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Abstract 

Autonomous Vehicles (AVs) promise many benefits for future mobility. Several modeling studies investigated their potential impacts with 
special focus on spatial and/or socio-economic features. Spatial modeling represents (i) in detail the technical specifications of the novel mode, 
and ii) the spatial features of the area in which the system is implemented. Most of these models are agent -based. Socio-economic modeling 
addresses the conditions of market penetration and diffusion using mathematical methods with commercial or social orientation. Furthermore, it 
investigates investment and operating costs.  
This paper summarizes the main modeling works on transportation systems involving AVs that were published in the academic literature up to 
end 2016. In addition, we provide some examples of applications and address their respective outreach and limitations. We present 
recommendations for future developments.  
This way, the paper takes part to a research project of which the ultimate goal is  to build a predictive model that can be used by operators and 
policy-makers in order to test AVs scenarios. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 20th EURO Working Group on Transportation Meeting. 
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1. Introduction 

Since the beginning of prosperity of the automotive era, the automation of car-driving has attracted specific studies: let us quote 
the car-to-car communicat ion system using radio waves in Milwaukee during the 1920s (The Milwaukee Sentinel, 1926), the 
electromagnetic guidance of vehicles  in  the 1930s and 1940s, or the testing of smart  highways by adding magnets to vehicles 
during the 1950s and 1960s (The Victoria Advocate, 1957). In 1980, Mercedes-Benz and Bundeswehr University Munich 
created the first autonomous car in the world, enabling to start thinking about legislation adaptation (Davidson, et al., 2015). 
Since then, many companies launched themselves in the quest for the perfect car or autonomous system, including Mercedes -
Benz, General Motors, Google, Continental Automotive Systems, Inc. Autoliv, Bosch, Nissan, Toyota (Google Car), Audi, 
Oxford University, among others. Addition impetus was provided by the DARPA Grand Challenges I (2004), II (2005) and III 
(2007). In 2016, five US states (California, Flo rida, Michigan, Nevada, Tennessee and the District of Columbia) allowed to test 
autonomous vehicles , while 16 other states are considering taking legislative bills about automated driving (Weiner, et al., 2016).  
The experiments on autonomous vehicles show promising results . Such in-field experiments are main ly intended to test self -
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driving technology and possibly also the attitudes, use gestures and behaviours of potential users . Yet, up to now there has been 
no large scale implementation of AV fleet in a given territory. Prior to that, it is obviously important to deliver safe and reliable 
technology and to settle a suitable regulatory framework. Even more important, though less obvious, is the requirement to ens ure 
commercial success, i.e. the purchase of hiring of AVs by indiv idual customers of firms, which requires in turn convincing 
evidence of AV-based services attractiveness within the range of travel solutions that compete to serve mobility purposes. This is 
why a number of researchers have modelled AV-based services as mobility solutions under particular territorial conditions. 
This paper reviews the models developed so far, with the aim to summarize their findings and to assess their outreach and 
limitat ions. As it turns out, the reviewed models fall into two broad categories depending on their main orientation that can be 
geographic or socio-economic. Geographic or spatial models focus on technical conditions concerning service performance, 
operations and availability in relat ion to users’ needs and alternative solutions. The choice from among alternative solutions 
indeed leads to economic issues. Models belonging to the socio-economic category put the emphasis on the temporal conditions 
of AV development: this involves issues of technology readiness, legal framework, demand inclination and adoption, in relation 
to the production costs of self-driving cars. 
The rest of the paper is organized in four parts. Section 2 reviews models that emphasize spatial conditions: they can be further 
divided according to whether they are rooted in travel demand needs and choices, or in the dynamic performance of a technical 
system that links the supply and demand sides. Then, Section 3 addresses socio-economic models, from market penetration to 
production costs passing by customership issues. Next, Section 4 reports on the evaluation of potential impacts that range from 
traffic volumes and parking demand to environmental impacts, passing by safety. Lastly, Section 5 d iscusses the outreach and 
limitations of the reviewed models and their applications, before proposing some directions for further research. 

2. Spatial Models of AV-based Services 

2.1. Models rooted in Travel Demand 

Levin et al. (2015a) propose a four-step model div iding demand into classes by value of time and AV ownership. AVs are 
considered as private vehicles. Mode choice is between parking, repositioning, and transit based on a nested logit model. Sta tic 
traffic assignment uses a generalized cost function of time,  fuel, and tolls. Lev in (2015b) incorporates dynamic traffic assignment 
(DTA) with endogenous departure time choices.  Thus, the model considers more realistic flow propagation and intersection 
control options. In addition, it has only studied the case of full autonomous vehicles. 
Results of static and dynamic assigment prove that using autonomous vehicles improves the capacity of the intersections, but 
does not reduce significantly the congestion. 
Auld et al. (2017) used a simulat ion model (POLARIS) which includes an activity-based model (ADAPTS) and a traffic 
simulation model. Market penetration is controlled  on a reg ional scale by adjusting road capacity. Results show that capacity  and 
value of time affect significantly vehicle-kilometres travelled (VKT). 
Kloostra et al. (2017) assumed that autonomous vehicles will change road capacity thanks to ACC technology. Then, they 
modified road links capacities to simulate theoretical increase in throughput enabled by AV driv ing behaviour. They 
distinguished two types of road links: freeways and arterial streets. A static assignment in Emme 4 is realised. In addition, they 
analysed the impacts on parking operations.  

2.2. Agent-based models 

Agent-based models are an effective tool for the study of innovative urban services, as agents act and react according to the 
informat ion received in  real t ime. On the other hand, activ ity models offer improved reproduction of the demand and allow a 
more realistic analysis of users' mobility. Thus, agent-based models are highly used in literature to describe and analyse 
operations of AV.  
In 2013, Burns et al. estimate the utility of shared autonomous vehicles (SAV) for users (wait ing time) and operators (cost of 
production). They consider as variables local specifications, trip  length, speed, fleet size and vehicle’s cost parameters  (Burns, et 
al., 2013). The model assumes that the vehicle speed is constant and origin-destination trips are uniformly d istributed over the 
study area. In addition, an application on three US cities of different sizes Ann Arbor, Babcock Ranch (Florida) and Manhattan 
(New-York) confirms the economic potential of AV.  
The study realized by ITF (2015) simulates the shared mobility in the real network of Lisbon using agent-based models. Mode 
choice process is based on a rule-based approach. The demand is generated based on the Lisbon Travel Survey. The user groups, 
especially for new services, are not considered. A trip is generated when a user send a request. Route choice minimizes trave l 
time by integrating the average speed per section per hour. Sixty stations are spread in the city and three types of vehicles ’ are 
considered in the model of two-, five- and eight-passenger cars. 
One of the most relevant studies is that developed by Fagnant and Kockelman (2014). They simulate SAVs in Austin (Texas) 
using an agent-based model (MATSim). SAVs are used by 2% of the total demand. The city is composed into traffic zones. Each 
traffic zone is characterized by an factor of attractiveness. All the trips are generated every 5 minutes a day using Poisson 
distributions. The model is then structured by following four major steps: (1) SAV location and trip assignment, which 
determines which available SAVs are closest to waiting travellers (prioritizing those who have been waiting longest), and then 
assigning available SAVs to those trips. The assignment is done according to a First -Come First Served (FCFS) order. A  vehicle 



	 Jaâfar Berrada  et al. / Transportation Research Procedia 27 (2017) 215–221� 217
 Berrada et al./ Transportation Research Procedia 00 (2017) 000–000 3 

shall be assigned to a customer in an interval of 5mn; otherwise the user is put in the waiting list and is considered as a priority in 
the next  simulat ion. (2) SAV fleet generation, which defines the fleet size. In particu lar, the fleet  size is determined by running a 
SAV “seed” simulation run, in which new SAVs are generated when any traveler has waited for 10 minutes and is still unable to 
locate an availab le SAV is 10 minutes away or less. (3) SAV Movement is characterized by a vehicle speed equal in a normal 
hour to 3 times the number of areas. Passengers boarding and alighting last 1mn. The calcu lation of the vehicle position is 
registered every 5 minutes. (4) SAV relocation, aims to balance the vehicles distribution ahead of the demand. Four strategies are 
proposed. The objective is to ensure that - for each grid cell - the difference between available vehicles and vehicles required is 
minimal in absolute terms (less than a defined threshold). Zhu et al. (2017) p ropose two reactionary local repositioning strategies 
and evaluate their effects in terms of empty vehicle miles travelled and level-of-service provided. 
In 2015, Fagnant and Kockelman exp lored the potential of electric vehicles. They found that the average distance travelled per 
day is greater than that allowed by vehicle range (Fagnant, et al., 2015b). Chen et al. (2016) develop this model with considering 
moreover charging stations. The stations are generated in order to allow vehicles to reach the user’s  origin or destination. The 
model is simulated for a medium-sized city, for a range of vehicles of 130km and normal charging stations (4 hour charge). 
In addition, Zhang et al. (2015a; 2015b) reproduce the model of Fagnant with considering users’ incomes and dynamic 
ridesharing (DRS). Vehicles and routes assignment reduce the total cost shared. In 2017, they implement a parking module in  a 
discrete event simulation (Zhang, et al., 2017) with various pricing strategies.  
Fagnant et al. (2016) found that DRS would reduce the vehicle-kilometres travelled  by 7% and the waiting time by 25%. The 
DRS as defined by Fagnant is applied only if induced extra-time for current riders and new travellers can be tolerated. 
Boesch et al. (2016) use agent-based model to evaluate required AV fleet sizes to serve different levels of demand. The agent-
based model largely adopts the assumptions of the model of Fagnant (2014) with excluding the relocation policies of the AV. 
The study shows that the relationship between the demand and fleet size is non-linear and the ratio increases as the demand 
increases. 
Levin et al. (2016) develop an event-based framework for SAV. Then, the framework was implemented on a cell transmission 
model-based traffic simulator considering that all vehicles are SAVs. Parking has limitless capacity. Vehicles assignment obeys 
to first-come first-served policy. Algorithms typically consist on three steps, performed iterat ively, to find a dynamic user 
equilibrium assignment. Shortest paths are found for all origin-destination pairs. 
Vakayil et al. (2017) propose a spatially hub-based SAV network model that analyses transfers between AVs and mass transit. 
The model considers transit frequency, transfer costs and two rebalancing strategies. It proves that an integration between AV 
and mass transit services leads to reduction in congestion and vehicular emissions.  
Yu  et al. (2017) assessed the potential of using on-demand SAV as the alternative to the low-demand buses to improve the 
first/last-mile connectivity in a study area in Singapore. The agent-based model is tested for a bus-only scenario and a series of 
scenarios integrating AV with various fleet sizes. Criteria are defined for each actor. For users, the out-of-vehicle time is 
evaluated. For transportation services, it is the impact on road traffic. From AV operators’ perspective, the profitability is 
considered. Results are positive if all users accept to share the vehicle.  
An application in Singapore is based on SimMobility. It is an integrated agent-based demand and supply model. It comprises 
three simulation levels: (i) a long-term level that captures land use and economic activity, with special emphasis on accessibility, 
(ii) a mid-term level that handles agents’ activities and travel patterns, and (iii) a short -term level, that simulates movement of 
agents, operational systems and decisions at a microscopic granularity . Further details could be available in (Sp ieser, et al., 2014; 
Lima Azevedo, et  al., 2015;  Azevedo, et  al., 2016). The application  considers that the vehicle could anticipate the demand to 
reduce wait ing times and to ensure a balance between required vehicles and ava ilable vehicles in each area. A ll existing 
competing modes (taxis, trains, buses ...)  are considered. The cost of service is assumed about 40% less than the regular taxi 
service. The study distinguishes between internal trips, external t rips and transits. The results highlight that for 2400 veh icles and 
10 stations, the waiting time is 5 minutes and the number of trips per vehicle is 16 (Azevedo, et al., 2016). 

3. Socio-economic models of AV development 

3.1. Market penetration 

Several automakers predict the integration of fu lly  self- driv ing vehicles in the market by 4 to 10 years: Audi suggests 2017, Ford 
2020, Nissan 2020, Google 2018 and Tesla 2023 (Davidson, et al., 2015). In 2012, the IEEE pred icts that 75% of the fleet will be 
autonomous in 2040 (IEEE, 2012). According to (Litman, 2015), this rate will be achieved in 2060 only. More recently, the 
French government studied two entry scenarios: a  trend-based scenario, in which the deployment is very  gradual from 2040;  and 
a breaking scenario where, by 2025, cars can be automated (Janin, et al., 2016).  
In addition, surveys in Austin show that 40% (Bansal, et al., 2016) to 50% (Zmud , et al., 2016) of US respondents want to use 
private AVs for everyday use.  Lavasani et al. in (2016) p roposed a market penetration model for AV by using a generalized Bass 
model. Assuming that AVs will become availab le in 2025, the market  of new car sales may  reach about 8 million annually  in  10 
years, and saturation may occur in  35 years assuming a 75% market  size. The sensitivity analysis concluded that the market size 
strongly impacts adoption rate, while the price of the technology does not seem influencing the diffusion process.  



218	 Jaâfar Berrada  et al. / Transportation Research Procedia 27 (2017) 215–221
4 Berrada et al. / Transportation Research Procedia 00 (2017) 000–000 

3.2. Potential customers 

In recent years, various surveys investigated the general acceptance of AVs. In  terms of age, some studies suggest that the 
service offered  by the SAV will have a strong potential to  capture the elderly and those with reduced mobility  (Rödel, et  al., 
2014; Schoettle, et al., 2014; Schoettle, et al., 2015; Fagnant, et al., 2015a). Other studies come to the conclusion that younger 
people are more open towards the introduction of AVs  (KPMG, et  al., 2012; Power, 2012; Krueger, et al., 2016; Abraham, et al., 
2017). In terms of the gender, men are more likely to use AV (Piao, et al., 2005; Rödel, et al., 2014; Schoettle, et al., 2015; 
Abraham, et al., 2017), but less likely to pay (Lavasani, et al., 2017). Anderson et al. (2014) suggest that non-motorized people 
would rather be captured by the service, while Krueger et al. (2016) find that motorization or preferences for public transport do 
not highly affect the attractiveness of AVs. In addit ion, Krueger et  al. (2016) show that current carsharing and mult iple mode 
users have a higher probability of choosing SAVs with DRS. Power et al. (2012) and Bansal et al. (2016) notice that residents of 
urban areas and people with higher income are more inclined to use AV. Lavasani et al. (2017) find that willingness to pay is 
affected by travel frequency, commuting distance, demand for parking and perception of AV benefits.  

3.3. Production costs 

Costs of AVs depend on the learning rate. Bansal et al. (2016) suggest a price of $23,950 in 2025, while Boston Consulting 
Group (2015) predicts that in 2025AV will cost $9,800. 
Burns et al. (2013) studied the production costs of AVs spread in three different cities. They estimate capital costs (depreciation, 
finance, reg istration and insurance) and operating costs (energy, maintenance and repair, and other costs) and found that SAVs  
would costs to customer $0.25/km (or $0.10/km for electric and small vehicle) instead of $1/km (for taxis).  
Spieser et al. (2014) analyse the impacts of a total substitution of private cars by SAVs in Singapore. Lifespan of SAVs is 
assumed over 2.5yrs, which could be reduced to 1.5yrs if ridesharing is considered (Zhang, et al., 2015a). The purchase costs are 
about $15,000. Thus, SAV costs on average $9,728/year instead of $11,315/year for cars. By integrating the value of time for an 
average SAVs waiting time of 5,5mn, the costs gap is even more significant ($5,527/year for the AV and $18,295/year for cars) . 
Fagnant et al. (2016) consider a penetration rate of 1.3%. The purchase costs are about $70,000 per AV and the average lifespan 
400.000km (or 7 years). The American  Automobile Association (AAA) estimate operating costs  around of $0.3/km. As a result, 
the SAV costs for user about $0.625/km, which is 3 times less than the taxi fare. For operator, the rate of annual return on 
investment is around 13% for a total fleet of 2118 AVs. 
Considering that vehicles are electric (SAEV), operating costs vary from $0.41 to $0.47 per occupied mile travelled. SAEVs  are 
price competitive with SAVs when gasoline reaches $4.35 to $5.70 per gallon  (Chen, et al., 2016). 

4. Impacts of autonomous vehicles  

4.1. Impacts on mobility 

Fagnant et al. (2014; 2015b) prove that one SAV would replace 9 to 11 conventional vehicles while inducing 10% more VKT. 
The ITF (2015) emphasizes that the substitution of conventional cars by SAV would reduce the total fleet by 90%. In addition, 
the vehicles are more used (70% of the day against the current 5%). The ITF also shows that the deployment of AV would 
increase the VKT for d ifferent rates of market penetration. Sp ieser in (2014) indicates that a total replacement of cars by SAVs in 
Singapore would reduce by 2/3 the total fleet of vehicles on roads. The application of the Lev in model in Austin (2016) proves 
that the replacement of cars by the private AVs will greatly increase congestion and travel time. The anticipated relocation makes 
the situation more crit ical. The DRS reduces the fleet size by 5.3% and empty VKT by 4.8% (Zhang, et al., 2015a). Boesch et al. 
(2016) found that the total vehicle fleet could be significantly reduced (by 90%) if ridesharing is allowed and waiting time is over  
10mn. According to Chen et al. in (2016), the use of electric vehicles would pass the ratio to only 3.7 of rep laced conventional 
vehicles, with an increase in VKT from 7 to 14%. Gucwa (2014) used an activ ity-based model to  investigate the relationships of 
not shared AVs and road capacity, time value and vehicles operating costs. The study shows that VKT could increases by 
between 8% and 24%. Similar studies find that VKT could increase by 3% to 30% (Childress, et al., 2015) and around 20% 
(Zhao, et al., 2017).  

4.2. Impacts on urban parking 

For a market penetration of 2%, the demand for parking is reduced by about 90% (Zhang, et al., 2015b). The ITF (2015) found 
that for the case of 100% AV, space savings are around 85% to 95%. However, for the case of 50% of AV, the rate of space 
savings is insignificant. Fagnant et al. (2015b) suggest that the total parking demand will fall by around 8 vehicle spaces per 
SAV. In  addition, moving the parking  from downtown to  less dense outlying areas allows for significant savings (Litman, 2012; 
Fagnant, et al., 2015a). Zhang et al. (2017) suggest that SAV system can reduce parking land by 4.5% in  Atlanta at a  5% market 
penetration level.  
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4.3. Impacts on accidents 

Li et al. (2016) found that AV can save Americans $76 billion each year. The Highway Traffic Safety Administration (NHTSA) 
found that 94% (±2.2%) of crashes between 2005 and 2007 were caused by the driver (NHTSA, 2008) while over 40% of fatal 
crashes involve driver alcohol o r drug  use, driver distraction and/or fat igue (NHTSA, 2012). The French Interdepartmental 
Observatory of Road Safety (ONISR, 2016) found that over 90% of crashes were human caused in France. Therefore, if 
autonomous vehicles could eliminate human causes of accidents, the number o f crashes could ext remely decrease and motor -
vehicle deaths could be greatly reduced.  
 

4.4. Environmental impacts: energy consumption and pollutant emissions 

The environmental impact is estimated on the basis of a Life -Cycle Analysis, which includes the vehicle operations (movement, 
cold start ...), but also cars’ manufacturing and the construction of related infrastructure (parking, stations, maintenance 
depots...). Since deployment of SAVs reduces the total vehicle fleet (as cited above), using them implies significant costs 
savings. The high use of AV shortens their life span to 1.5-2.5 years (Zhang, et al., 2015a; Spieser, et al., 2014), which helps 
improve the fleet  performances. Currently, the AV technology reduces from 4% to  10% of energy consumed in  accelerat ion a nd 
deceleration (Anderson, et al., 2014). Also, the use of AV reduces by 85%  (Fagnant, et al., 2015b) to 95% (Zhang, et al., 2015a) 
emissions induced by cold starts. In addition, sharing vehicles could save more than 4.7% of energy, greenhouse gas and 
pollutants emissions (Zhang, et al., 2015a).  
However, the use of electric vehicles would generate a significant demand for electricity during the peak charging period of the 
day (53% of the fleet concurrently charg ing). Fast charging, although inducing 15% more in cost, is very effective at demand 
spreading, with only 8% of the fleet charging during the peak charging period. 

5. Conclusion: Outreach, limitations and some recommendations 

This brief state of art in modelling transportation systems involving AVs is summarized in Figure 1.  We observe that major 
models focus on the supply operations and set-ups without detailing the demand side beyond statistical and spatial description in 
the form of an origin-destination matrix of trip-flows. 
On the supply side, agent-based approaches allow to assess AV fleet size required while optimizing the wait ing time and empty 
VKT. Furthermore, these models permit to reproduce in a realistic, detailed and robust way movements of vehicles considering 
several strategies. However, s tudies considering the real network are very scarce (ITF, 2015; Adnan, et al., 2016; Anderson, et 
al., 2014; Azevedo, et al., 2016). Further, urban constraints which determine the locations of stations and their capacities are not 
considered at all, even in the case of electric vehicles. Similar to car sharing, two service configurations are possible: station-
based and free-floating. The free -floating configuration is employed for a b roader variety of uses than the station-based one 
(Bereck, et al., 2016). The combination of fixed  stations and free-floating (while respecting the conditions of accessibility (Ciari, 
et al., 2015)) could reduce waiting time and locating stations in low dense areas (which is also economically attractive). Using 
dynamic parking cost (relevant to area’s configuration and  state of congestion) could be explored as well.  
Assignment strategies of vehicles to customers should be optimized as well. Indeed, almost all studies are based on a FCFS 
strategy; a strategy that could be optimized using heuristic insertion or simulated annealing  (Jung, et al., 2013). In addit ion, all 
aforementioned models are applied on urban centres of cities. It would be interesting to explore the service potentialities in 
suburban zones, freeways and around major train stations.  
On the demand side, almost all of the studies estimate the AV demand based on market  penetration. Studies using real inputs a re 
those exploring fu ll replacement of cars by AVs.  In  addition, the AVs are not integrated in  a mult imodal chain. A detailed study 
of the users’ utility of SAV will enable capturing indiv idual preferences while distinguishing between (i) utility of acquiri ng 
and/or maintaining and (ii) utility o f using AVs. Th is study is essential since it enables confirming service potential and defin ing 
pricing strategies. Its results are used as inputs of economic models and modal choice models. Further, taking into account d ay-
to-day traffic for the year should be explored using activity-based models, while d istinguishing between typical weekday, 
weekend day, holiday or special day events . 
On the other hand, to assure AVs sustainability and its dissemination, it  is necessary to develop an in-depth knowledge of 
production costs and demand evolutions in order to promote informed and rational choices. Production costs concern all 
components involved in transit system operations (track and station elements, vehicles, and staff) that have to be acquired o r 
hired and maintained at acceptable operating conditions. The models of new taxi apps present useful business insights. The yield 
management used by UBER, LYFT, GrabTaxi… permits to smooth the demand over time.  
Moreover, further studies  of the acceptability of AVs with the various stakeholders are necessary: mainly users, transport 
authorities, transit operators, insurance companies and car manufacturers.  
Finally, let  us outline that these works would h ighly benefit from detailed data on production costs, as well as on commercial 
revenue and individual utility of the user and environmental impacts. For an innovative service, some data cannot be observed  
but must be inferred from comparison bases, and simulated by means of an ad hoc model. 
 



220	 Jaâfar Berrada  et al. / Transportation Research Procedia 27 (2017) 215–221
6 Berrada et al. / Transportation Research Procedia 00 (2017) 000–000 

 

Figure 1: Synthesis of literature review. 
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