
Accepted Manuscript

Lie group impression for deep learning

Mengduo Yang, Fanzhang Li, Li Zhang, Zhao Zhang

PII: S0020-0190(18)30061-9
DOI: https://doi.org/10.1016/j.ipl.2018.03.006
Reference: IPL 5660

To appear in: Information Processing Letters

Received date: 10 October 2016
Accepted date: 6 March 2018

Please cite this article in press as: M. Yang et al., Lie group impression for deep learning, Inf. Process. Lett. (2018),
https://doi.org/10.1016/j.ipl.2018.03.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ipl.2018.03.006

Highlights

• Represent visual impression in a Lie group manifold way.
• Develop the single-layer Lie group model which is stacked to a deep neural network.
• Design a Lie group based gradient descent algorithm to train the network.

Lie group impression for deep learning

Mengduo Yang, Fanzhang Li, Li Zhang, Zhao Zhang

School of Computer Science and Technology, Soochow University, Suzhou, China

Corresponding author: Mengduo Yang, Email: mengduoyang@163.com

Abstract

In this work, we exploit a novel algorithm for capturing the Lie group manifold

structure of the visual impression. By developing the single-layer Lie group model,

we show how the representation learning algorithm can be stacked to yield a deep

architecture. In addition, we design a Lie group based gradient descent algorithm to

solve the learning problem of network weights. We show that our proposed

technique yields representations that significantly better suited for training deep

network and is also computationally efficient.

Keywords: visual impression; deep learning; Lie group

1. Impression and Deep Learning

Recently research of Yan & Huang who are the winners of PASCAL 2010

classification competition indicates that features are the key to the progress in

recognition[1, 6]. And actually the description of features is an abstraction of the

object needs to learn. Generally speaking, this kind of abstraction can be viewed as

an impression[4]. For example, in a recognition task, one is given a picture and asked

whether the animal in it is a cat. Usually, people can judge by their impressions of

cats. For instance, in someone’s impression, cats have whiskers and are furry with

sharp claws. They can see in near darkness and can hear very faint sounds made by

mice. In these impressions, some of them are easy to quantify and others are not.

Since descriptions of features by computers are different from impressions of

humans, computers cannot handle the abstract information if without a suitable

model for those features hard to quantify[9]. Deep learning is a tool which can learn

features automatically and uses a deep model with internal weights rather than a

single value or vector to express those learned features[2, 8]. The structure of deep

model can extract abstract features for subsequent classifiers[10].

Moreover, it is worth mentioning that descriptions of features are not same in

different levels or different views, which is similar to the idea of granular

computing[11]. As a multi-level example, a blind man feels an elephant, only

touching some part of it, and concluding what the elephant is like. The man draws an

impression on the basis of partial understanding, and the overall judgement is

composed of each part of the impression. We obtain various impressions based on

one-side viewpoint and each view supplies amount of information which is merged

into a concept by a certain structure. In addition, during the understanding of

objective things, there is an idea of multilevel processing[5]. For example, when

children learn the concept of “cat”, they first notice various kinds of pictures and

those pictures supply the pixel information from the lowest level, and then they will

use this information to conclude several partial features of cats, such as arms and

legs, head, whiskers and eyes. These features are established on the bottom pixels,

and they are relatively more abstract and with a higher level. Up above, these

features are continued to be combined to a much higher level of features, such as

body shape and textures, until to the top decision level to determine whether the

animal in the picture is a cat[3]. The idea of multilevel and multi-view is reflected in

the deep learning algorithms. Thus, we can develop an abstract deep learning model

with multilevel connection layers.

2. Lie group and Neural Network Learning

2.1 Single-Layer Lie Group Model

The training of a neural network is the training of weights which combine

neurons of the network. Therefore, we develop the Lie group network weight

training model.

Suppose we are going to train the weights associated with the connections

between units in the layer i and units in the layer 1i + . There arem units in the layer i

and n units in the layer 1i + . According to the functional mechanism of nonlinear

neurons, the computation model of the thh unit in layer 1i + is

1
, 1, ,

m

h jh j
j

y sigm w x h n
=

= = (1)

where ()sigm ⋅ is the activation function of neurons, the most common forms are

sigmoid and tanh function. ijw is the weight associated with the connection between

the thj unit in layer i and the thh unit in layer 1i + . jx is the output of unit j in the

layer 1i + . 1x is the bias unit and the value is fixed at1. Thus the general output of

layer 1i + can be modeled as

1 1
11 1

2 2

1

m

n nn
n m

y x
w w

y x
sigm

w w
y x

=

The above formula can be abbreviated as

()TY sigm M X= (2)

whereM is am n× weight matrix, and (0,1), 1, ,iy i n∈ = . According to the previous

assumption, weight matrix can define a matrix set. This matrix set constitutes a

sub-manifold in the Euclidean space m nR × with dimensionm n× . This sub-manifold is

called Stiefel manifold. Without any other constraint, this problem can be

transformed into impose restrictions on the geometry structure of the matrix set as

(,) { | }T
m n nM St m n W A W W I×∈ = ∈ =

where (,)St m n is a Stiefel manifold, and m nA × represents all them n× matrices, and nI

is the identity matrix with order n . Therefore, the learning problem of single layer

weights in the network can be treated as the optimization problem

() [(, ,)]f M E u X Y M= (3)

where ()f M represents the objective function of training, []E ⋅ represents the

expectation of the bracketed expression, and (, ,)u ⋅ ⋅ ⋅ is a measurement of , ,X Y M .

Since the weight is matrixM , and during the training process, the updates ofM are

restricted on the Stiefel manifold. If we train the weight matrixM using gradient

descent algorithm, the modification process ofM is a geodesic along the Stiefel

manifold passing the pointM and develop towards the steepest direction. Because it

is difficult to solve the geodesic and gradient on the Stiefel manifold, we can

transformM into the orthogonal matrix group ()O m . Suppose that n m≤ , and this is

reasonable because the dimension of network reduces gradually from input layer to

output layer. Since ()O m is a Lie group, we can use tools such as Lie algebra and

exponential map to make an easy calculation. According to the result in [7], we can

get the weight update formula

1
(,)

exp() nT
i i i H

m n n

I
M M M V

O
η+

−

= −

1() (() ())
2H i i i i iV gradf M f M M f M M= = ∇ − ∇ (4)

The above functions are the formulas to solve 1iM + according the gradient descent

algorithm when we know the matrix iM . Where 1 1(, , , , ,) ()i n m nM w w v v O m−= ∈

represents 1(, ,) (,)i nM w w St m n= ∈ , and 1, , m nv v − are used to let iM form an

orthogonal matrix. (,)m n nO − is a null matrix withm n− rows andn columns. 0η > is

the step length, and ()if M∇ is the Euclidean gradient at iM in optimization function

f , i.e. ()()
()

i
i

i rc

f Mf M
M

∂∇ =
∂

. The denominator rc denotes take the partial derivatives

of elements in each row and each column.

2.2 Learning Weights with Lie Group Model

With above foundations of mathematics, we can design a Lie group based

gradient descent algorithm to solve the learning problem of network weights. The

remaining problem is how to define the optimization function f and measurementu .

If we use back propagation in multilayer deep learning neural networks, if may lead

to a gradient diffusion problem. So we use an auto-encoder for layer-wise weight

training. Given a group of input 1{ }siX = , i.e. there are s examples. According to the

single-layer Lie group model, we can obtain the encoder and decoder

Encoder: ()TY sigm M X=

Decoder: 1 1ˆ () ()TX M sigm Y− −= (5)

where 1()sigm− ⋅ is the inverse function of ()sigm ⋅ . Encoder encodes the vector X of

the layer units intoY , while decoder executes the opposite operation, which returns

output vectorY into the approximation X̂ of data vector. A good choice of weight

matrixM requires decoder restore the original data as much as possible. This can be

obtained by measuring the difference between the original input and decoding result,

i.e. the error of a single training example can be measured by the following formula

1 1ˆ(, ,) () ()Tu X Y M X X X M sigm Y− −= − = − (6)

where ⋅ is the vector length, or the second moment norm in the Euclidean space.

We plug formula (6) into (3), and obtain the total error function of the whole s

examples, i.e. the objective function we need to optimize

1

1 1

1

() [(, ,)]
1 ˆ=

1= () ()

s

i i
i
s

T
i i

i

f M E u X Y M

X X
s

X M sigm Y
s

=

− −

=

=

−

−

Attention that TM could not be a square matrix, so it is meaningless to use the

signal 1()TM − . However, this signal is used to solve the inverse matrix of matrix TM . If

there is not any other condition, we can solve the pseudo-inverse of matrix TM . In

our problem, both TM andM are points on the Stiefel manifold, and they meet the

standard of TM M I= . Therefore, we can useM to replace 1()TM − in the previous

formula, then we get

1

1

1() ()
s

i i
i

f M X Msigm Y
s

−

=

= − (7)

According to the prototype function () 1/ (1)xsigm x e−= + , we can get the

inverse of the function 1() ln(1/ 1)sigm x x− = − − . In order to solve the gradient of

function f conveniently, we unfold the ()f M then obtain

1

1

1
1

1

1

1
2 2

1 1 1

1() ()

1=

1=

s

i i
i

n

j ij
js

i
i n

jm ij
j

s m n

ik jk ij
i k j

f M X Msigm Y
s

w y

X
s

w y

x w y
s

−

=

=

=

=

= = =

= −

−

−

(8)

where
1ln(1)ij
ij

y
y

= − − , and ijy is the thj component in the output vector iY of the thi

sample. According to the formula (8), we can obtain formula (9)

11 1

1

() ()

()
() ()

n

m nm

f M f M
w w

f M
f M f M
w w

∂ ∂
∂ ∂

∇ =
∂ ∂
∂ ∂

 (9)

To get every item in the above matrix, we can unfold the innermost bracket of

the formula (8), i.e. the square term, then we obtain
1

2 2
2

1 1 1 1

1
2

1

1() 2

1= (, ,)

s m n n

ik jk ij ik jk ij
i k j j

s

i i i
i

f M x w y x w y
s

v X Y M
s

= = = =

=

= + −

We use (, ,)i i iv X Y M , and we abbreviate (, ,)i i iv X Y M to iv in the later derivation.

2

2

2

1 1 1

2

(, ,)

= 2

ˆ=

i i i i

m n n

ik jk ij ik jk ij
k j j

i

v X Y M u

x w y x w y

X X

= = =

=

+ −

−

Then we get

1
2

1

() ()

1 1=
2

rc rc

s
i

i
i rc

f M f M v
w v w

vv
s w

−

=

∂ ∂ ∂= ⋅
∂ ∂ ∂

∂⋅
∂

(10)

where 1, ,r n= and 1, ,c m= , we also have

1
2 2

n
i

jc ij ir ic ir
jrc

v w y y x y
w =

∂ = ⋅ −
∂

(11)

We plug formula (11) into (10), then we get

()
()

1
2

1 1

1

1

1

() 1

1 ˆ=

ˆ1 = ˆ

s n

i ir jc ij ir ic
i jrc

s

i i ir c i ic
i

s
ir ic ic

i i i

f M v y w y y x
w s

X X y w Y x
s

y x x
s X X

−

= =

−

⋅
=

=

∂ = −
∂

− −

−

−

(12)

where
1 1
2 ˆ

i i iv X X
−−

= − , 1(, ,)Ti i inY y y= , cw⋅ is the thc row in the matrixM or the

thc column of the matrix TM , ˆicx is the thc component of the thi approximation vector

ˆ
iX . Thus in the iterative process of the algorithm, we can easily to solve ()if M∇

according to formula (12). Then we can use formula (4) to solve 1iM + iteratively, until

the optimization function ()f M is smaller than the given value or get the maximum

iterative number.

3. Algorithms and analysis

Algorithm1. Single-layer Lie group learning algorithm

Input: 1{ }siX = , iX denotes the thi sample, and there are s input samples. The number

of neurons in the output layer is identical with the number of neurons in the input

layer.

Output: Weight matrixM of neural network.

Step1. Create a neural network withm input units, n hidden units andm output

units.

Step2. Initialize the network weights, and make TM M I= .

Step3. Before meet the end condition:

a) Input sample iX into network, and compute the output units of network

using ()T
i iY sigm M X= .

b) Compute the error function of network

1
2 2

1 1 1

1()=
s m n

ik jk ij
i k j

f M x w y
s = = =

− .

c) Use formula (12), compute gradient
()

1

ˆ1()= ˆ

s
ir ic ic

i
i i i

y x x
f M

s X X=

−
∇

−
of every

weight in the network.

d) Update the whole network weights 1
(,)

exp() nT
i i i H

m n n

I
M M M V

O
η+

−

= − by

formula (4), where 1() (() ())
2H i i i i iV gradf M f M M f M M= = ∇ − ∇ .

When each sample is trained in the single-layer neural network withm input nodes

and n hidden nodes, the time complexity of Algorithm1 is ()O mn . This is because that

for each sample, the network needs to construct the connections of both encoder

and decoder during initialization, the time cost ismn nm+ . In step3, the calculated

amount of activation value ismn , and the calculated amount of error function ismns .

Besides, the calculated amounts of gradient and update of the network aremnsand

mn . Suppose that the iteration number is k , for situation of single example 1s = , the

calculated amount of the whole algorithm is ()mn mn k mn mns mns mn+ + + + + , and

the time complexity is ()O mn .

Algorithm2. Lie group impression deep learning algorithm

Input: s training example 1{ }siX = . The network structure withm input units, l hidden

layers,n output units, and the number of hidden units in each hidden layer 1{ }lj jn = .

Output: Weight matrices 1
1{ }lj jM +

= of the network, and the output layer.

Step1. Before meet the output layer

a) If 1jn = , input s training samples 1{ }siX = , and use algorithm1 to get 1M .

b) If1 jn l< ≤ , compute 1(), 1, ,
l

T
n isigm M X i s− = as input, and use algorithm1

to get 1
2{ }lj jM +

= .

Step2. Fine tune the whole neural network in a supervised way.

Step3. Output the weight matrices 1
1{ }lj jM +

= , and the output layer.

For a deep neural network withm input nodes, l hidden layers andn hidden nodes,

the time complexity of algorithm2 is 2()O mn n+ . This is because that when we

construct the neural network with algorithm2, the calculated amount of initialization

is 1 1 2 1l lmn n n n n−+ + + . The calculated time of sparsification and orthogonalization is

1 1 2 1()l ls O mn n n n n−= + + + and 1 1 2 1()l lo O mn n n n n−= + + + . When a single

sample is trained on the neural network, the time of updating weights of each layer

is 1 1 1 2 1 2 1 1l l l lt mn mn n n n n n n n n− −= + + + + + + . Suppose the iteration number is k ,

the time is 1 1 2 1 1 1 2 1(()) ()l l l lO k mn n n n n s o t r O mn n n n n− −+ + + + + + + = + + + .

Because of the sparsification, the actual acting nodes , 1, ,in i l= of hidden layers are

determined by the number of activation nodes. To simplify, we suppose the number

of hidden nodes is , 1, ,in n i l= = , then the time complexity of Lie group impression

deep learning algorithm is 2 2((1)) ()O mn l n O mn n+ − = + .

4. Experiments

In our experiments, we test the ability of neural network to generalize from small

scale training samples with the help of Lie group impression. We still limit the weight

parameters of network to a Lie group structure. Especially when restrict the weight

parameters, Lie group impression deep learning algorithm can supply a much smaller

searching space than the traditional deep learning algorithm. In MNIST dataset, we

compare the classification performance and the convergence rate of them.

MNIST is a dataset of 28 28× images of handwritten digits. The learning task is to

predict the digit contained in the images. The MNIST dataset consists of 60000

training examples and 10000 testing examples. For both Lie group impression model

and stacked auto-encoder deep learning model, we use a softmax classifier to

compare the recognition results.

Figure1 shows the results of stacked auto-encoder in both cases, one is with the

fine tuning and the other is without the fine tuning. The iterative numbers are 10, 15,

20, 25, 30, 35, 40, 45, 50, 100, 200, 300, and 400. From the results, we can see that

fine tuning makes a huge impact in promoting the recognition rates by about 10%.

Figure2 shows the results by Lie group impression model in the same iterative

condition. Compared to the stacked auto-encoder, the training results are close to

the results with fine tuning. This can reflect that the manifold constraint makes the

searching initial value close to some local optimum during the network training.

From figure1 we can also see local fluctuation when the iterative number is lack. This

reflects that the network parameters are unstable during the searching process and

less iterative number cannot help the network to stabilize a high classification

performance.

Figure1

Figure2

Another experiment compares the performance of Lie group impression model and

stacked auto-encoder model with the help of fine tuning. From figure3 we can see

that Lie group impression model has a faster iterative rate and is able to get the

optimal classification performance with a much less iterative number.

Figure3

5. Conclusions

It is easier and faster for computers to recognize target objects by visual impression.

This paper learns visual impression with Lie group structure during the training

process of neural network by introducing the concept of Stiefel manifold. The

constraint of network parameters greatly reduces the value range of parameters

space, which is an outstanding advantage compared to the traditional deep learning

algorithms. Experiment results further proved that Lie group impression deep

learning model is a feasible method. It supplies a new approach to extract features

for image recognition by deep learning methods. Based on the research results of

this paper, the geometry structure of parameter space needs more in-depth research,

which may help to bring a better classification performance.

Acknowledgements

This work was supported by National Nature Science Foundation of China [61672364,

61672365 and 61033013].

References

1. Bengio, Y., A. Courville, and P. Vincent, Representation Learning: A Review and
New Perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2013. 35(8): p. 1798-1828.

2. Bengio, Y., Learning deep architectures for AI. Foundations and trends in
Machine Learning, 2009. 2(1): p. 1-127.

3. DiCarlo, J.J., D. Zoccolan, and N.C. Rust, How does the brain solve visual object
recognition. Neuron, 2012. 73(3): p. 415-434.

4. Higgins, I., L. Matthey, and X. Glorot, Visual Concept Learning with
Unsupervised Deep Learning. arXiv preprint, 2016. 1606.05579.

5. Hinton, G.E., Learning multiple layers of representation. Trends in cognitive
sciences, 2007. 11(10): p. 428-434.

6. Krizhevsky, A., l. Sutskever, and G.E. Hinton, Imagenet classification with deep
convolutional neural networks, in Advances in neural information processing
systems2012. p. 1097-1105.

7. Nishimori, Y., A Neural Stiefel Learning based on Geodesics Revisited.
8. Szegedy, C., An Overview of Deep Learning. AITP, 2016. 2016.
9. Yokota, S., D. Chugo, and H. Hashimoto, Visual impression to robot motion

imitating human-study on delay motion, in 2016 9th International Conference
on Human System Interations2016. p. 435-439.

10. Zeiler, M.D., G.W. Taylor, and R. Fergus, Adaptive deconvolutional networks for
mid and high level feature learning, in IEEE International Conference on
Computer Vision2011. p. 2013-2025.

11. Zeiler, M.D., et al., Deconvolutional Networks, in Computer Vision and Pattern
Recognition2010. p. 2528-2535.

