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Abstract— In computer vision, significant advances have been 

made in recent years on object recognition and detection with the 
rapid development of deep learning, especially deep convolutional 
neural networks (CNN). The majority of deep learning methods 
for object detection have been developed for large objects and 
their performances on small-object detection are not very good. 
This paper contributes to research in low-resolution small-object 
detection by evaluating the performances of leading deep learning 
methods for object detection using a common dataset, which is a 
new dataset for bird detection, called Little Birds in Aerial 
Imagery (LBAI), created from real-life aerial imagery data. LBAI 
contains birds with sizes ranging from 10px to 40px. In our 
experiments, some of the best deep learning architectures were 
implemented and applied to LBAI, which include object detection 
techniques such as YOLOv2, SSH, and Tiny Face, in addition to 
small instance segmentation techniques including U-Net and Mask 
R-CNN. Among the object detection methods, experimental 
results demonstrated that SSH performed the best for easy cases, 
whereas Tiny Face performed the best for hard cases, i.e. where a 
cluttered background makes detecting birds difficult. Among 
small instance segmentation methods, experimental results 
revealed U-Net achieved slightly better performance than Mask 
R-CNN.  

Keywords—small-object detection, instance segmentation, 
convolutional neural networks, deep learning, aerial image dataset 

I. INTRODUCTION 
Object detection is one of the crucial tasks in computer 

vision. In the past few years, the performance of object detection 
[1-14] has dramatically improved due to the success of deep 
convolutional neural networks (CNN). Typically, object 
detection and recognition involve two steps: first, deep neural 
networks are used to localize the potential location of each target 
object; then, objects are classified into appropriate classes.  If 
the first step can effectively localize the potential object, the 
second step will be easier. Even though the two-step approach 
achieved state-of-the-art performance, the running times are 
usually slow [11]. Therefore, one-stage detectors have been 
developed to improve the speed.  

Small-object detection remains challenging because small 
objects usually have lower resolution and less context 
information. Finding a 20 × 20 size object located in a 5000 × 
5000 image is a difficult task, even for humans. As described in 
the literature, state-of-the-art methods for object detection 

usually performed poorly on small objects [11]. Recent research 
has shown the importance of context information and scale for 
small-object recognition [8][9]. In addition, it has been reported 
that lower-layer features extracted from CNNs are very useful 
for small-object detection and segmentation [8-11].  

 The work presented in this paper focuses on low-resolution 
small-object detection by evaluating the performances of 
leading deep learning methods using a common dataset, which 
is a new dataset for bird detection, called Little Birds in Aerial 
Imagery (LBAI). This dataset was created from real-life aerial 
imagery data, provided by the Illinois Natural History Survey at 
the University of Illinois at Urbana-Champaign. LBAI contains 
images of waterfowl and other water birds in shallow lakes 
within the Illinois River Valley. LBAI includes different colors, 
shapes, poses, resolutions, and bird sizes range from 10px to 
40px. The dataset contains different backgrounds of rivers, 
vegetation, land, and mixtures between each type of 
background. Overall, LBAI captures the diversity of real-life 
situations for bird detection in shallow lake and wet lands across 
the Midwest. Some of the birds have larger sizes, in higher 
resolutions and homogenous backgrounds, which make them 
easier to be identified. While others have smaller sizes, in lower 
resolutions with blurry contours, making them hard to be 
detected. LBAI is designed to identify the difficulties and 
improve existing methods on small object detection.  

Using the LBAI dataset, we compared a wide-range of 
representative state-of-the-art deep learning methods. The 
results shed a light on the strengths and weaknesses of different 
deep neural network architectures for small object detection. 
The contributions of this research include applying and adapting 
leading deep-learning methods to the LBAI dataset, evaluating 
performances of these methods on a common benchmark dataset 
for small-object detection and segmentation, and automating the 
time-consuming process of manual image processing from 
waterfowl surveys. 

 The rest of the paper is organized as follows. Section II 
introduces deep learning methods on object detection, with an 
emphasis on the techniques related to small-size object 
detection.  Section III presents the state-of-the-art object-
detection methods applied to LBAI for performance evaluation. 
Section IV describes the properties of LBAI in detail. Section V 
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presents experimental results. Last, Section VI summarizes this 
research.   

II. RELATED WORK 
There are two major approaches for object detection and 

recognition. The first detection-based approach is the traditional 
one that generates a bounding box of the detected objects and 
then identifies the type of objects. The second approach, which 
is a segmentation-based approach, can also be used for object 
detection. This approach first generates labelling at the pixel 
level and then tries to identify the class of the objects to which 
each pixel belongs.  

A. Object detection methods 
Existing deep learning algorithms for object detection falls 

into two categories: one-stage detectors and two-stage detectors 
[1-9]. At first, two-stage detectors generate many region 
proposals, which may potentially contain the objects. Then, 
these sparse proposals are further classified into different object 
categories. In general, two-stage detectors are more accurate, but 
slow when compared to one-stage detectors. In one-stage 
detectors, the bounding boxes proposal step is eliminated and 
both, object localization and classification, are done in one pass. 
This strategy significantly improves the speed of detection when 
compared with two-stage detectors.  

In a two-stage detector, the regions that potentially contain 
objects are first proposed. Then, detection refinement is applied 
to classify proposed regions and regress the bounding box 
location. For example, the Selective Search method [1] is used 
in R-CNN [2] to generate category-independent region 
proposals to localize the regions that may contain the target 
objects. R-CNN then uses a convolution neural network to refine 
regions. Each region proposal is fed into the CNN 
independently, which is a slow process. Fast R-CNN [3] 
addressed these issues by only computing the convolutional 
feature map once. Therefore, each region proposal shares the 
computation of the same feature map. The region proposals are 
generated in a Region of Interest (RoI) pooling format to feed 
into fully connected layers [3].  

Faster R-CNN [4] further improved the detection speed by 
using a fully convolutional network, called Region Proposal 
Networks (RPNs), to generate the region proposals, replacing 
the Selective Search method used in previous methods.  In the 
second stage, a CNN is used for proposal refinement and object 
classification. The main benefit of this design is that the RPN 
shares the same convolutional layers with the object detection 
network, which reduces the detection time [4]. Furthermore, 
FPN was proposed to improve Faster R-CNN [12]. FPN used 
the concept of a feature pyramid. Instead of applying a pyramid 
on the input images, it used the feature map pyramid, since CNN 
already provide a hierarchy between the different feature layers. 
The idea was implemented in a bottom-up and top-down path 
with lateral connections. FPN utilized a lower, high-resolution 
feature layer, compared to other algorithms, which dramatically 
improve detection accuracy, especially for small objects.  

In one-stage detectors, the proposal generation stage is 
removed, resulting with localization and classification being 
performed in one stage.  Recently, YOLO [5][6], SSD [7], and 
their variations achieved promising results. YOLO [5] divided 

input images into 7 × 7 cells and each cell predicts two bounding 
boxes. The network has convolutional layers followed by fully 
connected layers. Even though YOLO achieved a 45 frame per 
second detection speed, which is extremely fast when compared 
to other algorithms, the main drawbacks result from localization 
prediction errors and low object detection recall [5].  

DSSD [10] is a variation of SSD [7]. It improved the 
performance of SSD, especially for small objects, by using a 
larger network as well as adding additional context information 
with de-convolutional neural networks. DSSD achieved higher 
accuracy, especially for small objects. Recently, RetinaNet [13] 
achieved state-of-the-art results for one-stage detection. It 
outperformed existing two-stage detectors while maintaining a 
fast detection time. The work in [13], found that the accuracy 
gap between one-stage detectors and two-stage detectors was 
mainly due to the positive and negative examples being highly 
unbalanced, since there are extremely large amounts of 
background examples overwhelming the process. Even though 
each loss of the background examples is small, the large number 
of the background cases result in dominating the total loss, 
which results in a degenerated model. This problem was solved 
by introducing a new loss function, called focal loss, to change 
the weights between positive examples and negative examples, 
so they cannot affect the loss function dramatically. Huang et.al. 
in [11] compared the detection accuracy and detection time 
between two-stage detectors and one-stage detectors. They 
concluded that, on average, one-stage detectors are faster than 
two-stage detectors, while two-stage detectors tend to be more 
accurate than one-stage detectors. The performance of most 
detection algorithms dropped dramatically when applied to 
small-object detection. In addition, several one-stage detectors 
were developed for small face detection, including Tiny Face [8] 
and SSH [9].  

B. Instance segmentation methods 
FCN [15] is one of the first methods that use CNNs in the 

semantic segmentation area. FCN employs CNNs without fully 
connected layers, which allows the input image to have an 
arbitrary size. This method laid the foundation for later methods.  

A key issue of segmentation methods is the pooling layers. 
Adding pooling layers can reduce the computation time and 
increase the reception field size. U-Net is based on FCN [15], 
with the encoder-decoder architecture to address the issue of 
determining the appropriate numbers of pooling layers. It has a 
U-shape architecture to balance the trade-off between good 
localization accuracy and efficient context information. 
Therefore, it only needs a small number of training images. In 
the encoder stage, it uses pooling layers to gradually reduce the 
layer size, whereas, in the decoder stage, it uses up-convolution 
to gradually increase the layer size. Moreover, U-Net uses the 
short-cut connection from encoder to decoder to help the 
decoder recover fine-grain information.  Regarding the trade-off 
between reception field and localization accuracy, large 
reception fields lead to lower localization accuracy. On the other 
hand, when the reception field is too small, the localization 
accuracy may also decrease due to the lack of context 
information.  

Mask R-CNN [14] is a recent work based on Faster R-CNN 
and FCN. Faster R-CNN already provides two predictions: 
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bounding box localization and recognition. Mask R-CNN added 
the third output on top of Faster R-CNN, which is the instance 
mask prediction for segmentation. The Mask R-CNN 
architecture can output bounding box localization, classification, 
and segmentation at the same time.  The improvement of Mask 
R-CNN from FCN comes from the new ROIAlign layer, 
multitask training, and a better backbone network [14] [15]. 

III. DEEP LEARNING METHODS APPLIED TO LBAI  
In this section, the representative state-of-the-art object-

detection methods are presented. In our experiments, they were 
applied to the LBAI dataset to evaluate their performances on 
low-resolution small-object detection. 

A. Object detection methods 
(1) Single Shot MultiBox Detector (SSD) [7] is a one-stage 
detector that performs object localization and classification in a 
single forward pass of its CNN. SSD’s network is built on the 
VGG-16 architecture, with the fully connected layer removed. 
Instead of using a fully connected layer, several small 
convolutional feature maps are added on top of VGG-16 to 
predict the target objects. Moreover, to capture different object 
scales, SSD generates different scales of feature maps for 
detection. This will result with two predictions being generated, 
one predicts the bounding box category and the other predicts 
the location of the bounding box. At the end, non-maximum 
suppression (NMS) is used to generate the final detection 
results. SSD achieved good accuracy, comparable to two-stage 
detectors, but much faster. However, SSD’s performance on 
smaller objects was much worse. The reason is that small objects 
may not appear on higher-level feature maps. Even though 
increasing the input image size can help slightly, SSD cannot 
address the problem well. 

In our experiments on the new LBAI dataset, we used the 
source code of SSD built on the Caffe [17] framework with a 
VGG-16 architecture as the backbone network. VGG-16 is 
pretrained on ImageNet [21] for image classification and fine-
tuned on our LBAI dataset. We used the same data augmentation 
and hard negative mining as SSD: batch size set to 16, input 
image size of 512 × 512, and a really small learning rate of 1e-
7. The results were poor and thus not report in the experimental 
results section.  

 (2) Single Stage Headless (SSH) [9] is one of the variations of 
SSD, specifically designed for face detection. Like SSD, SSH is 
also a single-stage detector and the architecture of SSH is built 
on a VGG-16 network without fully connected layers. The 
convolutional detection module is applied on top of three 
different feature maps, corresponding to different strides, in 
order to handle scales of variation. The detection module 
consists of several convolutional layers and eventually generates 
two results, classification prediction and bounding box 
localization.  Unlike SSD, SSH focuses on adding more context 
information, especially for small objects. A context module is 
designed inside of the detection module to increase the receptive 
field size. With VGG-16 as a base-net, SSH outperformed the 
ResNet-101 based methods. SSH achieved state-of-the-art 
results on both the WIDER FACE dataset [18] and the FDDB 
dataset [19]. Moreover, the inference time is fast. SSH achieved 
21 FPS with an image resolution of 400 × 800 and 13 FPS with 

a resolution of 600 × 1000, which is much faster than Tiny Face 
[8].  

In our experiments on the LBAI dataset, we used the source 
code of SSH built on the Caffe [17] framework with a VGG-16 
architecture as the backbone network. VGG-16 is pretrained on 
ImageNet [21], for the task of image classification, and fine-
tuned on our LBAI dataset. We changed the number of output 
classes to two, which is bird or not bird (i.e. background in our 
case). The network was trained with the batch size equal to 128 
and the input size equal to 512 × 512.We set the learning rate to 
0.0004 for easy cases and to 0.004 for hard cases. The 
momentum is equal to 0.9 and the weight decay was set to 
0.0005. It took approximately two hours to train 10,000 
iterations on a GTX 980M graphics processing unit (GPU) with 
8GB memory. Both classification loss and regression loss 
decreased during training.  

(3) You Only Look Once (YOLO) v2 [5] is an improved 
version of the original YOLO network with several adjustments. 
Batch normalization on the convolutional layers is used to 
stabilize network training. The performance is increased by 
approximately 2% mAP with batch normalization. As found by 
other research, higher resolution can capture more information, 
especially for small objects [5]. This strategy increases the 
performance by approximately 4% mAP. In YOLOv2, the fully 
connected layers are removed. Instead of directly predicting the 
location of bounding boxes, YOLOv2 adopted an anchor box 
strategy similar to that used by Faster R-CNN. This can improve 
the recall by a large margin while only slightly lowering 
precision.  A dimension clustering algorithm is used to find the 
starting anchor box dimensions based on the data from the 
training set. With dimension clustering and direct location 
prediction, the location accuracy is improved by over 4%. 
Finally, for improving performance on small objects, the lower 
feature map is concatenated with the higher feature map. 

In our experiments on LBAI, we used the source code for 
YOLOv2 built on the Darknet framework.  We loaded weights 
from darknet53.conv.74 and fine-tuned them on the LBAI 
dataset for 16,000 batches. We changed the number of output 
classes to one and adjusted the last convolutional filter to 30.  
The network was trained with a batch size of 64 and subdivisions 
set to 8.  We applied a jitter of .4 to the training set and used a 
resolution of 448 × 448.  We set the learning rate to 0.0001 with 
a decay of 0.0005.   

(4) Tiny Face [8] is one of the face detectors specifically 
designed to detect small objects. In [8], experiments were 
conducted to investigate the importance of scale, image 
resolution, and contextual information. Separate detectors were 
trained over different feature layers of a single CNN to tackle 
the scale variant problem. The work in [8] claimed that context 
is the key to finding small objects, especially for low-resolution 
faces, and having a large reception field is good to detect small 
faces. More context was introduced by combing feature maps 
from multiple CNN layers. In addition, a two-times larger 
resolution was found to be effective to find smaller faces. The 
work showed that Tiny Face achieved state-of-the-art results on 
both WIDER FACE and FDDB datasets. More importantly, it 
achieved 82% mAP accuracy for small faces, whereas previous 
methods only achieved 29-64% mAP. However, the image 
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pyramid pipeline slows down the method.  The running time was 
1.4 FPS on 1080 resolution images and 3.1 FPS on 720 
resolution images, which is much slower than other one-stage 
detectors.  

In our experiments on LBAI, the source code of Tiny Face 
was built on the Matconvent framework written in Matlab. The 
original input size is 500 × 500. After we changed the input size 
to 512 × 512, the algorithm randomly cropped a 500 × 500 image 
region. We used a batch size of 12 and a learning rate equal to 
1e-5 for easy cases and a learning rate equal to 1e-4 for hard 
cases. The momentum was set to 0.9 and the weight decay set to 
0.0005. We trained Tiny Face with ResNet-101 as the base 
architecture for 50 epochs, which took approximately 5 hours.  

B. Instance segmentation methods  
(1) U-Net [15] is built on fully convolutional networks, 
specifically designed for biomedical image segmentation. In the 
contracting path, the convolutional layers are applied with 
pooling layers to extract context features. In the expanding path, 
the up-sampling layers are added to increase the localization 
accuracy. More importantly, the feature maps from the 
contracting path are concatenated with the up-sampling layers to 
improve localization. In addition, elastic deformations are 
applied as data augmentations during training. U-Net is the 
winner of the ISBI challenge for segmentation and the ISBI cell 
tracking challenge in 2015. With a 512 × 512 input image, the 
inference time is less than one second. 

In our experiments, the basic U-Net architecture was used to 
train on the LBAI dataset. However, because of the significant 
difference between the natural images in LBAI and bio-cell 
images, we added zero-padding after each convolution operation 
block, instead of cropping the reception field as in Isola [24] and 
Zhu’s work [25]. This prevented the network from losing too 
much pixel label information, which was needed because objects 
in LBAI are very small. With padding, the U-Net architecture 
would have the same size of input and output. 

In order to apply the segmentation method for object 
detection, instance segmentation labels were prepared as the 
ground truth. However, it is time and labor consuming to 
generate segmentations for every target object in LBAI. So, 
instead of using object contours as labels, we used a 20 × 20 
square as a ground truth mask, centered at the coordinate of each 
object. After fixing the network architecture, specifically the 
inputs and outputs, we fed 512 × 512 images into U-Net and 
trained the network. In the training phase, we used the VGG-16 
pretrained weights on ImageNet [21] as initial weights in all 
encoder blocks and the Xavier initializer in all decoder blocks. 
The learning rate was set to 0.001 with a learning rate decay 
equal to 0.1 for every 7 epochs. The batch size was set to 2 in 
the training phase and since we were using a GTX 980M GPU 
with 8GB memory, the Adam optimizer was used. In the 
inference phase, blob detection on the final output was used to 
calculate the coordinates after running through the segmentation 
network.  

(2) Mask R-CNN [14] is a recent work for segmentation and 
object detection, as explained in the related work section.  The 
major change in Mask R-CNN is that it solves the ROI pooling 
problem that causes the feature maps and original image not to 

be aligned. Mask R-CNN uses the ROIAlign layer to replace the 
ROI pooling layer. In the ROIAlign layer, the rounding for 
boundaries or bins are removed and bilinear interpolation is 
applied to compute the exact values for the feature maps. 
Moreover, Mask R-CNN uses a binary cross-entropy loss for the 
instance mask, which avoids the competition among all classes.  
Mask R-CNN achieved state-of-the-art results of instance 
segmentation on the COCO [22] test dataset with a running time 
of 5 FPS.  

 When implementing Mask R-CNN on the LBAI dataset, we 
used the same input and output described in the U-Net 
implementation. In the training phase, we froze the weights of 
ResNet-101 and trained all the other weights in the original 
Mask R-CNN architecture. For the hyper-parameters, we used 
the Adam optimizer with the value of 0.0001 as the learning rate 
until the loss curve converged. Other implementation details for 
the training and inference phases were the same as U-Net for a 
direct comparison between these two methods, e.g. batch sizes 
and blob detection.   

IV. LBAI DATASET 

 

Fig. 1.   Examples of the new LBAI dataset for small object detection and 
instance segmentation. Cropped images with different color, shape, 
resolution, background, and scale are shown.  
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A. Dataset overview 
The LBAI dataset was provided by the Illinois Natural 

History Survey at the University of Illinois at Urbana-
Champaign. The total dataset has 230GB of data, with 440 high-
resolution images that have a resolution of 5760 × 3840, and an 
altitude value of approximately 90 meters above ground level 
(AGL). Fig. 1 shows examples of the cropped images, with 
different color, shape, resolution, background, and scale. Due to 
the large size of images, it is difficult to train CNNs directly on 
the original images. From the original dataset, we created two 
sub-datasets, LBAI-A and LBAI-B, with different cropping 
scenarios as stated below.  

LBAI-A: There were 336 images with high-resolution that 
were used, and this dataset was divided into the training, 
validation, and test sets based on these images. For each set, we 
take the original image and crop it into the small patches with a 
size of 512 × 512, without overlapping the patches. This will 
insure that the original image does not get put into different sets 
(e.g. a patch from the original image gets put into the training 
set and another patch from the same original image gets put into 
the validation set). The incomplete boundary regions were 
discarded after cropping, since resizing may change the ratio and 
shape of the birds. For the training set, there are a total of 3,158 
cropped images with 24,836 birds. We only keep the small 
patches with birds in the training and validation set. However, 
the test set contains all the cropped images, both with birds and 
without birds. After applying the various object-detection 
methods on the cropped images to detect the birds, the detection 
results from the patches were merged back into the original 
images. In our experimental results on this dataset, the 
performance comparisons of the various methods are based on 
the merged patches which form the original images.  

LBAI-B: We use a total of 336 images in dataset-B as well. 
We used the same strategy as for dataset-A, i.e., no patch from 
the same original image will be used across the training, 
validation, and testing set. The original images were cropped 
into small patches of size 512 × 512 without overlap. Incomplete 
boundary images were not included. In the training, validation, 
and test set, only the cropped images which contain birds are 
used. In our experimental results on this dataset, performance 
comparisons of the various methods are based on the cropped 
image set, which only contains birds.  

B. Dataset labelling 
When we received this dataset, it contained the bird counting 

labels, i.e. the number of birds per image, from the Illinois 
Natural History Survey at the University of Illinois at Urbana-
Champaign. However, it did not contain the bounding box 
locations for the birds, which is the labelling needed for 
detection. We generated the annotations for the birds’ location, 
so that the number of birds would match the total number of 
birds received from the expert annotations. A labelling tool, 
called Sloth, was used to label the images. For each image, a dot 
was put at the center of each visible bird for all of the birds. This 
dot label was used for blob detection to generate the bounding 
box and pixel level labels. Next, we used image processing 
techniques to find the contour of the labeled birds. A bounding 
box was drawn around the bird’s contour to generate bounding 
box labels. All labeled results are saved in an xml file. These 

labels were created from multiple observers with varying levels 
of training and experience. 

C. Dataset seperation based on difficulty levels 
The backgrounds of the LBAI images are very different, 

which have a significant impact on the bird detection results. 
Some images have clear backgrounds with uniform colors, 
which usually correspond to rivers and water. In this case, the 
main problem is to identify the birds among different colors, 
shapes, and resolution situations. On the other hand, in the 
images with backgrounds of land, trees, or vegetation, detection 
of birds is much harder, even for humans with great eyes. It is 
hard to distinguish emergent vegetation and submersed aquatic 
vegetation from birds. Therefore, following ideas from other 
datasets [16], we split each dataset into easy and hard cases 
based on the background. In LBAI-A, 3,158 images are 
categorized as easy cases, which contributed 52% of our labeled 
data, and 2,907 images as hard cases.  In LBAI-B, there are 
2,416 easy case images and 2,056 hard case images. The 
proportions of easy and hard cases are 54% and 46%, 
respectively. 

D. Image diversity  
As shown in Fig. 1, LBAI contains images of birds of various 

colors, shapes, poses, resolutions, scales, and backgrounds. The 
properties are discussed as follows.  

Color. For different species, birds have different features. Some 
birds are all white, while others are all gray or blackish. Some 
of the birds have darker stripes on their back, while others may 
have darker dots around their heads. Different color features and 
weather conditions add more variety to the dataset.  

Shape and Pose. Birds have different shapes in our dataset. 
Most of the birds have ellipsoidal shapes, i.e., the head and tail 
are narrow, and the middle of the body is wide. However, this is 
not true for all cases. Some of the birds are partially covered by 
the vegetation area, which leads to circular shapes. Different 
activities of the birds also led to different shapes and poses. For 
example, most birds are swimming or floating, whereas others 
are flying. 

Resolution. LBAI contains images taken under different image 
resolutions. In some images, the bird’s shape, color and angle 
are clear to see. On the other hand, some birds are blurry and 
hard to distinguish in both color and shape. This is due to the 
variation of airplane altitude, weather conditions, and image 
resolution from the camera when the images were taken.     

Scale. LBAI contains birds ranging from the size of 10px to 
40px, due to the different species and activities. Most of the 
birds are in the range of 10px to 20px. Some flying birds or birds 
of bigger species (i.e., ducks and geese) have larger sizes of 30px 
to 40px.  

Background. LBAI covers diverse background information, 
including calm water, water waves, vegetation region, forest, 
and many others. Background clutter is one of the major issues 
for correctly identifying birds.  

V. EXPERIMENT RESULTS 
In this research, we evaluate the detection results and the 

counting results of various deep learning methods on a common 
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dataset, the LBAI dataset. For detection, the performance 
metrics include precision, recall, and F1 score. Precision is the 
percentage of correctly predicted instances over the total number 
of predictions, while recall is the percentage of correctly 
predicted instances over the total amount of instances, defined 
as follows: 

 

 

 

where is true positive,  is false positive, and  is the false 
negative instances.  

 F1 is the harmonic mean of precision and recall: 

 

For counting results, the performance metric is the mean 
absolute error (MAE), i.e., the difference between the predicted 
count of birds in an image and the true count based off the labels 
described in the previous section.   

A. Performance comparion using LBAI-A  
Using LBAI-A, we compared the performance of five 

representative state-of-the-art deep learning methods, including 
YOLOv2, SSH, Tiny Face, Mask R-CNN, and U-Net. 

TABLE I.  PERFORMANCES OF DIFFERENT DEEP LEARNING TECHNIQUES 
ON THE EASY CASES IN THE LBAI-A DATASET.  

TABLE II.  PERFORMANCES OF DIFFERENT DEEP LEARNING TECHNIQUES 
ON THE HARD CASES IN THE LBAI-A DATASET.  

 

Fig. 2 shows the examples of bird detection results of the 
five deep learning methods on the three different types of LBAI 
images. The green bounding boxes are the prediction results 
and the red bounding boxes are the ground truth.  In Image 1, 
the background is uniform, with calm water surfaces, which is 
an easy case. Looking at Image 2, which is still an easy case, 

there are vegetation areas, making it harder to identify the birds. 
Image 3 represents an example of land as the background, 
although there are only four birds in the water, a significant 
number of false positives were generated by all methods in the 
land regions, which is why this is a hard case.  

The results on the test cases are shown in Table I and II. 
There is a total of 944 test images for the easy cases and 944 
images for the hard cases in LBAI-A. As shown in Table I, on 
the easy cases in LBAI-A, U-Net and SSH obtained the highest 
F1 score, 81.9% and 81.8%, respectively, which were much 
higher than the other three methods. In terms of precision, U-
Net was the best, while YOLOv2 was second. In terms of recall, 
Mask R-CNN was the best, while SSH was second. In terms of 
MAE, U-Net was much better than the other methods, 
outperforming them by at least 17%.  

As shown in Table II, focusing on the hard cases in LBAI-
A, the precision, recall, and F1 scores of all methods were much 
worse than their corresponding results on the easy cases in 
Table I. The best F1 score on the hard cases in LBAI-A was 
54.7%, generated by Tiny Face. U-Net and SSH had results 
similar to Tiny Face. However, YOLOv2 and Mask R-CNN 
had significantly lower F1 scores. Mask R-CNN had the highest 
recall rate, but lowest precision because it generated too many 
false positives. In terms of MAE metrics, U-Net and SSH 
performed the best, slightly better than Tiny Face and 
YOLOv2. Mask R-CNN performed very poorly.  

B. Performance comparion using LBAI-B 

TABLE III.  PERFORMANCES OF DIFFERENT DEEP LEARNING TECHNIQUES 
ON THE EASY CASES  IN THE LBAI-B DATASET. 

TABLE IV.  PERFORMANCES OF DIFFERENT DEEP LEARNING TECHNIQUES 
ON THE HARD CASES IN THE LBAI-B DATASET. 

 

Using LBAI-B, we compared the performance of the same 
five deep learning methods on the cropped images. The results 
on the test cases are shown in Table III and IV. There are 202 
and 93 testing images for easy and hard cases, respectively. The 
number of testing images are much smaller than LBAI-A 

Methods Precision Recall F1 Score MAE 

YOLOv2 0.831 0.745 0.785 49.3 

SSH 0.801 0.836 0.818 46.4 

Tiny Face 0.613 0.809 0.697 103.2 

Mask R-CNN 0.772 0.842 0.805 49.0 

U-Net 0.861 0.781 0.819 38.5 

Methods Precision Recall F1 Score MAE 

YOLOv2 0.568 0.238 0.335 22.0 

SSH 0.46 0.62 0.53 20.3 

Tiny Face 0.552 0.542 0.547 21.2 

Mask R-CNN 0.193 0.659 0.299 89.5 

U-Net 0.55 0.51 0.53 20.1 

Methods Precision Recall F1 Score 

YOLOv2 0.886 0.878 0.882 

SSH 0.909 0.941 0.925 

Tiny Face 0.936 0.879 0.907 

Mask R-CNN 0.845 0.956 0.902 

U-Net 0.921 0.897 0.909 

Methods Precision Recall F1 Score 

YOLOv2 0.742 0.698 0.720 

SSH 0.766 0.810 0.787 

Tiny Face 0.903 0.722 0.802 

Mask R-CNN 0.656 0.721 0.687 

U-Net 0.867 0.592 0.704 
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because we only included the patches containing birds. The 
patches that did not contain birds were discarded in LBAI-B. 
Therefore, in our results, we didn’t calculate MAE for LBAI-B 
because MAE is only calculated for the original sized images. 
However, with only patches containing birds, we would not be 
able to reconstruct the original images.  

As shown in Table III, focusing on the easy cases in LBAI-
B, SSH obtained the highest F1 score of 92.5%. This is 
significantly higher than the other methods. Whereas, YOLOv2 
was the worst out of all the methods. In terms of precision, Tiny 
Face was the best, while YOLOv2 was the worst. In terms of 
recall, Mask R-CNN was the best, while SSH was a close 
second.  

As shown in Table IV, focusing on the hard cases, the 
precision, recall, and F1 scores of all methods were again much 
worse than their corresponding results on the easy cases in 
Table III, resulting in a greater than 10% difference. The best 
F1 score on the hard cases was 80.2%, generated by Tiny Face. 
SSH was a close second. SSH had the highest recall rate, 
whereas Tiny Face had the highest precision.   

C. Running time comparision 
  The execution times of the methods were measured as 
frames per second (FPS) to predict the results. All of the FPS 
were generated on a GTX 980M GPU with 8GB memory. Given 
the input size of 512 × 512, SSH was the fastest, reaching 14 
FPS. The running time for U-Net and Mask R-CNN are both 5 
FPS. TinyFace runs the slowest with 1.4 FPS, due to its image 
pyramid multi-scale architecture. 

VI. SUMMARY 
In this paper, we have presented a new aerial imagery dataset 

based on real-life images including waterfowl and other water 
birds in wetlands around the Midwest. Different from most of 
the existing datasets, the new LBAI dataset contains small birds 
of sizes ranging from 10px to 40px. Several state-of-the-art deep 
learning object detection and instance segmentation techniques 
have been applied to the LBAI database and obtained a range of 
performance results.  Among object detection methods, SSH 
performed the best on the easy cases, while Tiny Face achieved 
the best accuracy on the hard cases.  Between instance 
segmentation methods, U-Net achieved better performance than 
Mask R-CNN. These results are useful for identifying the 
strengths and weaknesses of existing methods and the 
development of future methods with improved performance. 
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 Image 1: number of birds = 295 (ground truth) Image 2: number of birds = 83 (ground truth) Image 3: number of birds = 4 (ground truth) 
 

 
 YOLOv2: number of detected birds = 247 YOLOv2: number of detected birds = 146 YOLOv2: number of detected birds = 49 
 

 
 SSH: number of detected birds = 273 SSH: number of detected birds = 173 SSH: number of detected birds = 168

 

 
 TinyFace: number of detected birds = 173 TinyFace : number of detected birds = 95 TinyFace : number of detected birds = 300

 

 
 Mask R-CNN: number of detected birds = 290 Mask R-CNN : number of detected birds = 223 Mask R-CNN : number of detected birds = 111
 

 
 U-Net: number of detected birds = 248 U-Net : number of detected birds = 86 U-Net : number of detected birds = 109

YOLOv2 

Fig. 2.   Examples of bird detection results of the 5 deep learning methods using 3 different types of LBAI images. The green bounding boxes are the prediction 
results. The red bounding boxes are the ground truth.  In Image 1, the background is uniform, calm water surfaces. In Image 2, there are ice in the bottom half 
of the image and vegetation scattered in the image, making it harder to identify the birds. In Image 3, as an example of land background, although there are 
only 4 birds in the water, a lot of false positives are generated by all the methods in the land regions. 

SSH 

Tiny 

Face  

Mask  

R-CNN  

U-Net 
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