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Abstract—Accurate knowledge of the vehicle states is
the foundation of vehicle motion control. However, in real
implementations, sensory signals are always corrupted by delays
and noises. Network induced time-varying delays and measure-
ment noises can be a hazard in the active safety of over-actuated
electric vehicles (EVs). In this paper, a brain-inspired propri-
oceptive system based on state-of-the-art deep learning and
data fusion technique is proposed to solve this problem in
autonomous four-wheel actuated EVs. A deep recurrent neural
network (RNN) is trained by the noisy and delayed measure-
ment signals to make accurate predictions of the vehicle motion
states. Then unscented Kalman predictor, which is the adap-
tion of unscented Kalman filter in time-varying-delay situations,
combines the predictions of the RNN and corrupted sensory sig-
nals to provide better perceptions of the locomotion. Simulations
with a high-fidelity, CarSim, full-vehicle model are carried out
to show the effectiveness of our RNN framework and the entire
proprioceptive system.

Index Terms—Deep learning (DL), four-wheel independently
actuated (FWIA) autonomous electric vehicles, network-induced
delays, recurrent neural networks (RNNs), unscented Kalman
predictor (UKP).

I. INTRODUCTION

AFTER almost 100 years of domination by internal com-
bustion engines, there has been a return of interest in

electric vehicles (EVs). Many factors stimulate this resur-
gence. On the one hand, it is widely believed that EVs can
solve energy and environmental problems to some extent.
On the other hand, EVs with individually controlled motors,
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namely four-wheel independently actuated (FWIA) EVs, allow
a significant improvement in motion performance due to their
remarkable actuation flexibility [1], [2]. So far, various stud-
ies have been conducted on how to fully utilize the potential
of the FWIA EVs to enhance the maneuverability and stabil-
ity of vehicles [3]–[7]. It is also believed that the combination
of electrically driven and autonomous driving is the future of
vehicle technology [8], [9].

Sophisticated control systems in FWIA EVs or autonomous
vehicles are based on the advancement of electrical and elec-
tronics technology. In the past, electronic devices in vehicles
are connected by point-to-point wiring systems. As the growth
of electronic control units (ECUs), continuing to adopt this
conventional Electrical/Electronic architecture became impos-
sible because it resulted in an expensive and messy wire
system. Nowadays, the data signals between ECUs are trans-
mitted through networks, i.e., controller area network (CAN)
or FlexRay, forming a networked control system (NCS).
However, as the number of ECUs rising further, which is
typical in over-actuated FWIA EVs, the unknown and time-
varying communication delays of networks may be large
enough to degrade the performances of feedback control
systems [10].

Some work has been carried out to deal with the delays
induced by in-vehicle networks [11]–[14]. In these studies,
two approaches are widely employed to describe the time-
varying delays as uncertainties. One is a deterministic method,
and the other is a stochastic method. In the deterministic
method, delays are assumed as being taken from a fixed proba-
bilistic distribution [11], [12]. Such description is quite simple
and keeps the synthesis of the NCS easy. However, it neglects
the correlation between current and previous delays, which
may increase the conservativeness of the control system. In
the stochastic method, the NCS is modeled as a Markov
chain [13], [14]. Such random process model takes the depen-
dence between adjacent delays into account and is more
precise allowing for the real network phenomena. Once the
models of NCS has been established, appropriate robust con-
trol methods can be designed to make the performance of the
system as high as possible under the uncertainties induced by
network delays.

For these studies, an important issue is how to decrease the
conservativeness in the algorithms. However, although more
accurate NCS models and less conservative control methods
are adopted, conservativeness still inevitably exists as long
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Fig. 1. Comparison diagram of in-vehicle networks and CNS.

as we regard time-varying delays as uncertainties. Moreover,
another well-known problem, the noises in sensory signals, is
not considered in these literature. These defects motivate us
to design a proprioceptive system of autonomous FWIA EVs,
which can effectively compensate the time-varying delays in
feedback loop (actually, in the autonomous vehicles, motor
commands all exist in feedforward loop and generally have
high priorities, which means that large network delays con-
centrate in feedback loop) and suppress the measurement
noises simultaneously. The theoretical basis of our method is
mainly borrowed from the research on the sensorimotor loop
of humans.

A. Inspiration From the Sensorimotor Loop of Humans

Our nervous system is also a typical and intricate
NCS. Sensory information from the skin, muscle, and visceral
organs are transferred through the peripheral nervous system to
the central nervous system (CNS), or, to be more specific, the
corresponding spinal cord segment (each segment is respon-
sible for a certain part of the human body). The spinal cord
relays signal up to the brain, where the ascending feedback
information is integrated and processed. Then, the efferent
motor commands are projected forward from cortex to the
corresponding spinal cord section [15]. When comparing in-
vehicle networks and the nervous system, many similarities
can be found. As illustrated in Fig. 1, an actuator/sensor node
of in-vehicle networks is like a segment of the spinal cord, and
the vehicle control unit (VCU) plays the role of the human
brain. Considering the highest speed of neuron signals is only
about 120 m/s, the time delay is also an intrinsic nature of sen-
sorimotor control loop of humans. In addition to that, the noise
in motor commands and sensory inputs are bigger because of
the biomechanical properties of the muscles and neurons. It
seems a paradox that we can still control the motion of our
limbs and hands so intelligently.

The secret of our outstanding capability to estimate the
states of our body and external environment lies in the
exploitation of two streams of information. Instead of solely

relying on sensory feedback, which is temporally lagged and
tending to be corrupted by considerable amounts of noise, the
brain predicts the sensory consequences of our motor com-
mands as well [16], [17]. To predict, the brain requires an
internal forward model, which describes the dynamic char-
acteristics of the outside world [18]. The question is: where
does the accurate internal model, the base of our prediction,
come from? Actually, forward models are not fixed in nature.
They should be learned from experience [19]. By compar-
ing the predicted and actual outcomes of a motor command,
errors can be generated. Then, human brains take advantage
of well-established computational learning rules to translate
these errors into changes in synaptic weights to improve future
predictions of a forward model.

After the prediction of the internal forward model, mea-
surement signals can be fused to correct the prediction results
and form perceptions. The most famous fusion method was
proposed by Rudolph Kalman [20], called Kalman filter (KF).
Although KF was proposed in engineering, some experi-
ments have examined that it fits the mechanism in our brain
well [18], [21], [22].

B. Related Work and Main Contribution of This Paper

In this paper, a proprioceptive system of autonomous
FWIA EVs is proposed to double overcome the delays and
noises in the feedback loop of in-vehicle networks. First,
state-of-the-art deep learning (DL) technology is adopted to
represent dynamics models of autonomous FWIA EVs from
experience automatically. DL is a branch of machine learn-
ing based on a set of algorithms that is especially powerful in
extracting useful models [23]. It has turned out to be very good
at discovering intricate structures in high-dimensional data
and is therefore applicable to many domains of science, busi-
ness, and government [24]. Since 2006, DL has won numerous
official international pattern recognition competitions [25],
achieving the first superhuman visual pattern recognition
results in limited domains [26], [27]. Second, data fusion tech-
nique is exploited to combine the prior information (which is
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Fig. 2. Overall structure of vehicle proprioceptive system.

learned from experience) and measurement information (which
is directly sampled or estimated by the sensory system but
corrupted by delays and noises). Thus, this perception system
of locomotion is based on the combination of learning and
data fusion, just as what is happening in our brains. Using
this proprioceptive system, the concerns about conservative-
ness generated by modeling the time-varying delays in the
feedback loop is not required anymore. It should be noted
that the attempt to identify the model of intelligent vehi-
cles by machine learning can be dated back to 1990s and
still remains popular these days [28]–[31]. However, fusing
the learned knowledge with sensory signals to improve the
prediction effect has rarely been tried in those works. The
overall structure of our vehicle proprioceptive system is shown
in Fig. 2.

One quite promising DL solution to tackling the problem
of learning sequences of information is the recurrent neural
network (RNN) [32]. To train a RNN, it is standard to unroll
it through time and convert it into an equivalent very deep
feedforward neural network. However, when the error signals
backpropagated through time in an unfolded RNN, the gra-
dients typically explode or vanish. As a result, learning with
recurrent networks, especially learning long-term dependency,
has long been considered difficult [33]. In recent years, thanks
to the improved architectures [34], [35], fast implementations
and better gradient-following heuristics [36], and deep RNNs
are now frequently trained successfully. In this paper, a nine-
layer modular deep RNN (MODERNN) is designed to learn
the forward model of FWIA EVs.

Nonlinear filter technique is required to utilize the nonlin-
ear feedforward model and sensory signals comprehensively.
Extended KF (EKF) is a nonlinear extension of KF, which has
been widely adopted in nonlinear state estimators [37]–[39].
However, EKF only provides “first-order” approximations to
the probabilities, and it is difficult to calculate the Jacobian
in some situations. Another advanced class of nonlinear
filters is particle filter (PF). It approximates the filtering
process by propagating randomized points through the non-
linear models [40], [41]. PF techniques are especially pow-
erful, but the extraordinary performance is at the cost of
additional computation effort, which sacrifices the real-time
performance [42]. The unscented KF (UKF) keeps a balance
between the low complexity of the KF and the high accu-
racy of the PF. In addition, both neural networks and UKF

Fig. 3. Schematic of an FWIA EV model.

are well suited for parallel computing and can be massively
speeded up by devices like graphics processing unit in actual
operation [43]. Therefore, we adapt UKF to the time-varying
delay situations at first and then combine the predictions of
RNN and sensory measurements through it.

The rest of this paper is organized as follows. A brief
dynamic model of FWIA EV is presented in Section II.
A nine-layer RNN and its learning algorithm are presented
in Section III to extract turning models of autonomous
FWIA EVs. Then, in Section IV, an unscented Kalman pre-
dictor (UKP) is proposed to cope with time-varying delays
in CANs and noises in sensory signals. In Section V, simula-
tion results illustrate that a combination of DL and UKP can
perceive vehicle states well with the presence of noise and
random delays. Finally, Section VI concludes this paper and
discusses the future work.

II. VEHICLE DYNAMICS MODEL

Although we intend to capture the dynamic models of
FWIA EVs from sensory data by RNNs, information about
these models is still important. Indeed, when the information
is available, they should be fused into the design of neural
networks as much as possible to alleviate the learning pressure
of RNN. Therefore, a model which can describe key charac-
ters of the yaw-plane motion of an autonomous FWIA electric
ground vehicle is introduced here.

A. Vehicle Planar Dynamic Model

Fig. 3 shows a schematic of the vehicle model. If we ignore
the pitch and roll motion, the vehicle body has three degrees
of freedom, which can be expressed as [1]

⎧
⎨

⎩

V̇x = Vy�z +
(
FX − CaV2

x

)
/M

V̇y = −Vx�z + FY/M
�̇z = −Vx�z +MZ/IZ .

(1)

In the above equations, Vx and Vy denote longitudinal and
lateral speed, respectively, and �z is the yaw rate. M is the
vehicle’s mass, Iz is the vehicle’s yaw inertia, and Ca is the
aerodynamic term. FX , FY , and MZ are the total forces/moment
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Fig. 4. Schematic of wheel dynamic model.

generated by the four active wheels, which can be described by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

FX =
(
Fxfl + Fxfr

)
cos δ − (

Fyfl + Fyfr
)

sin δ + Fxrl + Fxrr

FY =
(
Fxfl + Fxfr

)
sin δ + (

Fyfl + Fyfr
)

cos δ + Fyrl + Fyrr

MZ = ls
((

Fxfr − Fxfl
)

cos δ + (
Fyfl − Fyfr

)
sin δ

)

+ lf
((

Fxfl + Fxfr
)

sin δ + (
Fyfl + Fyfr

)
cos δ

)

− lr
(
Fyrl + Fyrr

)+ ls(Fxrr − Fxrl)

(2)

where Fxf ∗ and Fxr∗ denote the longitudinal forces of the front
and rear wheels, respectively. Fyf ∗ and Fyr∗ are the lateral
forces of the front and rear wheels, respectively. δ is the steer-
ing angle of the front wheel. lf and lr are the distances from
the center of gravity to the front and rear wheel axle, respec-
tively. ls is the tread. The suffixes f , r, l, and r mean front,
rear, left, and right, respectively.

B. Wheel Dynamic Model

As Fig. 4, if rolling resistance is ignored, the rotational
dynamics of each independently driven wheel is represented by

ω̇∗ = (T∗ − ReffFx∗)
/

I (3)

where ω∗ (∗ ∈ Q := {fl, fr, rl, rr} indicates the specific tire)
is the wheel longitudinal rotational speed and Reff is the tire
effective rolling radius, and I is the wheel moment of inertia.
T∗ is the output torque of a specific in-wheel motor. Typically,
the mechanical motions of the independently driven wheels are
much slower than the electromagnetic dynamics in motors,
which implies that the output torque of a certain in-wheel
motor can be simply represented as a product of a factor and
the motor command

T∗ = k∗u∗ (4)

where u∗ is the motor command to a certain motor.
The slip angle of each tire is a key state in tire dynam-

ics and can be defined as the angular difference between the
orientation of a wheel and the velocity of the wheel center

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αfl = −δ + arctan
(

Vy+�zlf
Vx−�zls

)

αfr = −δ + arctan
(

Vy+�zlf
Vx+�zls

)

αrl = arctan
(

Vy−�zlf
Vx−�zls

)

αrr = arctan
(

Vy−�zlf
Vx+�zls

)
.

(5)

The speeds at the wheel centers are
⎧
⎪⎪⎨

⎪⎪⎩

Vxfl = (Vx −�zls) cos δ + (
Vy +�zlf

)
sin δ

Vxfr = (Vx +�zls) cos δ + (
Vy +�zlf

)
sin δ

Vxrl = Vx −�zls
Vxrr = Vx +�zls.

(6)

When driven or braked, tire center speed does not equal
to its circumferential. This important phenomenon is called
longitudinal tire slip, which is defined as

s∗ = (ω∗Reff − Vx∗)
/

max(Vx∗ , ω∗Reff) . (7)

C. Tire Dynamic Model

Studies in tire-road friction modeling are abundant, and the
magic formula tire model (MFTM) is one of the most well-
known of them [44]. The basic equations of the MFTM for
the case of pure slip are

⎧
⎨

⎩

y(x) = D sin{C arctan[Bx− E(Bx− arctan Bx)]}
Y(X) = y(x)+ Sv

x = X + Sh

(8)

where Y(X) represents tire pure longitudinal force Fx0∗ or lat-
eral force Fy0∗ of a specific tire, respectively. X is tire slip
ratio or slip angle. Coefficient B, C, D, E, Sh, and Sv are the
coefficients related to tire normal force.

D. Sensory Signals

In reality, only a part of the states in vehicles can be
measured from the sensors, and the measurement signals are
usually noisy and time delayed. In this paper, we only con-
sider seven typical sensory (or estimated) signals: four wheel
speeds (from wheel speed sensors), lateral acceleration and
yaw rate (from gyroscope), and longitudinal speed (from iner-
tial sensors and GPS or estimated). These signals are crucial
for vehicle dynamics control. Noises of sensor signals can be
easily inferred by observation or looked up in manuals. In
general, the noises in wheel speed signals are relatively large,
around 4 rpm (1σ ). The noise in longitudinal speed signals
is moderate, around 0.1 km/h. Those in yaw rate and lateral
acceleration are relatively small, around 0.2 deg/s and 0.005 g,
respectively [45].

In this paper, the in-vehicle network refers to CAN due to
its wide applications in industry. We assume that the sensors
and VCU act in a time-driven fashion and the actuators act
in an event-driven fashion. A conservative and simple model
of the network induced time-varying delays is that they are
bounded [46] and uniformly distributed in the interval [11]

max{0, τk−1 − Ts} ≤ τk ≤ τlarge (9)

where τlarge = 1.7 Ts, Ts is the sampling period, and k is the
discrete-time index. This model is used in the simulation pro-
cess to verify the effectiveness of our proprioceptive system.
Note that, in autonomous vehicles, the motor commands trans-
mitted in a CAN are generally settled with high priorities.
Thus, the delays in feedforward loop (from VCU to actuator
nodes) are relatively small and deterministic. On the contrary,
the priorities of measurement signals are generally low, and
the feedback delays are relatively large and random. For these
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Fig. 5. Three-layer MODERNN, only a part of synaptic connections are
illustrated here for brevity. Red lines refer to the connections from hidden or
output units to the context units.

reasons, only the feedback delays are considered in this paper
for the present.

III. LEARNING THE FORWARD MODEL BY DEEP RNN

Although the model given in the previous section is high
order and nonlinear, it is still a simplified version. The real
autonomous FWIA EV system couples rigid body dynamics
with suspension dynamics, motor dynamics, aerodynamic
forces, and internal control loops. Much of this dynamic
system involves hidden state variables which cannot be easily
measured. Owing to the modern structure and training method
of RNN, it is possible to learn an accurate dynamic model of
autonomous FWIA EV directly from corrupted sensory data.
In this paper, MODERNN architecture and corresponding
learning algorithms are employed. We favor MODERNN
due to its proven ability to decrease the vanishing/exploding
gradient problem in space, and flexible training methods can
be applied to this architecture [47]. The detailed network
architecture, overall framework and training method are
introduced below.

A. RNN Architecture

MODERNN is a generalization over traditional recurrent
multilayer perceptron (RMLP). It not only has locally recurrent
layers as RMLP but also has connections linking all layers.
Fig. 5 illustrates a model of a three-layer MODERNN. The
dynamical equations of the MODERNN are described as
follows [47]:

{
xi(k) = Aiyi(k − 1)+ Biui(k)+ bi

yi(k) = fi(xi(k))
(10)

where i is the layer index, xi(k) ∈ R
ni is the state of the layer,

yi(k) ∈ R
ni is the output of the layer, ui(k) ∈ R

mi is the input
to the layer, Ai(k) ∈ R

ni ×R
ni is the feedback weight matrix,

Bi ∈ R
ni × R

mi is the input weight matrix, bi ∈ R
ni is a bias

weight vector, fi(·) is the layer activation function, ni is the
number of neurons in the layer, and mi is the number of input
signals to the layer.

Fig. 6. Overall framework of RNN to predict the vehicle states.

The input to a MODERNN is a time series

ui(k) =
[
uT(k) yT

1 (k) · · · yT
i−1(k)

yT
i+1(k − 1) · · · yT

L(k − 1)
]T

(11)

where u(k)∈ R
m is the input to the network, L is the recurrent

layers of the network, and m is the number of independent
inputs to the network.

B. Overall Framework of Network

Our framework of the network to learn the internal for-
ward model of an autonomous FWIA EV is shown in Fig. 6.
The network consists of nine layers, six inputs, and seven
outputs. It includes three subnetworks, each of which con-
sists of three layers. We conducted several tests to determine
the specific structure of each subnet, and achieve a balance
between complexity of the neural network and the accuracy
of prediction.

In the bottom subnetwork, there are ten neurons in each
hidden layer. This subnetwork is designed to learn the dynam-
ics of vehicle longitudinal speed change. It has six inputs,
including time sequences of a steering wheel command, four
motor commands, and initial speed (initial speed is kept con-
stant through the sequence). The output of this subnet is the
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prediction of the longitudinal speed change. The change of
longitudinal speed is learned first for three reasons.

1) It is the base of the whole vehicle dynamics.
2) Its regularity is relatively simple to learn.
3) The noise in the estimated longitudinal speed signal is

moderate, as described in Section II.
The middle subnetwork has 16 neurons in each hidden layer

and four neurons in output layer. We utilize it to learn the laws
of wheel speed change of four wheels. According to (7), the
longitudinal speed of the vehicle is essential to calculate slip
ratio. Thus, it is also important to predict the wheel speed
change. For this reason, the output of the bottom subnetwork
is defined as an input of the middle subnetwork. Except that,
the inputs of middle subnetwork are the same as those of the
bottom one.

Tires are the only vehicle components which can gener-
ate external forces to affect vehicle motions, and essential to
vehicle dynamics and control. As described in (8), slip ratios
and slip angles are two main arguments of tire models. Once
the longitudinal speed of the vehicle and wheel speeds of four
independently driven wheels have been learned, slip ratios can
be obtained. Then, we can easily predict the tire forces and
lateral motions of the vehicle body. The top subnetwork has
seven inputs, including initial vehicle speed, steering wheel
command, and the five outputs of the previous two subnet-
works. Each hidden layer consists of ten neurons. The target
of this subnetwork is learning to predict the lateral motion
states. In this paper, lateral acceleration and yaw rate are the
final two outputs of the whole network.

The training of this nine-layer MODERNN proceeds bottom
up, similar to that of deep belief networks [48]. The bottom
subnet is trained first. Then, the outputs of the bottom sub-
net are treated as input to train the middle subnet, and so
forth. We adopt an offline, batch learning method as in [47]
to train each subnet. Considering the noise in sensory sig-
nals, cross-validation is suitable for this paper. According to
the protocol of CAN, a message transmitted at a certain time
can never arrive before a message with the same ID that was
transmitted at a previous time. This character of CAN is really
useful because, despite time-varying delays, it is easy to pair
the motor commands with corresponding sensory outputs in
a one-to-one manner. Thus, the training of the RNN can be
successfully conducted even in delayed and noisy situations.
More training details can be seen in Section V.

IV. FUSING THE DATA BY UNSCENTED KALMAN

PREDICTORS

Kant and Smith [49], one of the greatest philosopher,
regarded that our perceptions are not a physiological process
in which the sense organs simply transmit information to the
brain, but a psychological process in which our brain com-
bines the sensory information with what it already predicts.
Today, this combination process is often referred to as Bayes
filter, which obtains a posterior estimation by prior beliefs and
measurements. Following this philosophy, in this paper, the
predictions of RNN and the measurement signals are combined
to make autonomous FWIA EVs have their proprioception.

A. Unscented Kalman Filter

UKF takes both advantage of the PF and EKF. It is sim-
ilar to PF, but the difference is that in UKF, particles are
deterministically chosen. For this reason, UKF has better
real-time performance. The state is again assumed a Gauss
distribution as in EKF but is now determined by the carefully
selected sigma points. When propagated, they capture the sta-
tistical characteristics up to the third order for any nonlinearity,
which is better than EKF [50]. Also, there is no need for the
Jacobian and Hessian matrices, which can reduce the difficulty
in derivation and the possibility of mistakes.

UKF takes two steps, namely the prediction step and
the updating step, to fuse the information extracted by
DL and sensory information measured from vehicle sen-
sors. The prediction step uses prior information (the model
of the system) and previous estimation results to give
a prediction of current states. As a precise internal forward
model of an autonomous FWIA EV has been learned by
MODERNN in Section IV, this step can make full use of
the learned knowledge by propagating particles through the
trained deep RNN. In the updating step, the prior prediction
is combined with observation information from sensors to
increase the accuracy of the estimation further. This improved
result is termed as a posteriori estimation. Fusion gains
of prediction and measurement are dependent on respective
uncertainties.

Algorithms 1 and 2 show the pseudocode of the above two
steps, and then the whole procedure of UKF can be easily
explained by Algorithm 3 [51]. In the algorithms, n is the num-
ber of neurons in a subnet, and f is the corresponding dynamic
function. λ is a scaling parameter defined as λ = c−n, where
c = α2(n+κ). The constants α = 1, β = 2, and κ = 0 are used
in this paper. These parameters together generate the parameter
matrixes W and wm. m and m− are a posteriori estimates and
a priori predictions of the states, respectively. P and P− are
a posteriori estimate covariance matrix and a priori prediction
covariance matrix, respectively. Q and R represent process
noise covariance matrix and measurement noise covariance
matrix, respectively. I is a 2n × 2n identity matrix. X is the
matrix of sigma points.

B. Unscented Kalman Predictor

UKF is useful in nonlinear state estimation. However, con-
sidering the varying delays in communication, in some time
steps, no measurement signals arrive at the VCU, and the
updating process cannot be carried out. To adapt to this time
delay situations, we proposed UKP, which is a simple varia-
tion of UKF. When VCU receives no measurement signals in
a sampling period, the UKP make predictions based on the
prediction results at the previous step. Once the measurement
signals come, the updating step is conducted to correct the
prediction bias. The detailed description of UKP is given in
Algorithm 4. Matrixes mp and Pp, respectively, keep a record
of the newest prediction of the states and the newest covari-
ance matrix at the current time step k, regardless of the arrival
of the measurements. Subscript new means the time index of
the newest received measurement signals. new = z − 1 if no
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Algorithm 1 PredictFun
Input: mk−1, k, Pk−1 and Qk−1
Output: m−k , W, wm, and P−k
1: wm ← [ W(0)

m · · · W(2n)
m ]T

2: W← (I− [ wm · · ·wm︸ ︷︷ ︸
2n+1

])× diag(W(0)
c · · ·W(2n)

c )

×(I− [ wm · · ·wm︸ ︷︷ ︸
2n+1

])T

3: W(0)
m ← λ/(n+ λ)

4: W(0)
c ← λ/(n+ λ)+ (1− α2 + β)

5: W(i)
m ← 1/{2(n+ λ)}, i = 1, . . . , 2n

6: W(i)
c ← 1/{2(n+ λ)}, i = 1, . . . , 2n

7: Xk−1 ← [ mk−1 · · · mk−1 ]+√c[ 0
√

Pk−1 −
√

Pk−1 ]
8: X̂k ← f

(
Xk−1, k − 1

)

9: m−k ← X̂kwm

10: P−k ← X̂kW[X̂k]T +Qk−1
11: return m−k , W, wm, and P−k

Algorithm 2 UpdateFun

Input: m−k , k, P−k , W, wm, Rk, and yk
Output: mk and Pk

1: X−k ← [ m−k · · · m−k ]+√c[ 0
√

P−k −
√

P−k ]

2: Y−k ← h(X−k , k)
3: µk ← Y−k wm

4: Sk ← Y−k W[Y−k ]T + Rk
5: Ck ← X−k W[Y−k ]T

6: Kk ← CkS−1
k

7: mk ← m−k +Kk
[
yk − µk

]

8: Pk ← P−k −KkSkKT
k

9: return mk and Pk

Algorithm 3 UKF

1: m0 ← E
[
x0

]

2: P0 ← E
[
(x0 −m0)(x0 −m0)T]

3: while k < kmax
4: Read yk
5:

[
m−k , W, wm, P−k

]
← PredictFun

(
mk−1, k, Pk−1, Qk−1

)

6:
[
mk, Pk

]← UpdateFun
(

m−k , k, P−k , W, wm, Rk, yk

)

7: k← k + 1
8: end while

measurement signals arrive during time step k−1 and time step
k. In line 19, sign ∼ indicates that the corresponding variable
is not important and can be ignored.

In this paper, an UKP is designed for each subnet described
in the previous section. So there are a total of three pre-
dictors. It is also assumed that the process noise Qk and
measurement noise Rk in UKPs are constant, namely, Qk =
Q, Rk = R. Measurement noises are easy to know, as men-
tioned in Section II, but process noises are not considered in
this paper. Nevertheless, process noise covariance matrixes are
still important in this paper. Obviously, it is impossible that
the forward model learned by RNN is completely accurate.
Keeping this in mind, the process noise covariance matrixes
can be treated as a measure of the confidence level, or the
uncertainty of the RNN prediction. For the simplicity, it is

Algorithm 4 UKP

1: m0 ← E
[
x0

]

2: mp0 ← m0
3: P0 ← E

[
(x0 −m0)(x0 −m0)T]

4: Pp0 ← P0

5:
[
m−1 , W, wm, P−1

]
= PredictFun(m0, 1, P0, Q)

6: k← 1, z← 0, s← 0
7: while k < kmax
8: read new measurement signals yz ∼ ynew in the buff
9: while z < new+ 1
10:

[
mz, Pz

]← UpdateFun
(
m−z , z, P−z , W, wm, Rz, yz

)

11: z← z+ 1
12: s← z
13:

[
m−z , W, wm, P−z

]← PredictFun
(
mz−1, z, Pz−1, Qz−1

)

14: mps ← m−s
15: Pps ← P−s
16: end while
17: while s < k
18: s← s+ 1
19:

[
mps,∼,∼, Pps

]← PredictFun
(
mps−1, s, Pps−1, Qs−1

)

20: end while
21: k← k + 1
22: end while

TABLE I
SOME IMPORTANT PARAMETERS IN CARSIM SIMULATIONS

assumed that Q is the product of an identity matrix and a
factor as

Q = qI, q > 0. (12)

Then, q is regarded as the optimizing parameter and can be
adjusted carefully to optimize the fusion results.

V. SIMULATION RESULTS

A. Training Details

Training and test data of the MODERNN were collected
from simulation results of Carsim (a specialized software to
analyze vehicle dynamics, calculate a car’s performance char-
acteristics, and develop active controllers). The training dataset
consists of 100 input–output pairs (collected from 100 times
Carsim simulations), while the test data set consists 5000 ones
(collected from 5000 times Carsim simulations). In each sim-
ulation, the steering wheel command was randomly picked
from fishhook style or sine wave style, turning left or turning
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Fig. 7. Performance of longitudinal speed perception.

Fig. 8. Performance of front left wheel speed perception.

right. In fishhook style, the steer ramp was picked randomly
in 600–700 deg/s. In sine wave style, the frequency was
picked randomly from 0.1875–0.25 Hz. In both styles, the
maximum steering wheel angle was picked randomly from
10◦–60◦. Motor commands were generated by a controller
which designed to keep the longitudinal speed constant and
add a direct yaw moment to the vehicle body (proportional
to steering angle, the proportional coefficient can be random
numbers). The initial longitudinal speed of the vehicle was set
randomly in middle-speed range (40–70 km/h).

Some important parameters in Carsim simulations are listed
in Table I. The inputs (steering wheel command and four elec-
tric motor commands) and outputs (vehicle longitudinal speed,
four-wheel speeds, lateral acceleration, and yaw rate) for each
pair are trajectories over time with the same length. The length
of each generated trajectory is 5 s in time with a 100-Hz sam-
pling frequency. Corresponding noises and delays were added
to each element of the outputs to simulate the real conditions.
Equation (9) is adopted as the delay model in the simulation,

Fig. 9. Performance of yaw rate perception.

Fig. 10. Performance of lateral acceleration perception.

and the noise level of longitudinal speed, wheel speed, yaw
rate, and lateral acceleration are 4 rpm (1σ ), 0.1 km/h (1σ ),
0.2 deg/s (1σ ), and 0.005 g (1σ ), respectively, as described in
Section II. We aim to predict the motions of vehicles at each
time step, so the motor commands were paired with the output
of next time step before training. On a portable computer with
a Core I7 processor and an 8-GB RAM, it takes about 20 min
to complete the training of each subnetwork.

B. Performance of the Proprioceptive System

We compare the state prediction performance of the
trained MODERNN and the overall proprioceptive system
(MODERNN + UKP) for a sample in the test dataset. The
results are given in Figs. 7–10. In this sample, the autonomous
FWIA EV does a fishhook style maneuver at the speed of
56 km/h (for brevity, only one of the four wheels’ speed is
given). As can be seen from the figures, prediction results of
RNN are all close to the true values, which indicates that the
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Fig. 11. MSE histograms of RNN prediction and RNN + UKF results.

Fig. 12. Learning curves of deep and shallow RNN.

MODERNN we designed has successfully learned the vehicle
dynamics from experience. The existence of time delay factors
is particularly obvious when there are significant changes in
vehicle states, as shown in zoomed-in areas of Figs. 9 and 10.
Although the measurement signals are lagged randomly, the
time-varying delays of in-vehicle networks have no negative
effect on the predictions of RNN. This is the key to solving
the problem of feedback delays.

The results of the proprioceptive system are based on the
combination of RNN prediction and measurement signals. As
shown in Figs. 7–10, the fusion of two streams of information
can work better than each one working individually. When
noises and delays corrupt the sensory signals, RNN predictions
provide relatively precise information. When the predictions
of RNN are biased, measurement signals can correct them to
a certain degree.

The perception performance over the whole test dataset
(5000 input–output pairs) is illustrated in Fig. 11. Mean
squared errors (MSEs) of RNN and RNN+UKP are calculated
to evaluate their performance for each data sample. Then the
histogram shows the distribution of MSE values over the entire
dataset. The blue bar and orange bar represent the prediction
error distribution of RNN+UKP and single RNN, respec-
tively. The two colors fuse together and form a third color
where two bars overlap with each other. It can be observed
that in all the histograms, the majority of MSE values fall
close to zero, which indicates a strong prediction performance.

Moreover, the distributions of RNN+UKP results have higher
peaks than that of pure RNN prediction, which indicates that
the combination of two streams of information performs better
than one.

To demonstrate the effectiveness of our overall RNN frame-
work, an experiment is conducted to compare the learning
results of our deep RNN and a shallow one. In the experi-
ment, a deep RNN (the middle subnet described in Section III
supported by the trained bottom subnet) and a shallow RNN
(also a three-layer MODERNN with 16 neurons in each hid-
den layer, but without the support of bottom subnet) are trained
to learn the speed changes of four active wheels. Mini-batch
gradient descent (batch size is ten) with cross-validation was
adopted as the learning method. The learning curves are shown
in Fig. 12, with the number of iterations as the horizontal axis,
and the MSE of prediction of all training data as the vertical
axis. It is clear that after an epoch of training, the deep frame-
work has better learning result. Moreover, the shallow RNN
has reached a local minimum, while the learning curves of the
deep RNN still show downward trends, which demonstrates
the potential for better performance.

C. Proprioceptive System-Based Yaw Rate Control

The sliding mode control (SMC), especially the second
order SMC (SOSMC) has long been considered an ideal
robust algorithm for vehicle control systems. However, it has
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Fig. 13. Steering wheel angle in the fishhook style maneuver.

Fig. 14. Influence of delays and noises on the SOSMC yaw rate tracking
controller.

recently been found that some undesired factors in communi-
cation buses and sensors can cause the chattering problem of
SOSMC [6]. Fig. 14 shows that when SOSMC is applied to
the yaw rate tracking of FWIA EVs in Carsim fishhook turn-
ing style, the performance of the system can be significantly
degraded by communication delays and measurement noises.
The desired yaw rate value of our tracking controller is similar
to the reference value in [52], and the SOSMC control law is
designed as [53]

{
y1 = �̇z − �̇∗z
�ṀZd = −KSL sign

{
y1 − 1

2 y1M

} (13)

where �̇∗z is the desired yaw rate value, y1 is the sliding mode
variable, �MZd is the direct yaw moment command of the
controller, KSL is the control gain, and y1M is the value of
the last singular point of y1. In the simulation, the vehicle
speed is set as 50 km/h, and the steering wheel angle is like

Fig. 15. Yaw rate response in the fishhook style maneuver.

Fig. 16. Steering wheel angle in the single-lane change maneuver.

a step response, as shown in Fig. 13. The level of delays and
noises adopted in the simulation are the same as those we
selected for the training process. As can be seen, SOSMC
can work well if we remove the undesired factors. Only small
fluctuation exists due to the discrete-time sampling (sampling
period is 10 ms). However, when delays and noises are added
to the sensory signals separately, obvious oscillation occurs.
The chattering becomes even larger when the two factors are
considered at the same time. It is also easy to observe that in
the first 200 ms, the yaw rate responses with delays lag behind
those without delays. This lag may be less important if we
compare it with the time to reduce the yaw rate error. Actually,
it takes more than 200 ms for the error to approach zero.
However, the time for the sliding variable to enter the sliding
mode surface can be largely reduced if we further optimize our
algorithm. Combining the conventional SMC with SOSMC is
a popular way in terms of accelerating the convergence. SMC
can push the yaw rate to the reference value in less time, and
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Fig. 17. Yaw rate response in the single-lane change maneuver.

TABLE II
MSE OF YAW RATE

then, the switch to SOSMC can eliminate the disadvantages
of SMC. Nevertheless, the response lag resulting from delays
cannot be overcome so easily.

Combining the proprioceptive system with the SOSMC has
the potential to alleviate such performance degradation caused
by delays and noises. In Fig. 15, we can see how the RNN and
UKP work together to mitigate the chattering problem with
the same simulation settings of Fig. 14. With the employment
proprioceptive system, the maximum tracking error declines
to around one-fourth of its original value. The maximum lat-
eral acceleration of the FWIA EV is around 0.25 g in this
simulation, so the vehicle still mainly demonstrates linear
characteristics. To evaluate the effectiveness of our method
under nonlinear conditions, we also simulated in single-lane
change maneuver with larger steering wheel angle. The steer-
ing wheel angle input is given in Fig. 16. Setting the simulation
speed as 50 km/h, the maximum lateral acceleration reaches
0.5 g. A performance comparison between the proprioceptive
system + SOSMC and single SOSMC under this condition can
be seen in Fig. 17. With the proprioceptive system, the yaw
rate of the FWIA EV reaches a good tracking of the desired
value after around 300 ms of the turning, whereas large over-
shoot occurs around the peak value of the steering wheel angle
with single SOSMC. Table II gives the MSE of the yaw rate
in the 0.5–5 s of the fishhook maneuver and 1.8–3.5 s of
the single-lane change maneuver. With the introduction of the
proprioceptive system, the MSE of yaw rate (we only consider
the period after the first time the yaw rate error crosses the
sliding mode surface) can decrease by an order of magnitude.

VI. CONCLUSION

A brain-inspired method, which combines DL and
data fusion was proposed to overcome the feedback delays and
noises in autonomous FWIA s EVs in this paper. The simu-
lation results demonstrate that modern RNN architecture and
learning method can successfully extract nonlinear dynamic
models of the vehicle from sensory data, and UKP can fuse the
two streams of information well. The performance of yaw rate
tracking of FWIA EVs can be improved with the introduction
of our proprioceptive system.

In this paper, the training was conducted offline. However,
autonomous vehicles face an ever-changing environment in
operation. Some parameters of vehicles, like mass, friction
coefficient are not constant, and the dynamic models of vehicle
motion are time-varying. As such, the online learning method
which can adapt to the changes in the environment along with
the learning, inference, and selection of multimodels are our
goals for the future study. Besides, the delays in the feedfor-
ward loop are ignored in this paper. Although these delays are
not as obvious as those in the feedback loop, they still exist and
can affect the closed loop control performance. The real-time
performance considers feedback delay, feedforward delay, and
VCU computational delay should be carefully studied in the
future.
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