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Abstract The bored pile foundations are gaining popu-

larity in construction industry because of ease in con-

struction, low noise and vibrations. The load-carrying

capacity of bored pile foundations is dependent upon soil–

structure interaction. This being a three-dimensional

problem is further complicated due to large variations in

soil properties. Also, modeling of soil is difficult because

of its nonlinear and anisotropic nature. For such cases, the

artificial neural network (ANN) and nature-inspired opti-

mization techniques have been found to be highly suit-

able to attain acceptable levels of accuracy. In the present

study, two ANNs have been trained for determination of

unit skin friction and unit end bearing capacity from soil

properties. The training data for ANNs have been obtained

from finite element analysis of pile foundations for 4809

different soil types. A dataset of 50 field pile loading test

results is used to check the performance of the developed

artificial neural networks. To enhance the accuracy of the

developed ANNs, two correlation factors have been

determined by applying four popular nature-inspired opti-

mization algorithms: particle swarm optimization (PSO),

fire flies, cuckoo search and bacterial foraging. In order to

rank these optimization algorithms, parametric and non-

parametric statistical analysis has been carried out. The

results of optimization algorithms have been compared to

find the most suitable solution for this multi-dimensional

problem which has a large number of nonlinear equality

constraints. The effectiveness and suitability of the nature-

inspired algorithms for the presented problem have been

demonstrated by computing correlation coefficients with

field pile loading test results and then with the total exe-

cution time taken by each algorithm. The results of com-

parison show that PSO is the best performer for such

constrained problems.

Keywords Particle swarm optimization � Firefly

algorithm � Cuckoo search � Bacterial foraging � Bored pile

foundation

1 Introduction

Solving real-life optimization problems using conventional

methods requires substantial effort and time as the solution

lies in the precise quantities associated with the variables

which have nonlinear relationships. The variables also have

equality and non-equality constraints. The presence of

large number of variables and constraints generates an

exceptionally wide search space. Classical optimization

techniques such as exhaustive search have been found to be

inefficient for solving such type of problems. Approximate

algorithms based upon the concept of evolution and swarm

intelligence have been found to be more efficient in solving

high-dimensional problems characterized by the presence

of large number of variables and constraints. These algo-

rithms have been found to provide high speedups, easier to

implement and provide near optimal solutions by aug-

menting the current best solution using the principle of

randomization. The approximate algorithms are being

widely used in multifarious fields of science including

computational intelligence, artificial intelligence and soft

computing. Many of approximate algorithms are inspired

by various phenomena which occur in nature. genetic

algorithm (GA), particle swarm optimization (PSO),
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artificial bee colony (ABC), firefly (FF) algorithm, ant

colony optimization (ACO), cuckoo search (CS), gravita-

tional search algorithm (GSA), bacterial foraging (BF), etc.

are popular nature-inspired optimization algorithms. These

algorithms are being used in the area of civil engineering.

Cui and Sheng [1] used genetic algorithm and finite ele-

ment displacement method to compute reliability index.

They found that genetic algorithm relatively took less

computation time. Liu et al. [2] used automatic grouping

genetic algorithm for optimizing the pile group design. Liu

et al. [3] proposed genetic algorithm for determining load-

carrying capacity of composite foundation. Elbeltagia et al.

[4] compared PSO with genetic algorithm and other evo-

lutionary techniques and found the PSO algorithm to be

more efficient and easy to implement. ANNs have been

used to compute the load-carrying capacity of driven piles

by a number of researchers [4–6]. Ismail et al. [7] used

ANN for load deformation analysis of pile foundation. The

ANN was trained first by PSO and then by back

propagation by [8, 9]. Ismail et al. [10] analyzed load

deformation of pile foundation by PSO-BP hybrid.

The input parameters considered by various researchers

for the design of pile foundation are given in Table 1. The

input parameters used for the study were effective angle of

shearing resistance, effective cohesion intercept, modulus

of deformation, Poisson’s ratio, unit weight and depth of

soil layer. These input parameters were the same as

required by the finite element method for the determination

of unit skin friction resistance and unit tip bearing capacity

of the pile foundation. The ANNs were developed using the

input and target data obtained from the finite element

method. These input/output data are free from noise which

generally characterizes the field observations due to

heterogeneous and anisotropic behavior of the soil. The

manual and instrumental errors also add to the noise in the

field observations. The ANNs so developed in the study

reported a high value of coefficient of determination

averaging 0.99996. This study differs from the earlier

Table 1 Methodology followed by various researchers for the design of pile foundation

Sr.

No.

Researcher Techniques Input parameters Output parameter Performance

1. Goh [11,

12]

Artificial neural network Pile length, mean effective stress, pile

diameter and undrained shear strength

Skin friction resistance in

clays

Correlation coefficient:

In training: 0.985

In testing: 0.956

2. Goh [13,

14]

Artificial neural network Hammer weight, Hammer type, Hammer

drop and, and pile length, cross-sectional

area, weight, modulus of elasticity and

pile set

Load capacity of driven

piles in cohesionless

soils

Correlation coefficient:

In training: 0.96

In testing: 0.97

3. Chan et al.

[5]

Artificial neural network Elastic compression of pile, energy

delivered to the pile elastic compression

of soil and pile set

Pile load capacity RMSE: In training:

13.5 %

In testing: 12.0 %

4. Lee and

Lee [15]

Artificial neural network

(model pile load test

results)

Penetration depth, mean normal stress of

the calibration chamber, number of

blows and penetration ratio

Ultimate bearing capacity

of pile

Average summed

square error\ 15 %

5. Abu-Kiefa

[16]

Three artificial neural

network models

Angle of shear resistance along the pile

shaft, effective overburden pressure at

the pile tip, angle of shear resistance at

the pile tip, equivalent pile cross-

sectional area and pile length

Pile shaft capacity, tip

capacity and load

capacity of driven piles

in cohesionless soils

Coefficients of

determination: 0.95

6. Shahin

and

Jaksa

[17, 18]

Multi-layer perceptrons

artificial neural

network and B-spline

neurofuzzy network

Anchor diameter, average cone sleeve

friction along the anchor length, anchor

embedment length, installation

technique, average cone tip resistance

along the anchor length

Pullout capacity in case

of micro-piles

Correlation coefficient:

In MLP model: 0.83

In B-spline neurofuzzy

model: 0.84

7. Nejad

et al.

[19]

Artificial neural network Applied load, soil properties, embedded

length of pile and SPT values

Pile settlement Correlation coefficient:

0.972 for

settlement B 185 mm

8. Alkroosh

and

Nikraz

[20]

Gene expression

programming

correlation model

SPT data and dynamic input Pile load capacity Coefficient of

determination: In

training: 0.94

In testing: 0.96
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studies in that it considers soil–structure interaction also

(given by finite element method) along with the field

observations.

2 Analysis of pile foundation

The loading of pile foundation results in corresponding

settlement. The settlement of a pile foundation is resisted

by soil. This resistance is due to development of skin

friction all around pile shaft and tip bearing capacity. When

the settlement of pile is in the range of 5–10 mm relative to

soil, the skin friction gets fully mobilized [21]. The tip

bearing capacity varies almost linearly with settlement of

pile. The tip bearing capacity reaches a maximum value

when the settlement of pile is 10–25 % of the pile diameter

[21]. The total settlement of pile foundation is sum of time-

independent immediate settlement and time-dependent

compaction of soil. Poulos and Davis [22] proved that

immediate settlement is the maximum contributing factor

in the total settlement of pile foundation. The immediate

settlement can be calculated by the methods proposed by

Meyerhof [23] and Vesic [24] which are based on semi-

empirical approach. The most commonly used methods for

pile foundation analysis are load transfer method, elastic

method (using equations by Mindlin [25]) and finite ele-

ment method.

The finite element method (FEM) was developed by [26,

27]. It is widely used in the analysis of soil–structure

interaction problems. In this method, the soil mass is

divided into finite number of elements. All these elements

are connected to each other at their common points which

are called nodal points. A set of simultaneous algebraic

equations at node is developed using this procedure [28].

The soil is represented as a mesh with soil elements and

nodes. The displacements of each soil elements are deter-

mined from the displacements of its nodal points. The

strain of soil elements is determined from nodal displace-

ments by a displacement function [29]. The level of stress

is calculated from strain in the soil element and elastic

properties of soil. Once the constitutive relationship of soil

is known, the equilibrium equations of soil elements can be

solved for the elastic/plastic state and the stress level at

each nodal point. Depending upon the magnitude of

externally applied load and weight of soil, some portion of

the shear strength is mobilized. The maximum value of

applied shear stress should be less than the shear strength

of soil to prevent failure [30]. The shear strength of soil is

the governing factor for load-carrying capacity of pile

foundation. In the analysis of pile foundation by FEM,

Mohr–Coulomb material model was used for soil which

has elastic-perfectly plastic behavior and the pile was

modeled as linear elastic material. The value of soil

stiffness was assumed as constant. The finite element

analysis requires the computation of the following soil

parameters.

1. Effective angle of shearing resistance (u0 in �)
2. Effective cohesion intercept (c0 in kN/m2)

3. Modulus of deformation (E in kN/m2)

4. Poisson’s ratio (l dimensionless)

5. Unit weight (c in kN/m3)

The above said soil properties can be determined in

laboratory by conducting unconsolidated undrained triaxial

test on soil samples collected from the site. The failure

criterion of Mohr–Coulomb model agrees well with failure

in soil samples when tested with triaxial test [31]. The soil

properties can also be estimated by conducting field

sounding tests, namely standard penetration test, cone

penetration test, etc.

3 Expert system for the design of pile foundation

In an effort to develop an expert system for the design of

pile foundation, 4809 simulations of pile foundations were

carried out using FEM for soils with wide range of unit

weight, poisson ratio, modulus of deformation and effec-

tive shear parameters. The corresponding unit skin frictions

and unit tip bearing capacities were calculated. These input

and output data of FEM were used for the development of

two artificial neural networks (one ANN for unit skin

friction and second ANN for unit tip bearing capacity) with

20 hidden neurons in each case. A remarkable value of

coefficient of determination (R2) averaging 0.99996 was

achieved for both the ANNs during training, validation and

testing.

Pile loading test is considered to be the most reliable

method for the determination of pile load capacity. The

axial pile load test on a single pile is justified for pile

design load [32]. In the present study, 50 case histories of

bored cast-in-place piles reported by Alsamman [33] and

Eslami [34] were analyzed using ANNs. The ultimate load-

carrying capacities were calculated and then compared

with the actual load taken by piles through field pile

loading tests. It was observed that the ultimate load-car-

rying capacities of most of pile case histories computed by

ANNs did not match with values computed by pile loading

tests. Hence, the correlation factors were calculated for the

correct interpretation of the pile load capacities computed

by the ANNs. Two correlation factors (skin friction cor-

relation factor Csf and tip bearing capacity correlation

factor Ctbc) were calculated by comparing the pile load

capacities obtained using ANNs and field pile loading test

results. The relationship between correlation factors and

soil parameters was found using nature-inspired
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techniques, namely particle swarm optimization (PSO),

firefly (FF) algorithm, cuckoo search (CS) and bacterial

foraging (BF).

4 Nature-inspired algorithms

These algorithms are very suitable for finding solutions of

continuous nonlinear optimization problems. When ran-

domness is used in nature-inspired algorithms, they are

known as metaheuristic algorithms [35–37]. These algo-

rithms have remarkable convergence, better learning

mechanism and consume less computation time when

compared with other optimization algorithms. They also

have lesser number of controlling parameters and can be

programmed easily. The derivative of objective function is

also not required in these techniques. The nature of

objective function does not have direct influence on their

performance. The initial values of variables can be very

approximate at the start of iterations. These algorithms do

not get entrapped in local minima of multi-modal objective

functions and give a good performance. Most of the nature-

inspired algorithms can be applied easily to real-world

optimization problems because of their simplicity and

efficiency. This paper elaborates a method to find optimal

solution to multivariable nonlinear systems through nature-

inspired algorithms. For the purpose of comparison of

various algorithms, the parameters are regulated as given in

Table 2.

4.1 Particle swarm optimization

Particle swarm optimization is widely used as a search

algorithm [38]. This method performs better than evolu-

tionary algorithms [38–42]. It is a nature-inspired algo-

rithm based on the behavior of birds in a flock. The flying

birds keep distance from each other and stay in optimal

region of multi-dimensional search space. In simplified

terms, each particle attains position from its own experi-

ence and that of the neighboring particles [43]. Let, at any

time t, the ith particle is at position xi
t; then, at time (t ? 1),

the new position xi
t?1 is calculated from velocity vi

t?1 as

follows:

xTþ1
I ¼ xtI þ vtþ1

i and x0
i �Uðxmin; xmaxÞ ð1Þ

where U(xmin, xmax) denotes uniform distribution with xmin

as minimum value and xmax as maximum values of x.

In PSO, all particles are assigned random positions at

the time of initiation. Their fitness values are calculated

from objective function. The personal best (Pbest) value is

calculated from best fitness value of each particle. The

global best (Gbest) is calculated from the best fit particle

having highest fitness value in the entire swarm. This

method is also called global best PSO as new positions of

the particle are governed by position of best fit particle

[43].

In this method, the position of a particle is updated by

successive iterations, and for every particle, the new values

of personal best positions and its velocities are calculated.

Table 2 Parameter regulation

of various algorithms selected

for comparison

Parameters of various algorithms PSO FF CS BF

No. of iterations (n) 7000 7000 7000

population size (p) 25 25

Self-confidence factor (c1) 2

Swarm confidence factor (c2) 2

Velocity weight at the beginning (win) 0.9

Velocity weight at the end (wf) 0.4

Randomness (a) 0.5

Step size (s) 0.2

Absorption coefficient (c) 1.0

Number of nests (n0) 25

Discovery rate of alien eggs (pa) 0.25

Attractiveness (b) 1.5

Dimension of search space (p) 8

The number of bacteria (s0) 25

The number of chemotactic steps (Nc) 1750

Limits the length of a swim (Ns) 4

The number of reproduction steps (Nre) 4

The number of elimination–dispersal events (Ned) 2

The number of bacteria reproductions per generation (Sr) s/2

The probability that each bacteria will be eliminated/dispersed (Ped) 0.25
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The new position of each particle is calculated from per-

sonal best, global best and current velocity. The stopping

criterion for the iterations is decided. In minimization

problems, the personal best Pbest,i at time (t ? 1) is com-

puted as follows:

Ptþ1
best;i ¼

Ptþ1
best;i if f xtþ1

i

� �
[ f ðPt

best;iÞ
xtþ1
i if f xtþ1

i

� �
� f ðPt

best;iÞ

(

ð2Þ

The global best position Gbest at any time (t) is calculated

as follows:

Gbest ¼ min Pt
best;i

n o
; where i 2 1; . . .; n½ � and n[ 1

ð3Þ

The velocity of ith particle is calculated as follows:

vtþ1
ij ¼ vtij þ c1r

t
1j Pt

best;i � xtij

h i
þ c2r

t
2j Gbest � xtij

h i
ð4Þ

In the above equation, c1 and c2 are the acceleration con-

stants, rt1j and rt2j are random numbers which are uniformly

distributed in U(0,1) at any time t.

4.2 Cuckoo search

It is a nature-inspired optimization algorithm. It was pro-

posed by Yang and Deb [44–47]. This algorithm was

developed from the behavior of some cuckoo species,

namely Ani and Guira, which lay eggs in the nests of other

species. Sometimes, these cuckoo species remove the eggs

of host birds to increase chances of hatching of their own

eggs. It is assumed that one cuckoo lays one egg. There is

some probability associated with the identification of egg

by the host bird. The egg may be either hatched or rejected

by host bird. In the case of rejection, the host bird may

abandon the nest and build a new nest. The rejected eggs

are represented by the fraction pa of n number of host nests

and this is used to arrive at new random solutions. It is also

assumed that high quality eggs are hatched by the best nest.

It is represented in the algorithm by fitness value of high

quality eggs or solution found by the objective function.

The replacement of egg by cuckoo in the nest of the other

species represents as substitution of a solution with better

solution. The algorithm can be made more complex when

each nest has multiple eggs corresponding to a set of

solutions. The CS algorithm uses random walk as local

search and Levy flights as global search. The local search is

represented as follows:

xtþ1
i ¼ xti þ asH pa� 2ð Þ: xtj � xtk

� �
ð5Þ

The global search is represented as follows:

xtþ1
i ¼ xti þ aL s; kð Þ ð6Þ

Lðs; kÞ ¼
kCðkÞ sin pk

2

� �

p
1

s1þk
ðs � so [ 0Þ ð7Þ

a is a scaling factor which decide the step size. The value

of a lies between L/10 and L/100, where L is a character-

istic scale of the problem. In Levy flight, the next solution

is calculated from current solution by Markov chain. It uses

far field randomization order to avoid local optima [45–47].

4.3 Firefly algorithm

It was proposed by Yang [35, 36, 46, 48]. It was inspired

by the behavior of fireflies. The fireflies are unisexual

organisms. They get attracted to each other by the bright-

ness of their flashings. The less bright fireflies are attracted

toward more bright fireflies. In this algorithm, the bright-

ness of fireflies is calculated from the fitness value of the

objective function. Attractiveness is directly proportional

to brightness. As brightness reduces with distance, the

attractiveness b also follows the same relationship as per

the following relation:

b ¼ b0e
�cr2 ð8Þ

where b0 is the maximum value of attractiveness at dis-

tance r = 0. The new location of ith firefly under attraction

of brighter firefly j can be calculated as follows:

xtþ1
i ¼ xti þ boe

�cr2

ij xtj � xti

� �
þ at 2t

i ð9Þ

In the above equation, the first term is the previous location

of ith firefly. The second term denotes attraction of the less

bright firefly toward brighter firefly. The third term depicts

random walk of ith firefly governed by 2t
i, which is a set of

random numbers obtained from uniform/Gaussian distri-

bution at any time t. If bo = 0, the movement of firefly is

completely governed by random walk. When c = 0, the

movement of firefly is similar to that given by variant of

particle swarm optimization. at is the parameter which

tunes the randomness. The value of at is changed with

successive iterations using the following equations:

at ¼ aod
t; 0\ d\ 1 ð10Þ

In the above equation, ao and d are initial randomness

scaling factors and cooling factors, respectively. Usually

the value of d varies between 0.95 and 0.97 [36]. ao is

taken as 0.01L where L is the average scale of the problem

and factor 0.01 is used to reduce the step size for proper

exploitation [36, 46]. c is equal to 1/
p
L. The best range for

population size is 25–40 [36, 48].
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4.4 Bacterial foraging optimization

This algorithm is based on the foraging strategy followed

by E. coli bacteria [49]. The bacteria try to get maximum

energy intake (E) in unit time (T). They follow four key

processes in lifetime, namely chemotaxis, swarming,

reproduction and elimination–dispersal [49–52]. These key

processes are described as follows.

4.4.1 Chemotaxis

The change in position of E. coli bacteria from previous

position in its search for food takes place by chemotactic

movement. If this movement occurs along the same direction

as the previous direction, then it is called swimming; other-

wise, it is called tumbling. The chemotactic movement is

represented mathematically by the following equation:

hiðjþ 1; k; lÞ ¼ hiðj; k; lÞ þ CðiÞ DðiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DTðiÞ � DðiÞ

q ð11Þ

In the above equation, ith bacterium is following gth step

of chemotactic, kth step of reproduction and lth step of

elimination–dispersal. C(i) is the step size of randomiza-

tion. D(i) is a vector of random numbers in the range

(-1,1) which indicates random direction for the movement

of bacterium.

4.4.2 Swarming

The motile species of bacteria release a substance called

aspartate which acts as an attractant for a group of bacterium.

This takes place under the high concentration of a substance

called succinate. This group of bacterium moves in the form

of concentric patterns toward nutrient rich locations [53]

which is modeled in [54]. A bacterium swarm is formed

which is under the influence of an attractant and a repellant

from the different members of same swarm. This process can

be represented mathematically as follows:

Jccðhðjþ 1; k; lÞÞ ¼
XS

i¼1

Jccðh; hiðj; k; lÞÞ

¼
XS

i¼1

�datt exp �watt

XP

m¼1

hm � him
� �2

 !" #

þ
XS

i¼1

�hrep exp �wrep

XP

m¼1

hm � him
� �2

 !" #

ð12Þ

In the above equation, S is the number of bacterium in a

swarm. h = (h1, h2,…, hp)
T is any random point in the

search space with p as its dimension. The coefficients datt,

watt, hrep, wrep represents quantity and diffusion rate of the

attractant and the repellant, respectively [55].

4.4.3 Reproduction

Health of ith bacteria is calculated from the fitness value,

which is further calculated from the following equation:

Jihealth ¼
XNcþ1

j¼1

Ji j; k; lð Þ ð13Þ

where Nc is the number of chemotactic steps travelled by

the bacteria under consideration. The bacterium population

is divided into two groups depending upon their fitness

values. The group with lesser fitness values is subjected to

elimination–dispersal, whereas the group with higher fit-

ness is allowed to double by asexual reproduction [56].

Hence, the total population count is maintained [57].

4.4.4 Elimination–dispersal

After passing through some fixed numbers of reproduction

cycles selected as stopping criterion, the bacteria with

lower fitness are eliminated. This is done to ensure that the

bacterium do not entrap in local minima.

5 Implementation and results

This section shows the closeness of predicted pile load

capacities by the different algorithms under study and

measured pile load capacities. The aim is to evaluate the

suitability of the given optimization techniques for deter-

mining correlation factors and comparing them. Negative

of the correlation coefficient is taken as the fitness value.

The stopping criteria and initial population are fixed to

same values for all optimization algorithms. The fitness

values obtained by various algorithms in 30 independent

runs are as given in Table 3. Parametric and nonparametric

statistical tests were performed for proper comparison and

analysis of the results obtained.

5.1 Parametric tests

These tests can be performed only if the results obtained by

various algorithms are independent and follow a normal

distribution. As all the algorithms have different mecha-

nism to arrive at a solution, the condition of independence

was fairly satisfied. To check the normality of data, Kol-

mogorov–Smirnova (K–S) test and Shapiro–Wilk (S–W)

test [58] were conducted and results obtained are presented

in Table 4. The P values were calculated by K–S test and

S–W test. For data to follow normal distribution, the

P value should be more than 0.1. The results of all algo-

rithms exhibited normal distribution as P values obtained

were more than 0.1. Hence, with the both conditions
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satisfied, the parametric as well as nonparametric tests were

conducted.

5.2 Nonparametric tests

These tests are used to rank the various algorithms based on

their performance. The level of significance a was selected as

5 % for all the nonparametric tests. The objective function

values obtained using various algorithms were compared to

find the most suitable technique for problem under study and

related problems. The algorithms were also compared with

each other for the purpose of ranking. The average ranks of FF,

PSO, CS and BF as calculated by Friedman Test [59] and

Kendall’s W Test [60] was 3.800, 4.687, 2.450 and 1.512,

respectively. Thus, PSO achieved the best rank among all the

algorithms under study. Friedman test with post hoc test was

also used in order to compare the algorithms, and the results

obtained are shown in Fig. 1.

The Tukey HSD test [61], Scheffé test [62], Bonferroni test

[63] and Holm test [64] were conducted for multiple com-

parisons between experimental observations and algorithm

outputs and as well as comparison of the considered algo-

rithms. These post hoc tests help in determining whether pairs

of treatments are significantly different. If thePvalues of these

tests are less than 0.05, the pair of treatments is considered

significantly different; on the other hand, high P values from

these tests indicate greater similarity. P value of ANOVA,

Tukey HSD P value, SchefféP value, Bonferroni P value and

Holm P value in Table 5 showed maximum similarity of the

PSO results to experimental results. The results generated by

CS showed similarity to results given by BF. Hence, these

algorithms exhibit similar capabilities in dealing with these

types of problems. In Table 6, the contrast estimation values

are given which depict the differences between the average

values of different algorithms. The results given by PSO

algorithm show the maximum closeness to the experimental

observations. Hence, PSO, FF, CS and BF algorithms can be

ranked in the order from first to fourth, respectively.

6 Application of optimization algorithms

Nature-inspired optimization algorithms have been applied

for the determining the skin friction correlation factor (Csf)

and tip bearing capacity correlation factor (Ctbc). For

Table 3 Fitness values obtained by various algorithms in 30 inde-

pendent runs

Sr. No. FF PSO CS BF

1 -0.9603 -0.8928 -0.8171 -0.9004

2 -0.9356 -0.9246 -0.8907 -0.8033

3 -0.9001 -0.9435 -0.9331 -0.7674

4 -0.9419 -0.9688 -0.8979 -0.7891

5 -0.91 -0.8632 -0.9523 -0.9261

6 -0.8637 -0.9035 -0.9482 -0.9034

7 -0.8943 -0.9154 -0.8784 -0.9337

8 -0.9565 -0.9402 -0.8528 -0.9219

9 -0.8638 -0.9822 -0.8154 -0.915

10 -0.9606 -0.8886 -0.8231 -0.9115

11 -0.8727 -0.9355 -0.8097 -0.776

12 -0.8648 -0.9537 -0.8458 -0.9348

13 -0.9549 -0.9438 -0.8574 -0.9224

14 -0.8931 -0.9762 -0.9027 -0.8056

15 -0.8791 -0.9411 -0.8262 -0.87

16 -0.9447 -0.9812 -0.8137 -0.9395

17 -0.8984 -0.9782 -0.8162 -0.9194

18 -0.9581 -0.8912 -0.8625 -0.7764

19 -0.9588 -0.916 -0.9114 -0.9027

20 -0.9538 -0.9261 -0.9502 -0.8071

21 -0.9569 -0.8843 -0.8807 -0.9281

22 -0.9396 -0.9114 -0.8303 -0.89

23 -0.9558 -0.8887 -0.8841 -0.7738

24 -0.9461 -0.9305 -0.8364 -0.8474

25 -0.9457 -0.8835 -0.8636 -0.8736

26 -0.903 -0.8589 -0.8276 -0.8301

27 -0.9188 -0.9541 -0.9008 -0.7987

28 -0.8901 -0.889 -0.9192 -0.9002

29 -0.9511 -0.878 -0.9513 -0.8152

30 -0.9403 -0.9812 -0.8514 -0.7868

Table 4 P values of results of algorithms as calculated by K–S test

and S–W test

Tests FF PSO CS BF

Kolmogorov–Smirnova 0.2002 0.1761 0.1352 0.1892

Shapiro–Wilk 0.1435 0.1063 0.1022 0.1386

Fig. 1 Comparison of various algorithms from results of Friedman

test with post hoc test
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determining the values of both these factors, five variables

as given in Sect. 2 along with the depth values of centre of

soil layer (D) and length of pile (L) were used. The results

are analyzed for carrying out a comparative study of nat-

ure-inspired algorithms. For determining correlation factor

(Csf), the number of nonlinear equality constraints are 170

and that for correlation factor (Ctbc) are 50. The constraints

used were found from field pile loading test results. The

objective function used for determining Csf and Ctbc are

represented as follows:

Csf ¼ 0:3319 � 0:0242
c4:3821 � u017:5485 � D0:1394

c02:1430 � l4:8695 � E2:7243

� �5:8412

Ctbc ¼ 0:1285 þ 0:1646
u00:4405 � c00:3972 � E0:0516 � L3:2236

c4:7047 � l3:7618

� �0:6404

ð14Þ

The objective functions with 18 dimensions are consid-

ered. For each iteration, the fitness value is calculated

from the correlation coefficient found between the results

of a particular algorithm and those obtained from the pile

loading tests. The ultimate load-carrying capacity of 40

bored pile foundations are calculated using all the algo-

rithms under study. The values obtained in each case are

compared with the field pile loading test results as shown

in Fig. 2.

The PSO, FF, CS and BF algorithms have achieved

maximum value of correlation coefficient as 0.9821,

0.9606, 0.9523 and 0.9348, respectively, with the field

pile loading test results in 30 trials, whereas ANNs

(without optimization) have given value of correlation

coefficient as 0.8768 with the field pile loading test

results. The values computed by PSO algorithm are found

to be closest to the field test values. Thus, the PSO

algorithm was found to perform significantly better than

the other algorithms. Comparing the computational effi-

ciency of the algorithms under consideration in Table 7,

the figures clearly indicate that PSO requires minimum

computational time (when run on a computer with

2.2 GHz Intel Core 2 Duo processor having 2 GB RAM).

Further, with a few parameters to be tuned, PSO has been

found to be relatively easy to implement. Figure 3 illus-

trates the convergence history of the algorithms under

study. All the algorithms are found to provide optimal

solution at 7000 iterations. PSO outperforms the other

algorithms for this particular problem as it gives the best

fitness vales.

Table 5 Results of parametric

and nonparametric tests

conducted for multiple

comparisons

Algorithms P Tukey HSD

P value

Scheffé

P value

Bonferroni

P value

Holm

P value

EXP versus FF 0.9468 0.8457 0.9667 4.5233 1.1094

EXP versus PSO 0.9682 0.9 0.9863 5.5472 1.357

EXP versus CS 0.9315 0.8245 0.8654 3.8622 0.9035

EXP versus BF 0.9125 0.7766 0.717 3.4814 0.8852

FF versus PSO 0 0.6496 0.8088 1.8382 1.1073

FF versus CS 0 0.8706 1.0133 3.4083 1.4201

FF versus BF 0 0.7702 0.8547 2.2834 1.1263

PSO versus CS 0 0.1439 0.2953 0.2186 0.2893

PSO versus BF 0 0.1255 0.1791 0.1104 0.1809

CS versus BF 0 0.9239 1.0316 7.9385 0.8825

Table 6 Contrast estimation as given by average values of results of

various algorithms

EXP FF PSO CS BF

EXP 0 -0.622 -1.041 -1.83 -2.11

FF 0.622 0 -1.425 -1.025 -1.303

PSO 1.041 1.425 0 -2.457 -2.74

CS 1.83 1.025 2.457 0 -0.275

BF 2.11 1.303 2.74 0.275 0
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Fig. 2 Comparison of pile load capacities as predicted by algorithms

and measured in field pile loading tests
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7 Conclusion

The study portrays that the use of nature-inspired algo-

rithms for finding the correlation factors substantially

improves the accuracy of ANNs for predicting the pile load

capacities. The dataset comprising of 50 full-scale pile

loading tests has been used for calculating the correlation

factors. The ANNs have been developed using the data

acquired from the finite element analysis of axially loaded

piles of various geometrical properties and from the data

pertaining to a wide range of soil parameters. The pile

foundation was analyzed 4809 times to ascertain the exact

soil–structure interaction and for determining the accurate

values of unit skin friction and unit end bearing capacity.

The skin friction correlation factor was taken as objective

function. A comparative study of four nature-inspired

algorithms for designing bored pile foundation was carried

out. Data pertaining to field pile loading tests were used for

the evaluating the performance of these algorithms. The

correlation coefficient between the predicted values and

field pile loading test data was found to be the highest

(0.982) in the case of PSO. The PSO was thus found to be

the best performing algorithm. PSO was also found to

exhibit maximum computational efficiency as it took least

computational time due to less number of calculation steps.

Parametric and nonparametric statistical analysis tests were

carried out to further substantiate the results obtained. The

P value obtained using ANOVA test showed maximum

similarity between the PSO predicted values and field test

values. The P values of Tukey HSD, Scheffé and Bonfer-

roni also depicted similar results. The PSO has also been

found to be more efficient in terms of time taken and is less

complex as compared to conventional methods like load

transfer method and elastic method for finding the pile load

capacity. Hence, it can be concluded that PSO algorithm is

the most suitable algorithm for the optimization of pile

foundation design in a constrained environment.
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