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Highlights

• Represent visual impression in a Lie group manifold way.
• Develop the single-layer Lie group model which is stacked to a deep neural network.
• Design a Lie group based gradient descent algorithm to train the network.
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Abstract 

In this work, we exploit a novel algorithm for capturing the Lie group manifold 

structure of the visual impression. By developing the single-layer Lie group model, 

we show how the representation learning algorithm can be stacked to yield a deep 

architecture. In addition, we design a Lie group based gradient descent algorithm to 

solve the learning problem of network weights. We show that our proposed 

technique yields representations that significantly better suited for training deep 

network and is also computationally efficient. 
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1. Impression and Deep Learning

Recently research of Yan & Huang who are the winners of PASCAL 2010

classification competition indicates that features are the key to the progress in 

recognition[1, 6]. And actually the description of features is an abstraction of the 

object needs to learn. Generally speaking, this kind of abstraction can be viewed as 

an impression[4]. For example, in a recognition task, one is given a picture and asked 

whether the animal in it is a cat. Usually, people can judge by their impressions of 

cats. For instance, in someone’s impression, cats have whiskers and are furry with 

sharp claws. They can see in near darkness and can hear very faint sounds made by 

mice. In these impressions, some of them are easy to quantify and others are not. 

Since descriptions of features by computers are different from impressions of 

humans, computers cannot handle the abstract information if without a suitable 

model for those features hard to quantify[9]. Deep learning is a tool which can learn 

features automatically and uses a deep model with internal weights rather than a 

single value or vector to express those learned features[2, 8]. The structure of deep 

model can extract abstract features for subsequent classifiers[10]. 

Moreover, it is worth mentioning that descriptions of features are not same in 



different levels or different views, which is similar to the idea of granular 

computing[11]. As a multi-level example, a blind man feels an elephant, only 

touching some part of it, and concluding what the elephant is like. The man draws an 

impression on the basis of partial understanding, and the overall judgement is 

composed of each part of the impression. We obtain various impressions based on 

one-side viewpoint and each view supplies amount of information which is merged 

into a concept by a certain structure. In addition, during the understanding of 

objective things, there is an idea of multilevel processing[5]. For example, when 

children learn the concept of “cat”, they first notice various kinds of pictures and 

those pictures supply the pixel information from the lowest level, and then they will 

use this information to conclude several partial features of cats, such as arms and 

legs, head, whiskers and eyes. These features are established on the bottom pixels, 

and they are relatively more abstract and with a higher level. Up above, these 

features are continued to be combined to a much higher level of features, such as 

body shape and textures, until to the top decision level to determine whether the 

animal in the picture is a cat[3]. The idea of multilevel and multi-view is reflected in 

the deep learning algorithms. Thus, we can develop an abstract deep learning model 

with multilevel connection layers. 

2. Lie group and Neural Network Learning 

2.1 Single-Layer Lie Group Model 

The training of a neural network is the training of weights which combine 

neurons of the network. Therefore, we develop the Lie group network weight 

training model. 

Suppose we are going to train the weights associated with the connections 

between units in the layer i and units in the layer 1i + . There arem units in the layer i

and n units in the layer 1i + . According to the functional mechanism of nonlinear 

neurons, the computation model of the thh unit in layer 1i + is 
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where ( )sigm ⋅ is the activation function of neurons, the most common forms are

sigmoid and tanh function. ijw is the weight associated with the connection between 

the thj unit in layer i and the thh unit in layer 1i + . jx is the output of unit j in the 

layer 1i + . 1x is the bias unit and the value is fixed at1. Thus the general output of 

layer 1i + can be modeled as 
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The above formula can be abbreviated as 

( )TY sigm M X=      (2) 

whereM is am n× weight matrix, and (0,1), 1, ,iy i n∈ = . According to the previous 

assumption, weight matrix can define a matrix set. This matrix set constitutes a 

sub-manifold in the Euclidean space m nR × with dimensionm n× . This sub-manifold is 

called Stiefel manifold. Without any other constraint, this problem can be 

transformed into impose restrictions on the geometry structure of the matrix set as 

( , ) { | }T
m n nM St m n W A W W I×∈ = ∈ =  

where ( , )St m n is a Stiefel manifold, and m nA × represents all them n× matrices, and nI

is the identity matrix with order n . Therefore, the learning problem of single layer 

weights in the network can be treated as the optimization problem 

( ) [ ( , , )]f M E u X Y M=     (3) 

where ( )f M represents the objective function of training, [ ]E ⋅ represents the 

expectation of the bracketed expression, and ( , , )u ⋅ ⋅ ⋅ is a measurement of , ,X Y M . 

Since the weight is matrixM , and during the training process, the updates ofM are 

restricted on the Stiefel manifold. If we train the weight matrixM using gradient 

descent algorithm, the modification process ofM is a geodesic along the Stiefel 



manifold passing the pointM and develop towards the steepest direction. Because it 

is difficult to solve the geodesic and gradient on the Stiefel manifold, we can 

transformM into the orthogonal matrix group ( )O m . Suppose that n m≤ , and this is 

reasonable because the dimension of network reduces gradually from input layer to 

output layer. Since ( )O m is a Lie group, we can use tools such as Lie algebra and 

exponential map to make an easy calculation. According to the result in [7], we can 

get the weight update formula 
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The above functions are the formulas to solve 1iM + according the gradient descent 

algorithm when we know the matrix iM . Where 1 1( , , , , , ) ( )i n m nM w w v v O m−= ∈

represents 1( , , ) ( , )i nM w w St m n= ∈ , and 1, , m nv v − are used to let iM form an 

orthogonal matrix. ( , )m n nO − is a null matrix withm n− rows andn columns. 0η > is 

the step length, and ( )if M∇ is the Euclidean gradient at iM in optimization function

f , i.e. ( )( )
( )

i
i

i rc

f Mf M
M

∂∇ =
∂

. The denominator rc denotes take the partial derivatives 

of elements in each row and each column. 

2.2 Learning Weights with Lie Group Model 

With above foundations of mathematics, we can design a Lie group based 

gradient descent algorithm to solve the learning problem of network weights. The 

remaining problem is how to define the optimization function f and measurementu . 

If we use back propagation in multilayer deep learning neural networks, if may lead 

to a gradient diffusion problem. So we use an auto-encoder for layer-wise weight 

training. Given a group of input 1{ }siX = , i.e. there are s examples. According to the 

single-layer Lie group model, we can obtain the encoder and decoder 



Encoder: ( )TY sigm M X=  

Decoder: 1 1ˆ ( ) ( )TX M sigm Y− −=   (5) 

where 1( )sigm− ⋅ is the inverse function of ( )sigm ⋅ . Encoder encodes the vector X of 

the layer units intoY , while decoder executes the opposite operation, which returns 

output vectorY  into the approximation X̂ of data vector. A good choice of weight 

matrixM requires decoder restore the original data as much as possible. This can be 

obtained by measuring the difference between the original input and decoding result, 

i.e. the error of a single training example can be measured by the following formula 

1 1ˆ( , , ) ( ) ( )Tu X Y M X X X M sigm Y− −= − = −    (6)

where ⋅ is the vector length, or the second moment norm in the Euclidean space. 

We plug formula (6) into (3), and obtain the total error function of the whole s

examples, i.e. the objective function we need to optimize 
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Attention that TM could not be a square matrix, so it is meaningless to use the 

signal 1( )TM − . However, this signal is used to solve the inverse matrix of matrix TM . If 

there is not any other condition, we can solve the pseudo-inverse of matrix TM . In 

our problem, both TM andM are points on the Stiefel manifold, and they meet the 

standard of TM M I= . Therefore, we can useM to replace 1( )TM − in the previous 

formula, then we get 
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According to the prototype function ( ) 1/ (1 )xsigm x e−= + , we can get the 



inverse of the function 1( ) ln(1/ 1)sigm x x− = − − . In order to solve the gradient of 

function f conveniently, we unfold the ( )f M then obtain 
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where
1ln( 1)ij
ij

y
y

= − − , and ijy is the thj component in the output vector iY of the thi

sample. According to the formula (8), we can obtain formula (9) 
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To get every item in the above matrix, we can unfold the innermost bracket of 

the formula (8), i.e. the square term, then we obtain 
1
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We use ( , , )i i iv X Y M , and we abbreviate ( , , )i i iv X Y M to iv in the later derivation. 

2

2

2

1 1 1

2

( , , )

= 2

ˆ=

i i i i

m n n

ik jk ij ik jk ij
k j j

i

v X Y M u

x w y x w y

X X

= = =

=

+ −

−

Then we get 
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where 1, ,r n= and 1, ,c m= , we also have 
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We plug formula (11) into (10), then we get 
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where
1 1
2 ˆ

i i iv X X
−−

= − , 1( , , )Ti i inY y y= , cw⋅ is the thc row in the matrixM or the

thc column of the matrix TM , ˆicx is the thc component of the thi approximation vector

ˆ
iX . Thus in the iterative process of the algorithm, we can easily to solve ( )if M∇

according to formula (12). Then we can use formula (4) to solve 1iM + iteratively, until 

the optimization function ( )f M is smaller than the given value or get the maximum 

iterative number. 

3. Algorithms and analysis

Algorithm1. Single-layer Lie group learning algorithm 

Input: 1{ }siX = , iX denotes the thi sample, and there are s input samples. The number 

of neurons in the output layer is identical with the number of neurons in the input 

layer. 

Output: Weight matrixM of neural network. 

Step1. Create a neural network withm input units, n hidden units andm output 

units. 



Step2. Initialize the network weights, and make TM M I= . 

Step3. Before meet the end condition: 

a) Input sample iX into network, and compute the output units of network 

using ( )T
i iY sigm M X= . 

b) Compute the error function of network
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c) Use formula (12), compute gradient
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weight in the network. 

d) Update the whole network weights 1
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exp( ) nT
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I
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formula (4), where 1( ) ( ( ) ( ) )
2H i i i i iV gradf M f M M f M M= = ∇ − ∇ . 

When each sample is trained in the single-layer neural network withm input nodes 

and n hidden nodes, the time complexity of Algorithm1 is ( )O mn . This is because that 

for each sample, the network needs to construct the connections of both encoder 

and decoder during initialization, the time cost ismn nm+ . In step3, the calculated 

amount of activation value ismn , and the calculated amount of error function ismns . 

Besides, the calculated amounts of gradient and update of the network aremnsand

mn . Suppose that the iteration number is k , for situation of single example 1s = , the 

calculated amount of the whole algorithm is ( )mn mn k mn mns mns mn+ + + + + , and 

the time complexity is ( )O mn . 

Algorithm2. Lie group impression deep learning algorithm 

Input: s training example 1{ }siX = . The network structure withm input units, l hidden 

layers,n output units, and the number of hidden units in each hidden layer 1{ }lj jn = . 

Output: Weight matrices 1
1{ }lj jM +

= of the network, and the output layer. 

Step1. Before meet the output layer 



a) If 1jn = , input s training samples 1{ }siX = , and use algorithm1 to get 1M . 

b) If1 jn l< ≤ , compute 1( ), 1, ,
l

T
n isigm M X i s− = as input, and use algorithm1 

to get 1
2{ }lj jM +

= . 

Step2. Fine tune the whole neural network in a supervised way. 

Step3. Output the weight matrices 1
1{ }lj jM +

= , and the output layer. 

For a deep neural network withm input nodes, l hidden layers andn hidden nodes, 

the time complexity of algorithm2 is 2( )O mn n+ . This is because that when we 

construct the neural network with algorithm2, the calculated amount of initialization 

is 1 1 2 1l lmn n n n n−+ + + . The calculated time of sparsification and orthogonalization is 

1 1 2 1( )l ls O mn n n n n−= + + + and 1 1 2 1( )l lo O mn n n n n−= + + + . When a single 

sample is trained on the neural network, the time of updating weights of each layer 

is 1 1 1 2 1 2 1 1l l l lt mn mn n n n n n n n n− −= + + + + + + . Suppose the iteration number is k , 

the time is 1 1 2 1 1 1 2 1( ( )) ( )l l l lO k mn n n n n s o t r O mn n n n n− −+ + + + + + + = + + + . 

Because of the sparsification, the actual acting nodes , 1, ,in i l= of hidden layers are 

determined by the number of activation nodes. To simplify, we suppose the number 

of hidden nodes is , 1, ,in n i l= = , then the time complexity of Lie group impression 

deep learning algorithm is 2 2( ( 1) ) ( )O mn l n O mn n+ − = + . 

4. Experiments

In our experiments, we test the ability of neural network to generalize from small

scale training samples with the help of Lie group impression. We still limit the weight 

parameters of network to a Lie group structure. Especially when restrict the weight 

parameters, Lie group impression deep learning algorithm can supply a much smaller 

searching space than the traditional deep learning algorithm. In MNIST dataset, we 

compare the classification performance and the convergence rate of them. 

MNIST is a dataset of 28 28× images of handwritten digits. The learning task is to 

predict the digit contained in the images. The MNIST dataset consists of 60000 



training examples and 10000 testing examples. For both Lie group impression model 

and stacked auto-encoder deep learning model, we use a softmax classifier to 

compare the recognition results.  

Figure1 shows the results of stacked auto-encoder in both cases, one is with the 

fine tuning and the other is without the fine tuning. The iterative numbers are 10, 15, 

20, 25, 30, 35, 40, 45, 50, 100, 200, 300, and 400. From the results, we can see that 

fine tuning makes a huge impact in promoting the recognition rates by about 10%. 

Figure2 shows the results by Lie group impression model in the same iterative 

condition. Compared to the stacked auto-encoder, the training results are close to 

the results with fine tuning. This can reflect that the manifold constraint makes the 

searching initial value close to some local optimum during the network training. 

From figure1 we can also see local fluctuation when the iterative number is lack. This 

reflects that the network parameters are unstable during the searching process and 

less iterative number cannot help the network to stabilize a high classification 

performance. 

Figure1 



Figure2 

Another experiment compares the performance of Lie group impression model and 

stacked auto-encoder model with the help of fine tuning. From figure3 we can see 

that Lie group impression model has a faster iterative rate and is able to get the 

optimal classification performance with a much less iterative number. 

Figure3 

5. Conclusions

It is easier and faster for computers to recognize target objects by visual impression. 

This paper learns visual impression with Lie group structure during the training 

process of neural network by introducing the concept of Stiefel manifold. The 

constraint of network parameters greatly reduces the value range of parameters 

space, which is an outstanding advantage compared to the traditional deep learning 

algorithms. Experiment results further proved that Lie group impression deep 

learning model is a feasible method. It supplies a new approach to extract features 

for image recognition by deep learning methods. Based on the research results of 

this paper, the geometry structure of parameter space needs more in-depth research, 

which may help to bring a better classification performance. 
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