett et al. (2006) and

Vesic et al. (1965). In both cases of homogeneous or two-

layered soils, increasing the PGA of an earthquake or the

height of the structure reduces the seismic bearing capacity

factor. The cohesion ratio has a complex effect on the

seismic bearing capacity factor. In general, the failure

surface tends toward the weaker layer. The failure surface

would confine in the top layer if this layer is weaker, while

if the stronger layer is on the top, the failure surface would

Fig. 8 Effect of building height and PGA on seismic bearing capacity in two-layered soils
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penetrate deep into the lower weak layer. If the thickness of

the top layer, H1, is greater than 0.5B, then the lower layer

is not contributing, and the bearing capacity factor remains

constant if the top layer is weaker, while if the top layer is

stronger, thicker top layers increase the bearing capacity

factor as the contribution of lower weak layer reduces.

Also, it was concluded that increasing the foundation

depth, Df/B, increases the effect of the lower layer as the

failure mechanism penetrates more in the lower layer. A

weak top layer increases the seismic bearing capacity

factor, while a stronger top layer reduces it. If both the

thickness and foundation depth ratios increase equally, the

seismic bearing capacity factor remains constant.
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Fig. 11 Effect of foundation embedment on seismic bearing capacity in two-layered soils
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