
Accepted Manuscript

Survey on deep learning for radiotherapy

Philippe Meyer, Vincent Noblet, Christophe Mazzara, Alex Lallement

PII: S0010-4825(18)30131-8

DOI: 10.1016/j.compbiomed.2018.05.018

Reference: CBM 2969

To appear in: Computers in Biology and Medicine

Received Date: 3 March 2018

Revised Date: 15 May 2018

Accepted Date: 15 May 2018

Please cite this article as: P. Meyer, V. Noblet, C. Mazzara, A. Lallement, Survey on deep learning for
radiotherapy, Computers in Biology and Medicine (2018), doi: 10.1016/j.compbiomed.2018.05.018.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.compbiomed.2018.05.018


ACCEPTED MANUSCRIPT
1 

SURVEY ON DEEP LEARNING FOR RADIOTHERAPY 

Philippe Meyera, Vincent Nobletb, Christophe Mazzaraa, Alex Lallementb 

aDepartment of Medical Physics, Paul Strauss Center, Strasbourg, France 

bICube-UMR 7357, Strasbourg, France 

Corresponding author : Philippe MEYER, PhD, 3 rue de la porte de l’hôpital, 67000 Strasbourg, 

France. Tel : 33388258544 ; E-mail : pmeyer@strasbourg.unicancer.fr 

Conflict of interest: none declared. 

Abstract 

More than 50% of cancer patients are treated with radiotherapy, either exclusively or in combination 

with other methods. The planning and delivery of radiotherapy treatment is a complex process, but 

can now be greatly facilitated by artificial intelligence technology. Deep learning is the fastest-

growing field in artificial intelligence and has been successfully used in recent years in many domains, 

including medicine. 

In this article, we first explain the concept of deep learning, addressing it in the broader context of 

machine learning. The most common network architectures are presented, with a more specific 

focus on convolutional neural networks. We then present a review of the published works on deep 

learning methods that can be applied to radiotherapy, which are classified into seven categories 

related to the patient workflow, and can provide some insights of potential future applications. We 

have attempted to make this paper accessible to both radiotherapy and deep learning communities, 

and hope that it will inspire new collaborations between these two communities to develop 

dedicated radiotherapy applications. 
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1. Introduction 

Patient workflow in radiotherapy is one of the most complex workflows. There are many steps 

involved: choice of the radiotherapy treatment scheme; image acquisition of the patient in treatment 

position; segmentation of the target volumes and organs-at-risk (OAR) using multimodal imaging; 

treatment planning; delivery of treatment including monitoring of patient positioning, movements, 

and delivered dose; and finally, post-treatment follow-up.  

To facilitate and improve the efficiency of this workflow, artificial intelligence (AI) systems have been 

proposed for automatic organ segmentation, error prevention, or treatment planning [1,2]. 

However, these systems are still seldom used in clinical routines. For instance, manual delineation of 

target volumes and OAR is still the standard routine for most clinical centers, even though it is time 

consuming and prone to intra- and inter-observer variations [3]. One issue is the limited performance 

of current commercial software. In radiotherapy, toxic and fatal doses are sometimes delivered at 1 

or 2 mm from risk organs; therefore, it is vital that segmentation is extremely accurate (see Fig. 1). 

However, current automatic segmentation software cannot achieve the necessary level of accuracy. 

Consequently, radiation oncologists may lose more time correcting automatically segmented 

structures than by manually segmenting the structures themselves. 

 

Fig 1. Planned dose distribution for nasopharyngeal cancer treatment. The 54-Gy isodose (in green) should 

cover the target volume (in red) and must not cover the optic nerve (in blue), because the risk of blindness 

becomes too high when doses exceeding 54 Gy are used. This case illustrates the extreme accuracy required 

for the segmentation of organs in radiotherapy. 

 

Deep learning (DL) is a branch of AI and machine learning, which has enjoyed considerable success in 

recent years in diverse fields including science, business, and government. DL  has dramatically 

supplanted other machine learning methods for applications such as recognition and image 

processing in computer vision, by achieving human-equivalent performance on some tasks [4–6]. DL 

techniques also open promising perspectives in AI applied to radiotherapy and may significantly 

improve the radiotherapy patient workflow in the coming years [7,8]. To illustrate the rapidly 
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evolving interest aroused by these new techniques in radiotherapy, Fig. 2 shows the number of DL 

papers published in this field since 2012. 

Several reviews about DL in medical imaging have already been published [5,9–11], but none were 

specifically dedicated to radiotherapy. In this paper, we first explain the basic concepts of machine 

learning, in Section 2, adapted to radiation oncologists and medical physicists. We then present a 

simple introduction to DL and to the different network architectures, with a focus on convolutional 

neural networks (CNNs). In Section 3, we present a brief review of research works in which DL 

methods are or could potentially be applied to a step of the radiotherapy workflow, trying to make it 

accessible to non-radiotherapy specialists. We have chosen to classify the reviewed papers into 

seven categories relevant to the different radiotherapy steps. These categories are as follows: images 

used for radiotherapy planning and treatment setup, image segmentation, computer-aided detection 

and diagnosis, image registration, treatment planning, motion management/patient setup during 

treatment, and medical data extraction and outcome prediction in radiotherapy. Note that a survey 

mainly dedicated to DL-based medical image segmentation and computer-aided detection tasks has 

recently been proposed by Litjens et al., who reviewed 306 papers [5]. Other reviews also exist for 

medical data extraction by DL [12–14]. Therefore, we have not conducted exhaustive reviews for 

these specific categories but we have selected articles of particular importance in radiotherapy. 

 

Fig. 2. Number of publications for the search phrases with at least the terms radiotherapy or 
radiation therapy or radiation oncology and at least the terms deep learning or deep network or 

convolutional network. Publication statistics are obtained from Google Scholar. 

 

2. What is deep learning? 

 

DL describes a set of computational models composed of multiple layers of data processing, which 

make it possible to learn by representing these data through several levels of abstraction [4,15–17]. 
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From a large amount of training data, these models discover recurrent structures by automatically 

refining their internal parameters via a backpropagation algorithm. Each layer of the network 

transforms the signal nonlinearly in order to increase the selectivity and invariance of the 

representation. With a sufficient number of layers, the network can generate a hierarchy of 

representations that will make the model both sensitive to very small details and insensitive to large 

variations. In recent years, DL has been successfully used to solve real problems in a wide range of 

applications. However, because the underlying tuned model is composed of millions of parameters, 

there is still no clear understanding of the inner working mechanisms. Thus, many time-consuming 

trial-and-errors procedures are required to correctly train the model. 

DL approaches are part of the so-called machine learning, which is a field of AI. CNN is a special 

approach to DL, dedicated to image processing (Fig. 3). Machine learning, DL, and CNN are explained 

respectively in Sections 2.1, 2.2, and 2.3. 

Fig. 3. A possible classification of some artificial intelligence methods. 

2.1 Machine learning 

The term AI was introduced in 1956 by one of the pioneers of the field, John McCarthy [18,19]. 

Boden defined AI as a science, whose purpose is to make machines perform tasks that would require 

human intelligence [20]. If we consider contemporary AI, several authors cited the article Computing 

machinery and intelligence published in 1950 as one of the founding works [21]. Six years later, 

Newell and Simon proposed the logic theorist algorithm, often considered as the first computer 

program in the field of AI, which opened the way to the many AI methods we currently know [22]. 

Among these methods, machine learning was proposed for the first time in 1959 by Samuel, who 

developed an AI program that can play checkers based on partial setting using the experience gained 

[23].  

Considering that designing and programming explicit models for complex tasks with satisfactory 

performance is sometimes difficult or infeasible, machine learning attempts to make data-driven 
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decisions by automatically building a model from large-scale training data [24, 25]. The key concept 

of machine learning is thus to produce accurate predictions on new unseen data after being trained 

on a finite learning dataset, in other words, to generalize from limited experience. 

To concretely define what learning means, Mitchell et al. proposed to specify three parameters, 

namely T, P, and E [26]: “a computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P if its performance on tasks in T, as measured by P, 

improves with experience E.” Table 1 provides radiotherapy application examples to illustrate this 

proposal. 

Examples of machine learning scenarios include supervised, unsupervised, reinforcement, and 

transfer learning [27]. In supervised learning, the algorithm is presented with training inputs and 

their corresponding desired outputs (i.e., labels); the goal is to learn a rule that maps inputs to 

outputs. For example, a set of quantitative features extracted from a mammography image can be 

considered as input and the corresponding expert diagnosis (cancerous versus healthy) as the 

desired output. The goal is then to automatically categorize new mammograms that have not been 

evaluated by an expert (i.e., classification) [28]. In unsupervised learning, no referenced outputs are 

given to the algorithm and the goal is to find a structure in the inputs. As examples, one can imagine 

distinguishing patients at risk from other patients based on clinical notes extracted from electronic 

health record (EHR) systems (i.e., clustering) [29], or to learn high-level features from images (i.e., 

dimensionality reduction) [30]. In reinforcement learning, the algorithm must perform a certain goal 

through interaction with its dynamic environment. A feedback is used to adjust the learning process 

in a way to maximize long-term rather than immediate reward trade-offs. Reinforcement learning is 

thus based on communication and exploration rather than on explicit education. This type of 

approach can be used, for example, to study different scenarios of tumor growth and radiotherapy 

[31]. For many medical applications, only a small amount of training data is often available, mostly 

due to confidentiality reasons or incomplete information. Because the available input data are 

insufficient to train a network from scratch, transfer learning aims to use a pre-trained network to 

perform another task that it was not originally intended for. An additional training step is then 

performed using a small amount of labeled data to fine-tune the network weights [32].  

2.2 Deep neural networks 

Deep neural networks (DNNs) are forms of machine learning methods. In machine learning, it is often 

necessary to reduce the complexity of the input data and make relevant patterns more visible for the 

learning algorithms to function. Indeed, their performance greatly depends on how accurately these 

features have been identified and extracted. Given that this feature engineering process is based on 

domain knowledge and is specific to the data type, it is difficult and expensive in terms of time and 

expertise to apply. In contrast, DNNs independently learn a hierarchical representation of the input 

data adapted to the task at hand; this eliminates the task of developing new features extractors for 

every problem. The main drawback is that DNNs require a large amount of input data to be effective. 

The idea of a computer program that could find itself representing a model from a dataset is not 

new. Perceptron is one of the first approaches to conceptualize data directly from the environment 
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[33]. It is inspired by the biology of the brain: an artificial neuron is a mathematical function 

conceived as a coarse model of a biological neuron (Fig. 4). The principle is to simulate the transfer of 

information through a neuron: weighted nodes receive the inputs (representing the synapses), sum 

them to produce an activation (representing the axon), and pass this activation to a nonlinear 

function called activation or transfer function, in order to generate the output signal. Each neuron 

acts as an elementary processing unit. The output signal of one unit will feed the other units, 

organized in layers, and so on, forming an artificial neural network (ANN). When it is composed of 

several intermediate hidden layers, it is called multilayer neural networks or DNNs (Fig. 5). Note that 

the multilayer perceptron (MLPs) is an intermediate link in the transition from the simple perceptron 

to the DNN. DNNs are a recent advance in the field that conceptually expands the MLP by adding a 

significant number of layers (instead of 1 to 3 that the typical MLP has). 

 

Example learning 

problem 
Task T Performance measure P Training experience E 

Learning checkers Playing checkers 
Percentage of games won 

against opponents 
Learner playing practice 

games against itself 

Handwriting 
recognition 

Recognizing 
handwritten words  

Percentage of words 
correctly recognized 

Handwritten words with 
given classification  

Self-driving car 
Driving from 

Hochfelden to Saint-
Claude 

Distance traveled before 
an error (as judged by a 

human overseer) 

Videos, images, and steering 
commands recorded while 
observing a human driver 

Automatic 
segmentation of 
medical images 

Segment the prostate 
on MRI 

Percentage of common 
pixels between automatic 

and human expert 
segmentation 

MRI database with prostate 
segmented by human 

experts  

Computer-aided 
detection on medical 

images 

To detect brain 
metastases (BM) on 

MRI 

Percentage of false 
negative or false positive 

(FP) 

MRI database with BM 
segmented by human 

experts 

Dose calculation on 
MRI  

To generate a 
pseudo-computed 
tomography (CT) 

image from an MRI 

Average mean difference 
of Hounsfield units 

between the pseudo-CT 
and a reference CT image 

Database with registered 
MRI and CT images 

Image-guided 
radiotherapy dose 

reduction 

To reduce noise in 
fluoroscopic kV 

images 

Signal to noise ratio 
difference between a 

corrected kV image and 
the mean of 10 kV images 

Database of fluoroscopic kV 
patient images during 

radiotherapy treatment  

Automatic treatment 
planning help 

To predict planned 
dose from organ 

segmentation 

Percentage of common 
pixels between predicted 

and calculated dose 

Database of RT structures 
and RT dose files  

Avoidance of patient 
collision during 
radiotherapy 

treatment 

To recognize and 
classify objects and 
patient inside the 
treatment room 

Percentage of correctly 
classified objects 

Database of classified 
objects 

Decision-making tool 
for radiation 
oncologists 

To predict rectal 
toxicity after cervical 
cancer radiotherapy  

Difference between real 
and predicted toxicities 

Database of radiotherapy 
treatment plans including 

RT structures and dose files 
+ medical database with 
rectal toxicity evaluation 

 



ACCEPTED MANUSCRIPT
7 

Table 1. Some examples related to machine learning problems. The first 3 lines are taken from [26] 
and [25]. The other examples (in gray) are taken from published applications of machine learning in 

radiotherapy, which can be found in Section 3. 

Fig. 4. Analogy between an artificial neuron and a biological neuron. The input signals are 

represented by x. The bias b and the activation function ϕ can be parameterized by the user. Weights
w are adjusted automatically by the network. 

Fig. 5. Schematic illustration of a deep neural network. Neurons not contained in the input or output 
layer are contained in the hidden layers.  

Actually, DL uses a cascade of multiple layers of nonlinear processing units for feature extraction and 
transformation, with each successive layer using the output from the previous layer as input. The 
first layer is the input layer that receives the dataset. The last layer is the output layer that delivers 
the result. In between, layers transforming the signal are called hidden layers. The underlying 
assumption is that these successive hidden layers correspond to levels of abstraction. Varying the 
number, size, and composition of each layer can thus provide different amounts of abstraction, and 
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allows high-level features to be derived from low-level features in order to form a hierarchical 
representation. The challenge is to find the appropriate level of granularity, given the size and 
dimension of the available training dataset and the complexity of the task. Note that high-level 
feature extraction (abstraction), which indeed takes place, creates features that are very difficult for 
humans to interpret meaningfully and match to metrics of observable procedures. 

 

The training process 

 

It is important to keep in mind that a neural network must be trained in a dedicated phase. Training a 
neural network consists of learning each neuron's weights (w in Fig.  4). In supervised learning, it can 
be formulated as an error function minimization between the network's output (the prediction) and 
the desired output (the labels). As this error function is highly nonlinear and non-convex, there is no 
analytical solution that can minimize it. The usual solution is to update the weights iteratively by 
means of a backpropagation gradient algorithm [34,35], the most commonly used being the 
stochastic gradient descent. At first, all the weights are randomly initialized. Then the output of the 
network is computed with respect to the training input. The gradient can be efficiently computed by 
propagating errors from the output layer back to the input layer by a chain rule. Once the gradient 
vector is computed for all layers, the weights can be updated. This update process repeats until 
convergence is reached or a predefined number of iterations have been performed. 

The transfer function and the bias are fixed and user-definable. The transfer function is usually 
defined as monotonically increasing, continuous, differentiable, and bounded. The most popular 
transfer function is called rectified linear unit (ReLU), which allows fast learning of DNNs (Fig. 6).  

 

 

Fig. 6. Rectified linear unit transfer function (ReLU) commonly used in deep neural networks. 

 

Why deep learning now?  

 

Recently qualified as DL, we saw that research on DNNs dates back to the 1950s and actually has a 
long and rich history [15]. Multilayered networks are not convincing and attracted only a few 
researchers worldwide for many years [4]. The renewal of interest on DL was catalyzed in 2006 by 
the grouping of a few researchers by a Canadian institute. Since then, DL has been able to respond to 
increasingly complex applications, with ever-greater accuracy. 

The reasons for this sudden success can be traced in the 2012 ImageNet competition, when a team 
(the only one to use a DL architecture) was able to halve the rate of misclassification [36]. The 
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success of the network developed by Krizhevsky et al. is due to its architecture, the power of 
calculations on graphics processing unit (GPU), and the large amount of training data. The 
combination of these three factors currently places DL at the forefront of AI approaches. The GPU 
calculation makes it possible to manage the memory required for the learning and adjustment 
processes of billions of weights of contemporary networks in an acceptable time. To generalize 
correctly, it is imperative that the number of training data should be large enough to represent 
reality. Note that these properly labeled databases are potentially difficult to obtain in the medical 
field, which can be a hindrance to the deployment of DL methods. The last factor that led to the 
emergence of DL is the improvement in network architectures, which has recently benefited from 
numerous developments. 

 

Network architectures commonly used in deep learning 

  

Many DL network architectures have been developed depending on specific applications or learning 
data. Several classifications are possible, which are detailed in the following references dedicated to 
medical applications [5,13,14,37]. Ravi et al., specifically provided a classification of the different 
architectures according to particular applications in the medical field. Here, we briefly describe the 
architectures most frequently used in radiotherapy applications (Fig. 7). 

 

 

 

Fig. 7. Schematic representation of the most common network architectures in deep learning for 
radiotherapy applications (illustrations used with permission from [38] and classification inspired by 

[13]). 

 

� A DNN is composed of several hidden layers in which all neurons of a layer i are connected to 
all the neurons of the i+1 layer. This simple architecture has the disadvantage of presenting a 
potentially slow learning process. 

� A recurrent neural network (RNN) is suitable for the processing of temporally dependent 
information [39]. This is the type of network used for speech processing or video. Different from 
other types of deep networks, the idea here is to keep in mind the information previously processed, 
to help the network predict the succeeding data. The output yt of the network is therefore a function 
not only of the input xt at a time t but also of the inputs xt-i at times t-i. The RNNs include long short-
term memory (LSTM) and gated recurrent unit models. 

� An auto-encoder (AE) is composed of a hidden layer of smaller size than the input one [40]. 
This hidden layer serves as an encoding layer for identifying a latent dominant structure of reduced 
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size with respect to the input signal. The neurons in the input layer are all connected to those in the 
hidden layer, all of which are connected to the output layer. When the encoding layer serves as input 
to another AE, it is called a stacked auto-encoder (SAE), which allows generating several levels of 
abstraction. Several variants have been proposed: stacked denoising (SDAE), sparse (SSAE), and 
variational (VAE). One of the advantages of this method is that it can be used in the context of 
unsupervised learning, which does not require labeled data. 

� The Boltzmann machine (BM) is another unsupervised learning architecture. The objective is 
the same as in an AE (extract representations), but is based on a different statistical model. The 
connections between the neurons are bidirectional; therefore, a BM is comparable to a so-called 
generative model, which can generate new input data during learning. In a standard BM, all the 
neurons are connected to each other, whereas only the neurons of distinct layers are connected in a 
restricted Boltzmann machine (RBM) [41]. 

� Deep belief network (DBNs) are essentially SAEs in which the encoding layers are replaced by 
RBMs [42]. Only the two deepest layers have bidirectional connections. The training is performed in 
an unsupervised manner, except for the final adjustment of the network parameters performed in a 
supervised manner by adding a classification layer at the output of the network. The deep Boltzmann 
machine (DBM) is the equivalent of DBN, but with bidirectional connections between the neurons of 
each layer . 

� The architecture of generative adversarial networks (GANs) is based on two models: a 
generative model G that produces synthetic data, and a discriminant model D that estimates the 
probability that these data are part of the training data [43]. The goal of the process is to enable the 
G model to fool D. 

� CNN is the DL architecture used by Krizhevsky et al. in 2012 (see discussion above). This 
architecture is widely used currently in image processing, for example, in automatic segmentation or 
computer-aided diagnostic in medical images. This is why we detail it more precisely in the next 
section. 
 
2.3 Convolutional neural networks 
 

Description 

 

In a fully connected neural network, each neuron's output of a given layer is connected to an input 
node of every neuron in the succeeding layer, and neurons of the same layer are completely 
independent of each other. This is a very general-purpose connection pattern, as it makes no 
assumptions about the features in the data. However, information contained in medical images is 
generally spatially structured. One can notice that neighboring pixels corresponding to the same 
anatomical structure share similar intensity characteristics, which means that a specifically 
parameterized patch of neurons might be able to detect each pixel corresponding to the same 
structure. Furthermore, because the location of the structure searched is variable from one patient 
to another (lesions such as metastases for example) and from one image to another (due to 
differences in acquisition conditions), their location in the corresponding images will differ. Hence, 
the previously mentioned patch of neuron should have some type of invariance in spatial location in 
order to behave in the same way on the entire image. CNNs are specifically designed to take 
advantage of this spatially structured information.  
CNN procedures have several advantages over most standard medical computer vision systems 
comprising manually engineered static programs [44]. Standard image features representations 
include scale-invariant feature transform (SIFT), histogram of oriented gradients (HoG), textons, spin 
images, and so forth. Identifying the right set of attributes most relevant to the problem addressed is 
often difficult and time-consuming and requires expert knowledge. Furthermore, the interaction 
between the characteristics of the environment might not be completely understood at the design 
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stage, or the amount of knowledge might be too large and complex for explicit encoding. Thus, CNNs 
now outperform these algorithms. 
CNNs are the most common DL-based networks applied to image analysis. They were popularized 
after their stunning results in the ImageNet competition [36]. A CNN consists of several successive 
layers of data processing, whose aim is to find representative features of the input image, first 
simple, then more elaborate as the layers succeed each other (see Fig. 8). CNNs belong to the 
unsupervised or supervised learning category or both, depending on their architecture. 

 

 

Fig. 8. Schematic illustration of the role of each layer of a CNN used for face recognition [42] (used 
with permission). The upper layers represent simple geometries (edges, lines). When the layers are 

deeper, simple features assemble to form shapes that are more complex. 

 

To better understand how this architecture works, let us take the example in Fig. 9, where the image 
to be analyzed is composed of 6 × 6 pixels that can take individually different gray level values (for 
simplicity, values -1, 0, and 1). The coordinates of the pixels of the image can be written in the form 
(x, y), with x the line and y the column number. Square a filter, here consisting of 3 × 3 pixels, whose 
values are fixed arbitrarily (for the moment), in the upper left corner of the image to be analyzed, 
centering it on pixel (2, 2). Multiply the value of each pixel (x, y) of the image with each 
corresponding pixel (x, y) of the filter, sum the values obtained, divide it by the number of pixels of 
the operation (in our case 9), and apply the result to pixel (2, 2) of a new image, called a feature map 
(FM). Then, drag this filter one column to the right, in order to center it on pixel (2, 3) of the image to 
be analyzed, and carry out the same operation, which makes it possible to assign a value to pixel (2, 
3) of the FM. The dragging operation of the window of one column to the right is often referred to as 
stride = 1. By thus sweeping the entire image, it is possible to recreate an entire new image (except 
the border): this operation is qualified as a convolution, from which the CNNs derive their name. The 
role of this transformation is to detect local features in different parts of an image, preserving the 
spatial information of the input.  



ACCEPTED MANUSCRIPT
12 

 

 

 

Fig. 9. Convolution operation applied to an image. 
 

If this operation is transposed into a schematic representation of the neural networks, the pixel 
values can be seen as the input signals, and the filter values as the synaptic weights (see Fig. 10). 
Note that the filter F is often referred to as a kernel. In the previous example, the values of the filters 
(and thus weights) are set arbitrarily. In reality, we have already seen that the network iteratively 
adjusts these values during the training phase, so that the different layers can effectively extract 
characteristic representations of the input image. The convolution of the image by the kernel F, 
which produces the FM, constitutes a layer of the neural network. The multiple hidden layers of a 
CNN therefore represent successive convolution operations: the input data are the pixels of the 
image to be analyzed for the first layer, and those of the FM for the subsequent layers. Each layer 
actually includes several filters: in the example given in Fig. 11, the first layer consists of three 
different filters of size 3 × 3, the resulting FM being composed of three images (depth = 3). The next 
layer consists of four filters of size 3 × 3 and depth 3, which, convoluted with the FM of layer 1, 
produces an FM of depth 4. 
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Fig. 10. Schematic representation of a convolution operation by a neural network. 
 

 

Fig. 11. Illustration of convolution operations performed in the first two hidden layers of a CNN. The 
lower part of the image is a synthetic view of the upper part. 

 

Pooling 

 

Practically in contemporary CNN, each convolutional layer is composed of dozens of grids of different 
weighted filters. Because an image is composed of tens of thousands of pixels, the number of 
operations required for CNN becomes important. To reduce this number and the computing load, it 
is common to insert a so-called pooling layer between two convolution layers. The role of this layer is 
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to reduce the size of the FM produced by the previous convolution layer. The classic technique of 
max pooling is to keep only the value of the largest pixel in a certain area, to maintain the 
characteristic of the image. Fig. 12 illustrates a max pooling operation performed on the FM of our 
previous example. With a filter of dimension 2 × 2 (not to be confused with the filters of the 
convolution operations), this operation consists here of keeping only the pixel whose value is 
maximum in an area defined by a matrix of dimension 2 × 2. This matrix is moved here by two pixels 
(stride = 2), and sweeps the whole area of the image. FM thus passes in this example from 16 to 4 
pixels. 

      

Fig. 12. Example of a max pooling filter of dimension 2 × 2 and stride = 2. 

 

We have so far focused on 2D images. To exploit the actual 3D nature of many medical images, 3D 
CNNs have been developed, which calculate 3D FMs from 3D kernels. To reduce the degree of 
complexity and computation time of these models, 2.5D (or tri-planar) CNNs have been developed, in 
which the 3D volume is decomposed into axial, sagittal, and coronal views [45]. However, with the 
rapid improvement of computing power on GPUs, 3D CNNs could prevail in the future. 

 

Better understanding through an example of CNN: AlexNET 

 

We have seen that the basic structure of a CNN consists of alternating convolution and pooling 
layers. We have not mentioned it so far, but a nonlinearity operation such as ReLU is implicit after 
each layer. Around this basic scheme, many variants have been proposed depending on the type of 
application. The AlexNet network discussed earlier is shown in Fig. 13. Its function is image 
classification: from a 2D input image, it assigns a probability output to each of the thousand classes 
proposed in the competition. It consists of five layers of convolution, three layers of pooling, and 
three fully connected layers as output. The first layer is composed of 96 filters of dimension 11 × 11 × 
1, applied to the input image with a stride = 4. The first resulting FM, of dimension 55 × 55 × 96, is 
taken as input of the second layer and convolved with 256 filters of size 5 × 5 × 96. After a max-
pooling operation (3 × 3, stride = 2), the dimension of the second FM is 27 × 27 × 256. These 
operations are repeated until the last convolution layer generates an FM of size 13 × 13 × 256. After a 
last pooling operation that reduces the size of the FM to 6 × 6 × 256 (not shown in the figure), three 
fully connected layers follow each other. In contrast to convolutional layers that aim to detect 
patterns by successively scanning different parts of the image, the fully connected layers 
simultaneously take as input all the pixels of the FM. The first fully connected layer is composed of 
9216 neurons and generates a 4096 × 1 × 1 size vector. At the output, a mathematical function called 
softmax transforms this vector of 4096 values   into a probability vector of dimension 1000 × 1 × 1, 
which assigns a probability to each of the 1000 classes used. 
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Fig. 13. Schematic representation of the AlexNet network (from [46]). 

 

Other examples of CNN 

 

In addition to AlexNET, other CNNs have been the subject of different variants, depending on specific 
applications. Among other outstanding networks, Visual Geometry Group (VGG) is characterized by a 
very simple structure (only convolution filter size 3 × 3 and pooling size 2 × 2) and by a significant 
depth of at least 16 layers [47]. It was developed for image classification, and performs on the 
concept that a DNN is more powerful when it is deeper. If the last fully connected layers of a CNN are 
deleted, you obtain a fully convolutional network (FCN), usually dedicated to segmentation tasks. The 
idea is to keep spatial information, increasing it in a last layer of sufficiently large size. However, after 
many layers of pooling, the final resolution is potentially low. To work around this problem, the U-net 
network, which was also developed for segmentation tasks, is proposed to add to the first 
convolutional part a second symmetrical part in which the pooling layers are replaced by 
interpolation layers [48]. The resolution of the output image is thus improved. Another application, 
deconvnet networks such as ZF-NET allowed a better understanding of how the network operates at 
each layer [49]. 

 

3. Deep learning methods applied to the radiotherapy workflow 

Many teams are now developing DL methods that could straightforwardly be applied to one of the 
steps of the radiotherapy workflow (see Fig. 14). We made a review of the literature, and chose to 
classify the papers into seven categories relevant to these different radiotherapy steps: images used 
for radiotherapy planning and treatment set-up, image segmentation, computer-aided detection and 
diagnosis, image registration, treatment planning, motion management/patient setup during 
treatment, and data extraction and outcome prediction in radiotherapy. A synthesis of these DL 
applications in radiotherapy is proposed as presented in Table 2. 
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Fig. 14. Potential applications of deep learning approaches in the radiotherapy workflow. Numbers 
3.1 to 3.7 refer to the sections in this article. 

 

3.1 Images used for radiotherapy planning and treatment setup 

 

Radiotherapy planning images are used to segment OAR and the target volume, and to plan the 
treatment. In order to calculate the dose delivered to the patient, it is necessary to provide the 
electronic tissue density to the algorithms used by the treatment planning systems (TPS). Through a 
simple calibration between electronic density and Hounsfield number, this density can be directly 
estimated from the CT planning imagery, which is the reference imaging for dosimetric calculation in 
radiotherapy [50]. Because MRI has some advantages in soft tissue contrast for several cancers 
(brain, prostate, etc.), it would be desirable to substitute this CT planning scan by an MRI planning 
scan [51]. However, due to the need of estimating the electron density, a standard CT planning scan 
is still acquired in addition to the MRI scan [52]. To overcome this limitation, a solution is to generate 
synthetic CT (sCT) images from MRI [53]. 

Radiotherapy 
treatment step 

Application Input data DL-based method Reference 

Images used for 
radiotherapy 
planning and 

treatment setup 

Pseudo X-ray image 
synthesis 

MRI 
U-net, Residual net, Cascaded 

refinement net 
[54] 

Pseudo CT image synthesis MRI 

U-net, VGG [55] 

FCN [56] 

GAN [57] 

Deep embedding CNN  [58] 

Pseudo MRI synthesis CT FCN [59] 

Pseudo 7T MRI synthesis 3T MRI CNN [60] 

MR spectroscopic images 
(MRSI) artifact correction 

MRSI CNN [61] 

Image artifact reduction CT CNN [62,63] 

Spatial resolution 
improvement 

Images Super resolution CNN  [64] 

Image denoising 

Synthetic CBCT 2D CNN [65] 

On-board radiotherapy 
fluoroscopic X-rays 

CNN, SAE [66] 

CT CNN [67] 

CT GAN [68] 

Image prediction for 
limited-angle tomography 

CT CNN [69] 

Image segmentation Portal vein CT 2.5D CNN [70,71] 
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Brain glioma MRI 

CNN, U-net, FCN [72] 

CNN [73] 

3D CNN [74,75] 

Holistically nested network [76] 

Brain metastases MRI 3D CNN [77,78] 

Brain structures 
MRI DNN [79] 

MRI 2.5D CNN [37] 

Multi-age brain structures MRI CNN [80] 

Brainstem MRI SDAE [81] 

Hippocampus 
MRI DNN [82] 

MRI U-net [83] 

Optic structures 
MRI SDAE [84] 

CT 3D CNN [85] 

Subcortical structures 
MRI 3D CNN [86] 

MRI 2.5D CNN [87] 

Neuroanatomy structures 
MRI 3D CNN [88] 

MRI, US 2D, 2.5D, 3D CNNs [89] 

Breast tissue MRI U-net [90] 

Prostate 

MRI SAE, SSAE [91] 

MRI FCN [92] 

CT CNN [93] 

Thoracic organs 

CT FCN [94] 

CT FCN [95,96] 

CT CNN [97] 

Head and neck (H&N) 
organs 

CT 2.5D CNN [98] 

Esophagus CT 3D CNN [99] 

Abdominal organs CT 3D CNN [100] 

Spine CT CNN, FCN [101] 

Liver and/or hepatic 
metastases 

CT Deep deconvolutional NN (DDNN) [102] 

CT FCN [103] 

CT 3D CNN [104] 

CT CNN [105] 

MRI, CT FCN [106] 

Rectal cancer and organs CT Deep dilated CNN  [107] 

Skin cancer Dermoscopic images CNN [108] 

Rectal Cancer MRI CNN [109] 

Bladder Cancer CT CNN [110] 

Liver tumor CT CNN [111] 

Nasopharyngeal tumor CT DDNN [112] 

Nasopharyngeal tumor MRI CNN [113] 

Oropharyngeal tumor CT CNN [114] 

Tumor 
Positron emission 

tomography (PET) -CT 
CNN [115] 

Computer-aided 
detection 

Pulmonary nodules  

CT 3D CNN [116] 

CT CNN [117] 

CT CNN [118] 

CT CNN [119] 

CT CNN [120] 

Prostate cancer MRI SAE [121] 

Brain Metastases MRI CNN [78,122] 

Brachytherapy catheters MRI (planned) [123] 

L3 vertebra CT CNN [124] 

Specific CT slice CT CNN [125] 

Bone metastases CT CNN [126] 

Specific vertebra MRI CNN [127] 

Specific vertebra US CNN, SAE [128,129] 

Carotid artery bifurcation CT DNN [130] 

Anatomic landmarks MRI, US, CT CNN [131] 

Brain, prostate landmarks MRI, CT CNN [132] 

Computer-aided 
diagnostic 

Skin cancer Images CNN [133] 

Pulmonary nodules 

CT DBN, CNN [134] 

CT AE [135] 

CT CNN, DNN, SAE [136] 

CT CNN, DBN, SDAE [137] 

CT CNN [138] 

Breast cancer Mammography CNN [139] 
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Mammography CNN [140] 

Prostate cancer MRI DNN, VGG [141] 

Rhabdomyosarcomas 
subtype 

MRI CNN [142] 

Image registration 

Deformation prediction MRI VGG [143] 

X-ray 2D/3D registration Fluoroscopic X-rays CNN [144] 

2D/3D registration 
initialization 

Fetal MRI CNN [145] 

MRI/MRI registration MRI SAE [146] 

CT/MRI registration CT,MRI DNN [147] 

X-ray 2D/3D registration CBCT, 2D X-rays FCN [148] 

Treatment planning 
Predict dose from organ 

structures 
RT Struct, RT Dose U-net, CNN [149] 

RT Struct, RT Dose AE [150,151] 

Motion 
management/patient 

setup during 
treatment 

Motion correction 
alignment setup with a soft 

robot activator 

Motion capture camera 
images 

MLP, RNN, LSTM [152] 

Real-time, markerless, 
tumor-contouring 

to prevent mistracking 
on X-ray fluoroscopy 

Fluoroscopic X-rays CNN [153] 

Intra- and inter-fractional 
variation prediction of lung 

tumors 

Cyberknife breathing 
signal 

NN [154] 

Collision avoidance 3D camera images Not described [155] 

Data extraction and 
outcome prediction 

in radiotherapy 

Local failure after lung 
stereotactic body 

radiotherapy (SBRT) 

CT, clinical risk factors 
(CRF) 

DNN [156] 

Survival risk after rectal 
cancer chemo-radiotherapy 

PET-CT, survival rate CNN [157] 

Quality of life after prostate 
SBRT 

Dose Volume Histogram, 
quality of life scores 

DNN [158] 

Rectum toxicity after 
cervical cancer 

brachy/radiotherapy 
RT dose, Toxicity scores VGG [159] 

Survival rate for lung and 
H&N patients 

CT DNN [160] 

Automated radiation 
adaptation in lung cancer 

Clinical, genetic, 
dosimetric, PET data 

GAN, CNN [161] 

Medical image classification 
24 organs on MRI, CT, 

PET 
CNN [162] 

Named entity recognition in 
clinical text 

Electronic health records DNN [163] 

Clinical relation extraction CRF SAE [164] 

 

Table 2. Summary of the different deep learning based applications by radiotherapy treatment step.  

 

Different methods have been developed in recent years [165] and a commercial solution has been 
recently evaluated on 170 prostate cancer patients [166]. CNNs appear to be one of the most 
promising methods for sCT generation. Han et al. proposed a novel U-net-based algorithm, the 
encoding part being based on the VGG 16-layer model [55]. Owing to transfer learning, they achieved 
a very satisfactory performance with limited training data (only 15 training subjects). They obtained a 
mean absolute error of 85 HU as compared to 95 HU for a standard atlas-based method. Another 
advantage is the processing time, which is approximately a few seconds for DL as compared to 
several minutes for the standard methods. However, the method generates each slice 
independently, resulting in potential discontinuity in the sCT [58]. Nie et al. proposed a 3D FCN for 
estimating CT images from MRI, while exploring different activation functions [56]. When tested on a 
pelvic phantom, they showed a better performance than three widely used approaches, with a 42.4 
HU mean absolute error versus 48.1 to 66.1 for the other approaches. Wolterink et al. showed that a 
GAN can be trained to synthesize sCT with unpaired CT and MR images, avoiding the issue of 
misalignment between paired images [57]. They found that the model trained using unpaired data 
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outperformed the model trained using paired data. Xiang et al. developed an original “deep 
embedding” CNN to synthesize sCT [58]. The embedded blocks help fill the large gap between MRI 
and CT appearance and speed up the mapping. They demonstrated that their network performance 
is superior to three conventional and one CNN approaches on brain and prostate cases with reduced 
processing time. Stimpel et al. compared the use of three DL-based architecture (U-net, residual net, 
and cascade refinement network) to generate X-ray from MR projections, but so far, only on 
phantom images [54]. Note that the generation of synthetic images is not always done from MRI to 
CT. Actually, Zhao et al. proposed a whole brain segmentation method for CT images that first uses a 
DL network to synthesize an MRI from a CT image and then uses the synthetic MRI for segmentation 
[59]. 

Magnetic resonance spectroscopic image (MRSI) is a promising tool to detect metabolites within 
tissues, notably for glioblastoma and prostate cancer management in radiotherapy [167]. However, 
the presence of spectral artifacts is a problem in the routine clinical workflow. Gurbani et al. 
developed a CNN to identify poor-quality spectra and filter out artifacts with a high degree of 
sensitivity and specificity [61].  

Artifacts on CT images related to the presence of metals in patients (dental fillings, spinal implants, 
hip prostheses, etc.) are problematic in radiotherapy. Actually, they can interfere with radiation 
diagnoses during the segmentation step and bias the calculation of the dose. To overcome these 
issues, many metal artifact reduction (MAR) algorithms have been proposed [168,169]. Recently, 
Gjesteby combined a CNN with an MAR into the image reconstruction process to achieve additional 
correction in critical image region, such as those with multiple metal objects [62,63]. Their results 
indicated that deep networks are valuable tools for improving or even replacing state-of-the-art MAR 
algorithms. 

These DL image processing methods for both the generation of sCT from MRI and the correction of 
metallic implant artifacts involve learning a mapping from an image to another. This general concept 
could naturally be extended to other applications such as improving image quality, removing artifacts 
related to patient movements, synthesizing other image contrasts, or implementing rapid image 
acquisition strategies [170]. For example, Dong et al. used what they called a super resolution CNN 
method, which learns a mapping between low-/high-resolution images to restore image quality [64]. 
While these methods could be applied to radiotherapy planning images, they have also a great 
potential for image guided radiation therapy (IGRT) techniques to set up the patient during 
treatment. IGRT techniques are commonly based on X-ray (kilovoltage, megavoltage, cone beam CT 
(CBCT), megavoltage CT), MR, or ultrasound (US) imaging [171–173]. To reduce noise artifacts in 
CBCT images produced by a Leksell Gamma Knife Icon (Elekta, Sweden), Afshaq investigated the use 
of CNNs [65]. He showed that the proposed method outperforms conventional algorithms at the cost 
of a much higher computational time. These findings were only proved on synthetic CBCT images. To 
the best of our knowledge, the only one who used clinical IGRT images is Mori. He tested several 
types of deep CNN and AE models to process 430 X-ray images acquired on prostate cancer patients 
with oblique fluoroscopic units during patient setup procedure [66]. With a standard desktop 
computer, he achieved real-time image processing at 30 frames per second, including contrast 
enhancement and image denoising. Other DL methods originally developed for conventional 
diagnostic images could also have potential applications to IGRT images. For example, Bahrami et al. 
trained a CNN to reconstruct 7T-like images from 3T MRI, providing improved resolution and contrast 
[60]. This could be particularly useful for improving MR images produced by recent low-field MR 
systems (from 0.35 to 1.5 T) integrated into radiotherapy devices [174]. Concerning CT imaging, 
Zhang et al. developed a CNN to reduce artifacts produced by filtered back projection methods 
conducted on limited CT angle acquisition ranging from 130° to 170° [69]. This may be applicable on 
CBCT image acquisition, where limited angle acquisition is used to reduce the acquisition time and 
delivered dose. Reducing imaging dose delivered during IGRT is indeed a critical point, evidenced by 
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an accident in France, where 409 prostate patients received 8 to 10% overexposure due to excessive 
portal imaging controls, leading to the death of two of them after grade 4 rectal fistula [175]. In this 
context, deep CNN methods such as those developed by Chen et al. may be useful [67]. Their CNN, 
trained to match low-dose CT images toward normal-dose CT images, showed a better performance 
for noise reduction than iterative reconstruction and post-reconstruction processing. Yang et al. 
proposed a GAN to denoise low-dose CT images [68]. Compared to a CNN-based method, their 
method helped avoid the over-smoothing effect, but at the cost of losing critical features. All these 
methods have the potential to reduce the dose delivered during X-ray imaging used to localize 
patient during radiotherapy treatments.  
 
 
3.2  Image segmentation 

 

For each patient treated with radiotherapy, the radiation oncologist delineates slice by slice the 
target volume and the OAR on the planning images (CT or MR scans). Even if this task remains mainly 
manual in clinical routine, automated medical image segmentation plays an increasing role to help 
doctors in delineating anatomical structures or tumor regions. Many automatic segmentation 
methods have been explored, with varying degrees of success depending on the type of application 
or imagery studied [176,177]. There are now more than a dozen commercial segmentation software 
dedicated to radiotherapy, integrated or not into TPS [3]. 

Automatic segmentation is a frequent application of DL. The literature on this subject is already very 
broad, and our objective is not to be exhaustive, but rather to show that various published works can 
be applied to all radiotherapy indications. Nearly all the regions of human anatomy are concerned: 
cerebral, H&N, thoracic, abdominal, or pelvic. Different types of medical data are used for the 
segmentation of anatomical structures by DL, including MRI and CT images that are the reference 
imaging modalities for radiotherapy. 

MRI is mostly used to investigate soft tissues and is the gold standard for the segmentation of the 
cerebral structures. Akkus et al. recently reviewed the numerous brain MRI segmentation methods 
involving DL [178]. The authors listed the most popular quantitative measures of brain segmentation 
quality, and the main brain segmentation challenges, including the multimodal brain tumor 
segmentation challenge (BraTS) [179]. This annual challenge dedicated to the automatic 
segmentation of gliomas since 2012 makes available a large database of multimodal MRI, composed 
in 2017 of 262 MRI for glioblastomas and 199 MRI for low-grade gliomas [180]. The availability of 
such large database partly explains why glioma is one of the most studied tumors for automatic 
segmentation by DL [73,75]. As highlighted by Isis et al. in their review on MRI-based brain tumor 
segmentation, DL methods can actually be considered as the current state-of-the-art method for 
glioma segmentation [181]. Tested on the 2013 BraTS dataset, Havaei et al. demonstrated that their 
CNN architecture outperforms the currently published state-of-the-art one, while being over 30 
times faster [73]. With their CNN network called DeepMedic, Kamnitsas et al. obtained top ranking 
performance on BraTS 2015 [74]. Furthermore, the authors demonstrated the generalization 
capabilities of systems such as DeepMedic, which can be applied without significant modifications to 
other segmentation tasks such as for brain injuries and ischemic stroke, while still outperforming the 
state-of-the-art methods. In 2017, Kamnitsas et al. merged three DNN architectures to segment brain 
tumors on MRI: their CNN DeepMedic, two versions of U-net, and three fully connected networks. 
With this robust model, they won the first position in the BraTS final testing stage among more than 
50 competing teams [72]. Zhuge et al. have proposed a new holistically nested neural network, and 
stated that it outperforms the classical CNN method for MRI-based glioma segmentation [76]. 
Compared to this many works concerning gliomas, BM have only very rarely been the subject of 
segmentation methods by DL. Liu et al. obtained competitive results with a CNN-based segmentation 
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method for BM on MRI, although the partial use of the BraTS database in their validation and test 
sets led to nuances in their conclusions [77]. 

The segmentation of brain OAR on MRI by DL methods has also been the subject of several 
studies. Brebisson et al. were the first to segment the whole brain into 134 anatomical regions using 
DNN [79]. Pai et al. worked on the same dataset of Brebisson and obtained equivalent results, but 
they also observed that the performance of their tri-planar CNN was inferior to standard methods, 
notably because of the lack of training cases [37]. Moeskoeps et al. designed a unique CNN network 
to precisely segment brain outlines regardless of age (prenatal, 23, and 70 years old) [80]. They also 
showed that this network could straightforwardly be applied to segment other anatomical regions 
while improving the results of Brebrisson. Other studies used SDAE, U-net or CNN to focus on a given 
structure, such as the brainstem [81] or the hippocampus [82,83], or on a group of structures such as 
those located in the optic region (optic nerve, chiasm, and pituitary) [84] or in the subcortical regions 
[86,87], and simultaneously up to 25 to 26 regions of the neuroanatomy [88,89]. While Milletari et al. 
compared different types of CNN architectures [89], Wachinger et al. used a 3D CNN to segment 25 
brain structures with statistically significant improvements over several state-of-the-art methods, 
although the results were not as clear for subcortical structures [88]. Note that auto-segmentation of 
small volumes, such as optical structures (chiasm, optic nerves, etc.), is often difficult. To overcome 
this problem, 3D CNN with multi-scale patches (large patch to locate the tissue and small patch to 
label each voxel) has been developed with significantly better performance than the best scores 
reported in the literature [85].  

MRI is also the reference modality for prostate segmentation, due in particular to the difficulty of 
differentiating on CT scans its contours with neighboring soft tissues in the base and apex regions 
[182]. Because prostate cancer is the most common cancer for men in developed countries [183], the 
automatic segmentation of this organ by DL has already been the subject of several studies. Guo et 
al. showed the superiority of their SAE model over state-of-the-art ones using handcrafted features, 
particularly on both anterior and posterior parts of the prostate [91]. Mehrtash et al. proposed an 
open-source toolkit called “DeepInfer” for developing DL models for different segmentation or 
detection tasks in medical imaging [184]. They tested their toolkit on prostate segmentation for 
targeted MRI-guided biopsy. 

Many other organs can also be automatically segmented in MRI by DL. Google’s DeepMind Health 
has started a partnership with a hospital on H&N cancer to automatically segment tumor volumes 
and organs at risk on MRI scans [185]. Automated segmentation of breast and fibroglandular tissues 
may also be useful in radiotherapy, particularly because breast intensity modulated radiotherapy 
indications increased in recent years. Dalmis et al. showed that the U-net-based method they applied 
on MRI significantly outperformed existing algorithms in breast segmentation [90]. Christ et al. used 
an open-source DL framework to build a cascaded FCN model, which combined the segmentation of 
the liver and of hepatic lesions on MRI, and obtained results that compete with state-of-the-art 
methods [106]. They also showed that their method could be generalized to segment the liver and 
lesions on CT images. 

While MR imaging has become the gold standard for organ segmentation of certain indications in 
radiotherapy, CT remains as the reference imaging modality (explained in Section 3.1). Several teams 
developed DL segmentation methods on CT images for various anatomical regions. Zhou et al. 
segmented 19 organs from different regions of the human anatomy on CT images, obtaining 
equivalent results to those of state-of-the-art methods with the advantage of using a single FCN 
architecture for all organs [94]. With a CNN dedicated to H&N cancers, Ibragimovic et al. segmented 
9 organs, including 4 structures in the optic region [98]. They compared their findings not only with 
methods from academic research, as is generally the case with the studies cited in this paragraph, 
but also with three commercial software used in radiotherapy departments (VelocityAI 2.6.2, MIM 
5.1.1, and ABAS 2.0 systems). They observed that DL methods demonstrate a superior or comparable 
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performance to the commercial software for all organs at risk, except for chiasm and submandibular 
glands. The esophagus, which is a structure with heterogeneous appearance and complex shape, was 
automatically and successfully segmented on public CT images from the "Multi-Atlas Labeling Beyond 
the Cranial Vault Challenge” with a 3D CNN developed by Fechter et al. They evaluated their method 
on the Synapse dataset, and showed that it outperformed all existing approaches [99]. Trullo et al. 
proposed an FCN framework for the joint segmentation of thoracic OAR, namely the heart, 
esophagus, trachea, and aorta. They obtained competitive results, particularly by accounting for 
relationship between these organs [95,96]. Hu et al. achieved an accuracy comparable to state-of-
the-art methods with much higher efficiency for segmentation of the liver, spleen, and both kidneys 
[100]. By evaluating their automatic liver segmentation method on two public datasets of CT images 
(MICCAI-Sliver07 and 3Dircabd), Lu et al. showed that it demonstrates a superior segmentation 
accuracy than most of state-of-the-art methods [104]. Ben Cohen et al. and Yuan et al. developed 
several CNN and FCN approaches to automatically segment the liver on CT images and detect the 
lesions in the liver segmentation [102,103]. Still, for liver segmentation, Qin et al. proposed an 
original approach based on a CNN pipeline working with superpixels and an additional boundary class 
[105]. It achieved superior performance in comparison with U-net, CNN, and classical approaches. To 
better assess toxicity after SBRT, Ibragimovic et al. proposed a tri-planar CNN to segment and 
annotate portal vein on CT images [70,71]. Vania et al. combined a CNN and an FCN to automatically 
segment the spine on CT images [101]. Their results were better compared to those of conventional 
results, but slightly worse than those of U-net. The prostate can also be automatically segmented 
from CT using a CNN and multi-atlas fusion with satisfactory results [93].  

DL methods were not only used to segment OAR, but also recently target volumes. Men et al. 
developed a CNN-like network to simultaneously segment abdomino-pelvic risk organs and the 
clinical target volume (CTV) of rectal cancers [107]. CNN were developed to segment oropharyngeal 
and nasopharyngeal CTV respectively on CT and MRI images, with close agreement when compared 
to inter-observer variability [113,114]. Other applications for segmentation of target volumes are 
presented in Section 3.5. 

Medical Image Computing and Computer Assisted Intervention (MICCAI) has organized one of the 
first tumor delineation segmentation challenge in PET images [115]. Thirteen methods where 
implemented by challengers, and a CNN was ranked first. Automatic DL segmentation methods have 
also been developed for imaging modalities that are usually not used in the radiotherapy 
segmentation step. Automatic skin lesion segmentation in dermoscopic images, for example, is an 
important research field in dermatology, but may also help to define the target volume when 
treating skin lesions in radiotherapy. Experimental results show that CNN-based methods outperform 
other state-of-the-art dermoscopic segmentation algorithms [186,187]. US was also the subject of 
automatic segmentation attempts by CNN, for example for brain structures [89]. Automatic US image 
segmentation by DL could be useful in radiotherapy. Actually, patient or organ monitoring can be 
performed in some cases by US during treatment delivery [188–190]. This is also the case in prostate 
brachytherapy, where US endo-rectal imaging is used to monitor the procedure [191]. 

Despite these numerous DL automatic segmentation methods, there are few evaluations of their 
actual clinical contribution. The work of Lustberg et al. is one of the first to have evaluated the 
clinical interest of a commercial DL segmentation software prototype (Mirada DLC Expert prototype, 
Mirada Medical Ltd., United Kingdom). In a clinical radiotherapy context, they quantified the 
segmentation time using this software prototype for the segmentation of 6 thoracic OAR on CT, and 
compared those of manual contouring and atlas-based commercial automatic contouring [97]. The 
median time was 20 min for manual, 12.2 min for atlas-based, and 10 min for DL-based contouring. 

 

3.3 Computer-aided detection (CADe) and diagnosis (CADx) 
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Although the concept of computer-aided medical image analysis appeared in the 1960s, the first 
developments on this subject began in the early 1980s [192]. Computer-aided medical image analysis 
can be divided into two categories: computer-aided detection (CADe) and diagnosis (CADx) [193]. 
The goal of a CADe system is to identify the location of organs, tumors, anatomical regions, or 
medical equipment in the images, and to help the medical staff for specific tasks. The objective of a 
CADx system is to provide medical information for the classification of a disease. Currently, 
automatic detection and diagnosis based on medical images have become a major research subject 
in the medical field. Esteva et al., for example, have recently developed a CNN that is capable of 
classifying skin cancer with a performance similar to that of dermatologists, and stated that it could 
be implemented on standard smartphones [133]. Even if a robust prospective validation in a blinded 
clinical trial must be undertaken in this particular example to ensure that this smartphone application 
is not harmful [194], DL technology opens promising perspectives for medical image analysis. 

 

3.3.a Computer-aided diagnosis  

 

Classifying pulmonary nodules on CT images according to their benign or malignant nature is a 
difficult task, and many teams have developed tools whose performances are regularly compared in 
challenges, such as the recent LungX Challenge [195]. One of the first studies that applied DL 
techniques to the problem of pulmonary nodule classification on CT images was performed by Hua et 
al., who showed that a combined DBN-CNN framework outperformed CADx systems relying on 
conventional handcrafted feature [134]. Since then, several authors developed other DL algorithms 
for this purpose. Ali et al. developed a reinforcement learning-based model for a CNN [120]. Kumar 
et al. proposed to use deep features extracted from an AE network combined with a binary decision 
tree as a classifier [135]. Song et al. compared the performances of three deep networks (CNN, DN 
and SAE) for lung cancer classification [136] : the CNN achieved the best performances. Sun et al. 
developed and compared the performances of three multichannel deep structured algorithms (CNN, 
DBN, and SDAE) and a classical handcrafted algorithm [137]. The best performance was obtained 
with the CNN. Instead of using CT images, Wang et al. recently tried to classify lung nodules from PET 
images, and compared a DL method with four classical machine learning methods. They showed that 
the performance of their CNN was not significantly different from the best classical methods, but 
that this performance could be improved by incorporating diagnostic features [138]. 

Breast cancer is the most common cancer in women worldwide [183], and one of the most treated 
with radiotherapy. Breast cancer CADx is therefore a crucial task, and CNN approaches were recently 
implemented for analyzing mammography images [139,140]. MRI has also been the subject of 
various works related to DL-based CADx algorithms. By finishing 4th place on the ProstateX challenge 
(classification of clinically significant prostate lesions on MRI), Chen et al. demonstrated that public 
state-of-the-art DL models such as VGG-16 could quickly and efficiently be retrained with limited 
data [141]. By analyzing multiparametric MRI, Banerjee et al. presented a CNN-based CADx for the 
classification of rhabdomyosarcoma subtypes [142].  

 

3.3.b. Computer-aided detection  

 

In their systematic review of articles published in December 2014 dealing with CADe of pulmonary 
nodules on CT images, Valente et al. stated that the latest techniques have not yet overcome all the 
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challenges of this task, mainly because of high FP per patient rates [193]. Nevertheless, none of the 
articles cited by Valente et al. relies on DL methods. Anirudh et al. were one of the first to explore 
lung nodule detection on CT images using 3D CNN, achieving a sensitivity of 60% for 3 FP per scan 
[116]. Roth et al. proposed a CNN method that improved the state-of-the-art CADe systems, with a 
mediastinal lung node sensitivity of 70% for 3 FP per patient [117]. Recently, all currently reported 
results on mediastinal lung nodule detection were surpassed with a CNN architecture adapted from 
the complex GoogLeNet model, achieving an 86% sensitivity and 3 FP per patient [118]. Teramoto et 
al. also concluded that CNN can be employed for FP detection rate reduction, showing that their 
method eliminates approximately half of the FPs as compared to a previous study concerning lung 
nodule detection on PET/CT [119]. 

Despite the high incidence of BM that affect up to one third of cancer patients, few detection DL-
based methods have been published to date. Losch et al. were the first, to our knowledge, to use a 
CNN to detect BM on MRI [122]. They explored several kernel sizes and network depths, and 
observed that their network performances are comparable to the conventional state-of-the-art ones. 
Odelin et al. that it was possible to adapt an existing CNN (DeepMedic) to detect BM on multimodal 
MRI [78]. They used real and virtual patients, and obtained 98% sensitivity with only 7.2 false positive 
per patient. Sunwoo et al. developed a handcrafted feature-oriented CAD of BM on MRI, and used a 
simple one hidden layer ANN as the final FP discrimination method [196]. What is interesting is that 
they evaluated their CAD system in a clinical context, and showed that their CAD helps radiologists 
improve their diagnostic performance in the detection of BM on MRI, particularly for less-
experienced reviewers. 

Zhu et al. proposed an SAE method for detection of prostate cancer regions using multi-parametric 
MRI. They achieved a better performance than the conventional handcrafted features, with the 
advantage of directly identifying cancer regions from the entire prostate, compared to conventional 
prostate cancer detection methods that identify cancer only in specific regions of interest [121]. An 
original use of DL algorithms on MRI is the detection of catheters for brachytherapy, which are 
difficult to distinguish from neighboring tissues. In their work, Mastmeyer et al. used classical 
handcrafted features to detect and segment these brachytherapy catheters from MRI, but stated 
that they have begun investigating the training of DL networks [123].  

An interesting application of CADe for radiotherapy is the automatic detection of anatomical 
landmarks. As stated before, this could be a valuable aid in preventing, for example, the delineation 
or treatment of wrong target, or in tracking a particular part of the anatomy. A good example is the 
level labeling of vertebra, which is an error-prone task because of the high-appearance similarity 
between consecutive vertebrae. CNN-based systems have been developed for detecting a particular 
slice on CT images, which achieved an average localization error of 4.8 mm for the third lumbar 
vertebra (L3) [125,197]. Again on CT images, a deep CNN was used to detect sclerotic metastases 
(bone lesions), while reducing the FP detection rate [126]. MRI can also be used to detect vertebrae. 
The CNN proposed by Forsberg et al. showed a detection accuracy on T1 and T2 images of less than 
2.6 mm for lumbar and cervical vertebrae, with a labeling accuracy of 97.0% [127]. CNN and SAE 
were also proposed for the identification of the vertebra level on US images. Compared to matches 
of manually selected labels, DL matches of predicted vertebral level were correct in 94% of cases 
[128,129]. Originally developed for percutaneous needle insertion procedures, this type of 
application could also be applied to non-ionizing patient position monitoring during radiotherapy 
treatments. Other landmark detection methods performed by CNN could be used to assess the 
correct localization of the patient on various imaging modalities, such as carotid artery bifurcation on 
CT images [130], mitral annulus on US images [131], or apical/basal cardiac slices on MRI [132]. 
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CADe and CADx algorithms are mainly useful in the medical diagnosis phase and do not at first glance 
directly concern radiotherapy. Nevertheless, these methods could find their place in the 
radiotherapy workflow in many cases. For example, automatic detection tools could help to control 
the positioning or to track in real time tumors/organs while the treatment is delivered. It could also 
support the radiation oncologist during the delineation stage by identifying anatomical landmarks 
such as the vertebral level. It might also open up new opportunities for exploiting the daily 
positioning images, for instance, by automatically screening for new metastases or identifying tumor 
progression/regression.  

 

3.4 Image registration 

 

Image registration is defined as the mathematical transformations applied to an image to make it 
correspond to a reference image. Registration methods are available in almost all radiotherapy 
software used to manage images. The American Association of Physicists in Medicine recently 
reviewed current approaches in radiotherapy [198]. In their survey about medical image registration 
techniques, Viergever et al. reviewed the developments that took place between 1998 and 2016 
[199]. They observed major trends, notably that intensity-based techniques and rigid methods are 
now forming the basis of the vast majority of registration in clinical practice, and that registration use 
has progressed particularly in radiotherapy. They also concluded that it is unlikely that mutual 
information will be able to maintain its popularity, and that DL approaches applied to image 
registration could be the new challenger that could definitively make image registration fully 
integrated into routine clinical imaging. 

DL algorithms have been proposed just to make the images comparable before using intensity-based 
methods for registration and to directly estimate the transformation parameters. Yang et al. 
proposed a DL network to predict image deformation, tested on 2D and 3D MRI datasets [143]. They 
achieved an equivalent prediction accuracy compared to state-of-the-art methods, with a significant 
speed-up of 1500x/66x respectively for 2D and 3D image registration. Miao et al. developed a CNN-
based method for real-time 2D/3D registration, trained on synthetic data only [144,148]. They tested 
their method on three clinical applications (total knee arthroplasty, virtual implant planning system, 
and X-ray echo fusion), by registering X-ray images from fluoroscopic videos with 3D models. Results 
showed that their CNN method is very fast as it is capable of real-time registration at 10 fps, and 
significantly outperforms intensity-based methods. They also recently proposed a new FCN-based 
training strategy, and succeeded to reduce training time and improve registration robustness against 
artifacts [148]. A CNN approach was proposed by Hou et al. to solve the 2D/3D initialization problem 
in imaging applications, where the patient is moving during acquisition, such as fetal MRI [145]. 
Integrated into a full motion compensation framework, their method allowed to efficiently correct 
highly motion-corrupted scans. An unsupervised-based SAE network developed by Wu et al. for MRI 
registration consistently demonstrated a better performance compared to state-of-the-art methods 
[146]. The authors also showed that their proposed framework was quickly and efficiently adaptable 
to 7.0 T MRI, for which existing deformable methods developed for 3.0 T MRI did not work well. Ma 
et al. proposed a multimodal DNN-based registration algorithm to register real-time patient depth 
images with pre-operative CT or MRI [147]. Even if these applications are not directly related to 
radiotherapy, this type of DL method could be used during the treatment delivery, for example, by 
matching the kV or MV real-time images with the 3D model.  

 

3.5 Treatment planning 
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Radiotherapy treatment planning aims to determine the optimal irradiation parameters (number of 
beams/arcs, multileaf collimator conformation/modulation, etc.). This planning is carried out using 
dedicated software (TPS) and is still currently mainly driven by the human user. However, many semi- 
or fully automated planning methods have been developed for several years, with the aim of 
reducing planning time while improving the quality of treatment plans. Some of them have been 
recently integrated and successfully tested in commercial solutions [200–203]. They mainly use 
machine learning methods that are trained on existing treatment plans [204–207]. DL methods are 
therefore applicable to the problem of automated treatment planning. To date, there are few 
published works in which a DL scheme is proposed to facilitate the radiotherapy planning task. 
Mardani et al. proposed a deep AE-based relation map between dose and structure that is learned 
from a dataset of 115 previously treated intensity-modulated radiotherapy (IMRT) prostate patients, 
allowing to predict achievable dose from the structures segmented on the planning images 
[150,151]. As compared to the state-of-art knowledge-based planning schemes, this novel predictive 
model has the advantage of being independent from patient and tumor site variability. Nguyen et al. 
proposed the same type of model, and used a U-net architecture with additional CNN layers to 
predict dose from structures [149]. The PTV, bladder, body, left and right femoral heads, and rectum 
structures of 80 IMRT prostate patients were used to train the model, as well as the 2D dose map of 
the central PTV slice. They obtained an average mean and maximum dose differences of all 
structures within 2.3% of the prescription dose. 

If we deviate a bit from the heart of the planning process itself, the DL approaches for automatic 
segmentation and image registration, which we have described in the previous sections, are 
particularly adapted to the specific workflow of adaptive radiotherapy (ART). ART is defined as a 
radiotherapy treatment process, where the treatment plan can be modified using a systematic 
feedback of measurements performed during treatment [208]. The ART process can be applied in 
real-time conditions, while the patient is on the bed inside the treatment room [209–211]. In this 
case, the DL approaches for automatic segmentation and image registration, which are potentially 
faster than standard approaches, could allow reduction of the patient treatment time. The DL 
accuracy performance in terms of automatic segmentation can also prove to be useful in the ART 
process. Trebeschi et al. showed that a CNN can improve the speed and accuracy of diffusion 
weighted MRI-based rectal cancer segmentation [109]. Another example of potential application is 
bladder cancer. Segmentation of bladder cancer is crucial, because monitoring its volume variation 
during neoadjuvant chemotherapy is used to predict treatment outcome. One can envision that it 
may also be useful for ART to monitor changes during the course of treatment. Cha et al. developed a 
CNN model to automatically segment the bladder cancer region on CT images, which showed a 
better performance than another method they have developed beforehand [110]. Vivanti et al. 
described a CNN-based method to quantify liver tumor burden on longitudinal CT scans [111]. Men 
et al. developed the DDNN method to segment nasopharyngeal gross tumor volume and CTV on 
planning CT, outperforming a VGG-based model [112]. These four examples of DL-based 
segmentation illustrate applications that could take place in the ART process. Nevertheless, they 
were tested on high-quality images compared to those used for patient positioning in radiotherapy 
with IGRT. To our knowledge, no DL segmentation approach has yet been applied to these types of 
images, thus opening up interesting research perspectives. 

 

3.6 Motion management/patient setup during treatment 
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Managing intra- and inter-fraction patient and organ motion has become a central topic in 
contemporary medical physics research, stimulated by the technical realization and subsequent 
clinical implementation of hybrid beam delivery [212–214]. Machine learning techniques have been 
used for many years [215], and DL approaches have now also been investigated in this area. 
Ogunmolu et al. developed a soft-robot actuator to position patients in maskless H&N radiotherapy. 
Combined with two Kinect cameras and a single inflatable air bladder, it allowed to track the 
patient’s face and to control the soft robot, achieving 2.5 mm accuracy in head positioning [216,217]. 
Originally based on a linear quadratic Gaussian feedback model, the authors developed several deep 
architectures (MLP, RNN, and LSTM) that they planned to use with their soft-robot motion alignment 
system [152]. Respiratory tumor motion management is also a challenging task, particularly because 
stereotactic lung radiotherapy techniques have become popular [218]. To predict intra- and inter-
fractional variation in lung tumor location, Park et al. developed a neural network with embedded 
fuzzy logic systems trained on breathing data of 130 patients collected on a Cyberknife facility [154]. 
Their framework allowed estimating the next breathing signal before the next incoming signal 
arrives. Compared to existing methods, it improved the prediction accuracy, while reducing the 
computational time by a factor of more than 100. With an average processing time of 1.5 ms, it could 
achieve real-time prediction and can therefore help in improving tracking techniques. Terunuma et 
al. developed a CNN-based contouring method to track tumors in real-time on X-ray fluoroscopy 
[153]. They validated their method on simulated fluoroscopic images, achieving a 30 frames per 
second processing time. 

Wrong patient positioning is a potential pitfall in radiotherapy treatment, which could lead to mis-
irradiation or patient collision with the gantry. Using a set of 3D cameras placed inside the treatment 
room, Santhanam et al. developed a DL-based system to automatically detect potential patient 
safety hazards during the radiotherapy setup [155]. Three-dimensional objects such as the gantry 
and bed were first recognized and classified, and a DL framework was used to analyze these objects, 
allowing the system to recognize wrong patient or accessory setup. 

Finally, as already mentioned in previous sections, DL segmentation, detection, or registration 
algorithms have an interesting potential for motion management in radiotherapy including the 
tracking of structures on imaging systems used to control patient positioning. 

 
 
3.7 Medical data extraction and outcome prediction in radiotherapy 

 

Currently, many medical records are numerically collected from patients treated with radiotherapy, 
such as administrative (codes), genomics, clinical (text), biological (blood tests, cardiac tests, etc.), 
diagnostic/simulation imaging (DICOM), and treatment plan data (DICOM RT plan, structures and 
dose, DICOM positioning control images) [219]. This information is often referred to as EHR or big 
data in the literature, which are concepts that evolved continuously in recent years [220,221]. 

These data represent a considerable source of new medical knowledge, if they could be analyzed on 
a large scale. The goal is to link the patient's disease, its treatment, and its clinical effects, in order to 
design decision-making tools that will help the physician to better orient and personalize the patient 
therapy. In order to achieve this, algorithms should be first designed to extract intelligible data to 
provide inputs to other algorithms that model the clinical effects in a second step. 

Several DL methods have already been applied to extract medical information, reviewed recently by 
Shickel et al. [13]. As examples at different levels of data extraction, Qayyum et al. proposed a CNN 
framework to retrieve and classify multimodal medical images (MR, CT, PET) for 24 body organs, 
obtaining a 99.77% accuracy [162]. Wu et al. developed a DNN model to recognize clinical texts in 
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medical documents, which outperformed state-of-the-art methods [163]. Other DL methods have 
been developed for identifying and extracting the relation existing between patient medical 
problems, treatments, and tests (“clinical relation extraction”). Tested on the i2b2 relation challenge 
dataset [222], Lv et al. proposed an SAE-based relation classification model [164]. They showed that 
their model performed better than one based on the original word features. Therefore, even if these 
studies have not been carried out directly in relation to radiotherapy, they are applicable to the 
extraction of the majority of data useful for radiotherapy predictive modeling (text, codes, DICOM). 

Multiple radiation oncology research groups have shown the value of machine learning methods for 
predicting radiotherapy outcomes, although clinical adoption is going slow due to the huge barrier of 
understanding these complex models by clinicians [223–225]. The prediction of radiation toxicities 
has, for example, been studied with machine learning techniques for several diseases such as lung 
[226], prostate [227], or H&N cancer [228]. Meanwhile, many DL methods have been applied to the 
analysis of medical data (including outcome prediction), and have already been the subject of recent 
reviews [13,14]. DL methods appear indeed to be promising for outcome prediction in radiotherapy. 
In prostate radiotherapy big data analytics, Coates et al. stated that DL strategies may prove to be 
useful in the case of radiation-induced biological effects, given the complexity of the physical and 
biological processes involved [229]. Concerning neuroblastoma, a pediatric cancer disease that is in 
some cases irradiated, Salazar et al. emphasized the fact that a genetic approach alone is unlikely to 
yield fruitful drug discovery, as there are very rare recurrent somatic mutations detected in this 
disease [230]. That is why DL approaches, which can integrate more sophisticated data generated 
from patients and animal models, may be best suited to model the complexity of neuroblastoma 
etiology. Muthalaly et al. demonstrated that DL networks can be trained to predict mortality in acute 
lymphoblastic leukemia, a childhood disease for which radiotherapy may be used as part of 
treatment [231]. Nevertheless, no consistent work combining DL methods and modeling of 
radiotherapy clinical effects has been published until early 2017 [219]. Since then, several authors 
have tried to model, using very different DL-based approaches, the risks associated with 
radiotherapy treatments. Zhen et al. demonstrated that a pre-trained CNN is able to model rectum 
dose distribution and predict rectum toxicity after cervical cancer radiotherapy [159]. They showed 
that transfer learning might overcome the difficulty to train a CNN from scratch, as patient sample 
size is often small. Jochem et al. learned a three-layer DNN model on radiomic features for survival 
prediction in lung and H&N cancers [160]. Although they did not observe a superior performance 
compared to that of conventional modeling strategies, they demonstrated that DL methods 
represent a major advantage because feature selection is no longer a required component. To 
predict local failure following SBRT, Aneja et al. merged a CNN and a DNN to analyze respectively 
patient CT simulation and CRF. They showed that DNN could improve the predictive ability compared 
to logistic regression [156]. Li et al. also used imaging data to predict survival risks for rectal cancer 
patients. They used the biological target volume from PET-CT as training data for a CNN, and stated 
that their model could predict the tumor recurrence risk better than current models [157]. To predict 
quality of life (QOL) in urinary and bowel domains after prostate SBRT, Qi et al. proposed a DNN 
model trained with DVH data [158]. They showed that their model was able to predict the QOL 
scores with ± 5 points. A combination of three learning components (GAN, DNN, and deep Q-
network) was proposed by Tseng et al. to build an autonomous clinical decision support system for a 
response-based ART [161]. Using clinical, genetic, and radiomic features, their framework allowed to 
adapt patient dose per fraction in a response-adapted treatment setting. 

 

3.8 Summary 
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We reviewed publications in which DL approaches were applied in radiotherapy. We observed that 
all steps of patient workflow in radiotherapy were related, to a greater or lesser degree, to potential 
applications of DL. Automatic segmentation of medical structures is, for example, already widely 
discussed in the literature, for all locations and for many imaging modalities. However, there have 
been few studies on tumor delineation, for which there is still considerable room for improvement. It 
should be noted that the automatic delineation of tumors has applications during the treatment 
planning stage as well as during adaptive radiotherapy, for example, to automatically monitor the 
evolution of tumor lesions through patient positioning images. 

We believe that these images, made during radiotherapy treatments to control patient positioning, 
are indeed an important source of inspiration for DL applications. They are available in large numbers 
because several images can be made during each treatment fraction, and patient treatments usually 
comprise about thirty fractions. One disadvantage of these images is that they are generally of 
poorer quality than diagnostic images; we have noted that the first publications regarding 
improvement of their quality by DL methods have been published recently. Regarding this 
application of positioning images, DL could make a major contribution through some CADx and CADe 
techniques that are currently used for diagnosis. For example, DL could assist in the detection of new 
metastases during treatment or the development of new tracking techniques. Patient motion 
management is indeed a problem in which there is still much room for improvement in the context of 
radiotherapy, in which the very first applications of DL methods were published. There have been 
very few studies on DL applications for treatment planning published to date, while the dosimetric 
databases are widespread and quite easily exploitable. Finally, concerning the use of DL for outcome 
prediction in radiotherapy, the first studies have been published recently, and the field of research 
on this subject remains vast and complex. 

 

 

4. Deep learning criticisms 

 

Despite their many advantages, DNNs have not been imposed much in clinical routine. One of the 
main criticisms is the lack of theory concerning DL and the fact that standard general principles are 
mostly empirically obtained. The choice of the general architecture of the network (the layout of the 
layers, their number, the size of filters, etc.) best suited to the problem to be solved is mostly guided 
by intuition and carried out experimentally. There are also some recognized tricks and tips for 
improving learning but without theory to justify them.  

The true generalization capability of DNNs in image vision can also be questioned because they can 
be fooled [232]. Changing an image in a way imperceptible to humans can thus lead a DNN to label it 
as something entirely different. It is also possible to produce images that are completely 
unrecognizable to the human eyes but labeled with certainty by the neural network. It is therefore 
important to keep in mind that even if some DNNs can perform at near-human ability, the way they 
perceive and interpret the world is far different from the human way. Among other things, they lack 
explicit ways of representing causal relationships and of integrating abstract knowledge, which make 
them prone to error due to unavoidable finite and incomplete training set. 

The need to build coherent and sufficiently large databases in the field of medicine is another 
challenge. Indeed, DNNs require a large diversity of training examples in order to be effective in real-
world operation. This implies that neural networks need to be trained with a sufficient variety of 
representative examples to be able to capture the data underlying structure that allows them to 
generalize new cases. Another consequence is that a neural network trained on datasets collected 
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with biases (due to intra- or inter-expert variation for example) will certainly exhibit the same biases. 
Furthermore, when the algorithm is based on supervised learning, the classes of the patterns must 
be known as well, which requires extra effort from clinical experts. Rigorous collection of data is thus 
a critical and often underestimated and time-consuming part of DL (and machine learning in general). 
For example, in one of our previous works focused on brain metastases segmentation in multimodal 
MRI, the constitution of a database composed of information of 182 patients required nearly three 
months of work [78]. With current radiotherapy treatment planning systems  each patient’s data 
often still needs to be manually selected, restored, opened on the manufacturer's software, and then 
exported individually to obtain exploitable DICOM files. 

This difficulty in building large databases has been noted in many of the publications cited above, in 
almost all categories in Section 3. Although the use of picture archiving and communication systems 
(PACS) in most western hospitals allows access to millions of medical images [5], many authors 
indicate for example that there is a lack of properly labeled imagery databases for the development 
of automatic segmentation methods based on DL [88, 104, 233]. Limited availability of datasets is 
also an issue for the further advancement of CAD, and building well annotated datasets seems at 
least as crucial as developing new algorithms [118]. This is particularly true if these methods have to 
be applied to low-quality images, such as those used to localize patient during IGRT procedures. As 
pointed out by Viergever et al., the development of registration-based DL methods may be 
hampered by one of the main obstacles to the implantation of registration techniques in medical 
imaging, namely, the lack of reference datasets for validation, and thus for learning [199]. Concerning 
outcome prediction, the road toward predictive radiotherapy by DL methods could still be long. It is 
first crucial that radiation oncologists should be able to understand the prediction of DL algorithms. 
However, these algorithms are still considered “black boxes”, and their interpretation is often 
difficult [13]. About training, major challenges, such as heterogeneous data, non-standardized 
terminologies, and computer or workflow incompatibility will make the dream of big data research 
difficult in radiotherapy [234].  

 

5. Conclusion 

 

Several DL methods that can be applied to a step of the radiotherapy workflow have been recently 
published. Despite their promising results, we are probably, at this time, only at the prehistory of the 
use of these methods in radiotherapy. The number of applications and their performance will likely 
evolve rapidly in the coming years. The main obstacle to this development could be related to the 
lack of training data, as pointed out by many authors cited in this survey. We have tried to provide a 
number of ideas and perspectives to explore, but obviously, there are still many approaches to be 
developed and many applications to imagine in this exciting field of DL for radiotherapy. 
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