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a b s t r a c t 

This paper proposes a novel stock price trend prediction system that can predict both stock price move- 

ment and its interval of growth (or decline) rate within the predefined prediction durations. It utilizes an 

unsupervised heuristic algorithm to cut raw transaction data of each stock into multiple clips with the 

predefined fixed length and classifies them into four main classes ( Up, Down, Flat , and Unknown ) accord- 

ing to the shapes of their close prices. The clips in Up and Down can be further classified into different 

levels reflecting the extents of their growth (or decline) rates with respect to both close price and rela- 

tive return rate. The features of clips include their prices and technical indices. The prediction models are 

trained from these clips by a combination of random forests, imbalance learning and feature selection. 

Evaluations on the seven-year Shenzhen Growth Enterprise Market (China) transaction data show that 

the proposed system can make effective predictions, is robust to the market volatility, and outperforms 

some existing methods in terms of accuracy and return per trade. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Stock price trend prediction is a classic and interesting topic

that has attracted many researchers and participants in multiple

disciplines such as economics, financial engineering, statistics, op-

erations research, and machine learning. Although a lot of efforts

have been paid during the past several decades ( Abarbanell &

Bernard, 1992; Adam, Marcet, & Nicolini, 2016; Adebiyi, Adewumi,

& Ayo, 2014; Blume, Easley, & O’hara, 1994; Göçken, Özçalıcı, Boru,

& Dosdo ̆gru, 2016 ), accurate forecast of the stock price, even its

movements, is still not easy to achieve hitherto, though some ad-

vanced machine learning techniques have been utilized. For in-

stance, Kim (2003) used support vector machines to predict the

direction of the daily socket price movements in Korea, obtaining

a hit rate 56%. Schumaker and Chen (2009) included the text min-

ing technique into socket price forecast, achieving a hit rate 57%.

Tsai and Wang (2009) combined the decision tree and neural net-

works to make prediction to Taiwan stock market. The accuracy

of the hybrid model achieves around 70%. However, their test data

sets were relatively small, only including dozens of stocks. Accord-

ing to a recent empirical study ( Gerlein, McGinnity, Belatreche, &

Coleman, 2016 ), the prediction accuracies of several machine learn-
� The source code of the system is available at https://sourceforge.net/p/xuanwu/ 

svn/ . 
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ng models (such as C4.5, K 

∗, logistic model tree, etc.) are in the

ange of 48% ∼ 54%. 

Traditional technical analysts have developed many indices and

equential analytical methods that may reflect the trends in the

ovements of the stock price. However, technical analysis contra-

icts with the efficient-market hypothesis but they cannot make

eneralised inferences regarding the accuracy. For example, the

fficient-market hypothesis states that as long as the market is

eak-form efficient, the price of a stock follows the random walk

odel ( Fama, 1995 ) and cannot be predicted by analyzing prices

rom the past. Meanwhile, the prices are affected by many macro-

conomical factors, fundamental factors of companies and the in-

olvement of public investors. Therefore, some criticism of techni-

al analysis is that it only considers transactional data of stocks

nd completely ignores the fundamental factors of companies

 Nassirtoussi, Aghabozorgi, Wah, & Ngo, 2014; Patel, Shah, Thakkar,

 Kotecha, 2015 ) which might be helpful, if the market is in weak-

orm efficiency. 

The fundamental factors of a company cover many aspects such

s basic financial status, marketing and development strategies, po-

itical events, general economic conditions, commodity price in-

ices, interest rate changes, movements of other stock markets,

xpectations and psychology of investors, and so on. Comprehen-

ively figuring out the impact of these compound factors on the

ovement of the stock price is obviously out of the capabil-

ty of human analysts. Researchers have begun to develop some

ext-mining based methods that can automatically analyze some

https://doi.org/10.1016/j.eswa.2017.12.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.12.026&domain=pdf
https://sourceforge.net/p/xuanwu/svn/
mailto:jzhang@njust.edu.cn
mailto:qianmu@njust.edu.cn
mailto:taoli@cs.fiu.edu
https://doi.org/10.1016/j.eswa.2017.12.026
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f these fundamental factors ( Nassirtoussi et al., 2014 ). For ex-

mple, Schumaker and Chen (2009) extracted information from

he breaking financial news to increase the accuracy of predic-

ion. Bollen, Mao, and Zeng (2011) analyzed the mood of investors

rom twitter to reveal the sentiments of investors to some stocks.

uiz, Hristidis, Castillo, Gionis, and Jaimes (2012) analyzed the cor-

elations of financial time series from micro-blogging activities.

i et al. (2013) proposed a technique to leverage topic based sen-

iments from Twitter to facilitate the prediction of the stock mar-

et. Even the up-to-date deep learning techniques have been in-

roduced to conduct event-driven stock market prediction, where

vents are extracted from news ( Ding, Zhang, Liu, & Duan, 2015 ).

owever, the automatic fundamental factor analysis may be of

ome weakness. First, even though the messages or reports are re-

eased by the companies, public media or some third-party insti-

utes, it still cannot be guaranteed that there is no misleading in-

ormation. Second, it is not very clear how strong the correlation is

etween the released information and the stock price movement.

hird, when the market is in semi-strong-form and strong-form ef-

ciencies, the fundamental factor analysis even cannot bring excess

eturns ( Timmermann & Granger, 2004 ). 

Fortunately, in today’s big data age, above issues could be by-

assed, as a new train of thought, saying ”let the data speak for

hemselves”, has been proposed and drawn more attention. Unlike

he information obtained from newspapers, micro-blogging and

witter, the everyday transaction data taking place in trade sys-

ems are absolutely realistic. The rapid development of machine

earning provides a lot of new opportunities to utilize these trans-

ction data to predict the trend of the stock price movement. In

act, applying machine learning to stock prediction has been stud-

ed for over thirty years. The early studies in 1990s mainly fo-

used on using Neutral Networks to make prediction ( Schöneburg,

990; Zhang, Patuwo, & Hu, 1998 ), which partially refuted the va-

idity of efficient market hypothesis ( Lawrence, 1997 ). For example,

sibouris and Zeidenberg (1995) utilized neural networks to pre-

ict stock price only based on past stock prices. The performance

f these early methods usually was not good because of the size

imitation of the neural networks. To address this issue, some re-

ent studies resort to fusion or combination of models ( Hadavandi,

havandi, & Ghanbari, 2010; Tsai & Hsiao, 2010 ) and ensemble

earning ( Ballings, Van den Poel, Hespeels, & Gryp, 2015; Barak, Ar-

mand, & Ortobelli, 2017; Tsai, Lin, Yen, & Chen, 2011 ). All above

tudies have a common weak point that their practical availability

s still questionable. In their studies, a small amount of carefully

elected and labeled stock data were used to train and test mod-

ls. Since the data do not cover all stocks and their movements

n a stock market, the generalisation capabilities of the models are

educed in the real applications. 

A real stock market carries out huge amount of transactions

very day. We cannot expect that a real-world computer-aided

ecision system heavily relies on humans selecting and labeling

he data used for model training. Unsupervised pattern recog-

ition becomes more and more important in today’s big data

ge ( Wu, Zhu, Wu, & Ding, 2014 ). If the problem of automatic

ata preprocessing cannot be solved, the system will hardly to

e pushed into a real usage, even if the learning algorithms in-

ide are advanced. In this paper, we propose a novel data-driven

tock price trend prediction system Xuanwu 1 The contribution of

uanwu is three-fold. (1) it introduces unsupervised pattern recog-

ition methods to generate training samples from raw transaction

ata without any human intervene; (2) it is a system for a real

sage, in which multiple learning models are trained to meet the
1 Xuanwu (Black Tortoise in English) is one of the Four Symbols of the Chinese 

onstellations, usually depicted as a tortoise entwined together with a snake. The 

reature was thought to have spiritual power to predict the future. 

2

 

m  
rediction goals derived from actual user requirements, and its ap-

lication interface is of the maximum availability that is suitable

or any stock and any prediction duration; (3) it provides a simple

nd easy-to-test framework in which different supervised learn-

ng models and feature selection methods can be easily integrated.

xperimental results show that the proposed system outperforms

ome state-of-the-art methods in stock movement prediction even

hough the models of the compared methods are trained with

arefully human-labeled samples. 

The remainder of the paper is organized as follows.

ection 2 describes the requirements from the aspect of users.

ection 3 illustrates the architecture of the proposed system.

ection 4 describes our unsupervised method to generate train-

ng samples. Section 5 presents our learning method in details.

ection 6 addresses experimental results and discussions on these

esults. Section 7 concludes the paper and points out some future

ork. 

. Requirements 

Xuanwu follows an assumption that the actual investment activ-

ties which are carried out based on the prediction results of the

ystem do not have a far-reaching impact on the movements of

he stock prices in the future. Therefore, it is specially suitable for

he small startup investment companies that collect money from a

mall population and return the profits in fixed contract periods,

hose investment volumes usually do not cause obvious market

uctuation. Otherwise, the prediction will be inaccurate. Moreover,

hese companies are unlikely to trade a stock very frequently (e.g.,

aily), nor do they hold a stock for a long time (e.g., more than

hree months) without make a deal. We outline the key points of

ser requirements in this section. 

.1. Prediction granularity 

Nowadays, stock trades can take place in very high frequency

hen the market is open. The prediction granularity can be vari-

us such as second, minute, hour, day and even a fix investment

eriod. Xuanwu chooses trade day as the prediction granularity.

hat is, it predicts the trend of a stock in a predefined period mea-

ured by trade day . Short-term stock prediction is also interesting

 Lin, Yang, & Song, 2009 ) but not suitable for startup investment

ompanies because of the constraints in the capital volumes and

ransaction costs. The standard prediction durations of Xuanwu (re-

er to Section 4.1 ) are 10, 15, 20, 30, 40, 50, and 60 trade days,

hich spans two weeks to three months. 

.2. Automatic pattern discovery 

In the era of big data, continuous growth of generated data re-

uires that the learning models update accordingly within short

roductive periods ( Chen & Zhang, 2014; Sakurai, Matsubara, &

aloutsos, 2015 ). Obviously, it is no longer possible that training

amples are still selected and labeled by humans. Xuanwu aims to

et through all machine learning processes from generating train-

ng samples from the raw transaction data to building the predic-

ion models without any human intervene. All that users need to

o is to prepare a copy of original transaction data and then click

o start the learning progress. All patterns that we are interesting

n are extracted from every stock in the market. Then, the pieces

f interested patterns are transformed into training samples. 

.3. Subdivision of classes 

Since Xuanwu aims to predict the trend of a stock price move-

ent by the end of a predefined period, it defines four main
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Fig. 1. The system architecture of Xuanwu . 
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classes based on the shapes of the close prices of a stock, i.e., the

price will (1) rise up (class Up ), (2) go down (class Down ), (3) ap-

proximate the same (class Flat ) and (4) vibrate with large ampli-

tudes (class Unknown ). Besides these four main classes, for class

Up ( Down ), we are also interested in the extents of the growth (de-

cline). Thus, for class Up ( Down ), it defines two sub-classes, i.e, the

growth (decline) rate is (1) within the range [10%, 30%] (class UA1

( DA1 )) and (2) greater than 30% (class UA2 ( DA2 )). In addition to

the changes of close prices, we are also interested in the relative

return which is the return achieved by an asset over a specific time

period contrasted to a benchmark. For a period of n days, the log

relative return can be calculated as follows: 

rt = 

n ∑ 

i =1 

( ln ( 1 + f i ) − ln ( 1 + b i ) ) , (1)

where f i and b i are the asset return and benchmark return in the

i -th day, respectively. According to the relative return rate, for class

Up ( Down ), it defines two sub-classes, i.e., the increase (decrease)

of relative return rate is (1) less than 10% (class UR1 ( DR1 )), (2)

within the range [10%, 20%] (class UR2 ( DR2 )), and (3) greater than

20% (class UR3 ( DR3 )). According to these two kinds of measures,

Xuanwu runs at two prediction modes AbsoluteMode and Relative-

Mode . 

In the RelativeMode , the patterns (shapes) of stocks are recog-

nized and the classes are assigned based on the relative returns

rather than the close prices, because investors sometimes are more

interested in whether they can win over the ”average”, for exam-

ple, when the investments are made in a typical bull (or bear) mar-

ket. In a bull (or bear) market, most predictions are likely to be Up

(or Down ), if the close prices are used. 

2.4. Prediction interface 

The system provides an easy-to-use prediction API as follows: 

XwResult predict(stockId, duration, modelName, mode),

where XwResult is an object holding the prediction results, stockId

is an identifier for a stock, duration is a continuous sequence of

dates (i.e., prediction duration), modelName specifies a learning

model, and mode specifies a prediction mode ( AbsoluteMode or Rel-

ativeMode ). 

When making prediction, we must specify a continuous se-

quence of dates ( duration ) which serves as a time series for pre-

diction. For example, when we input the date sequence from Feb.

1, 2017 to Feb. 10, 2017, the price trend by the end of Feb. 15, 2017

will be returned if parameter modelName is not specified. There are

several models in the system (refer to Section 4.1 ). If we do not

explicitly specify one of them, the most suitable model will be au-

tomatically chosen for prediction. The prediction results are stored

in an object XwResult defined as follows: 

class XwResult {

public Double probClassUp;

public Double probClassDown;

public Double probClassFlat;

public Double probClassUnknown;

public String modeType;

public Double probFirstClass;

public Double probSecondClass;

public Double probThirdClass;

}.

Here, the first four elements are the probabilities of the four

main classes Up, Down, Flat and Unknown . The sum of these first
our values equals 1. modeType can be AbsoluteMode or Relative-

ode . If probClassUp ( probClassDown ) is the largest one among the

rst four elements, when parameter mode in prediction API is set

o RelativeMode , the last three elements provide the probabilities

hat the increase (decrease) of the price will be classified as UR1

 DR1 ), DR2 ( DR2 ) and UR3 ( DR3 ), respectively. When parameter

ode in prediction API is set to AbsoluteMode, probThirdClass is

eaningless and the other two provide the probabilities of classes

A1 ( DA1 ) and UA2 ( DA2 ). 

.5. Auxiliary functions 

The system has some auxiliary functions to facilitate its usage.

or example, we implemented a visualization tool to display the

raining samples. We can use this tool to check whether the shapes

f the samples follow the desired patterns. We also implemented

 set of applications that can be easily used for sample generation,

odel training, prediction and result validation. 

.6. A typical use case 

We describe a typical use case to help understand the require-

ents of the system. Every day, the analyst in the company queries

he prediction results by the end of the next five trade days of each

tock via specifying the most recent 10 trade days. Then, by rank-

ng all prediction results, s/he can quickly find those stocks which

ill rise up with the largest probabilities and the largest extent

n the next five trade days. Analysts can focus on a small group

f stocks with a higher probability of rising, which makes their

hoices more efficient and, to some extent, avoids selecting the

tocks with a high probability of decline. Every three months, the

nalyst runs the model training tool again to update the all predic-

ion models. The updated models will cover all transaction data of

ll stocks in the recent three months. 

. System architecture 

The system architecture of Xuanwu is illustrated in Fig. 1 . The

ain components of the system include a model training tool, a

undamental data module, a prediction API and a visualization tool

 XwExplorer ). 
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Fig. 2. Definitions of three durations and the growth rate when preprocessing the 

raw transaction data for a stock. 

Table 1 

Predefined durations in Xuanwu . 

PD MD Models 

10 6 M106, UA106, DA106, UR106, DR106 

15 10 M1510, UA1510, DA1510, UR1510, DR1510 

20 13 M2013, UA2013, DA2013, UR2013, DR2013 

30 20 M3020, UA3020, DA3020, UR3020, DR3020 

40 26 M4026, UA4026, DA4026, UR4026, DR4026 

50 33 M5033, UA5033, DA5033, UR5033, DR5033 

60 40 M6040, UA6040, DA6040, UR6040, DR6040 
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.1. Fundamental data module (FDM) 

FDM provides the original transaction data and a technical in-

ex tool, which serves as a basic database for generating training

amples and the instances to be predicted. The technical index tool

s implemented with an open source library Ta-Lib 2 . Traditional

echnical analysis indices can serve as features for model training

 Ni, Ni, & Gao, 2011 ). 

.2. Model training tool (MTT) 

MTT is the most complicated component in Xuanwu . It first

eads the raw transaction data from FDM. Then, the Training Sam-

le Generator (TSG) divides the raw transaction data into pieces

we call them Clips ) and analyzes their shapes to match the pat-

erns defined in a pattern description document. The training sam-

les are generated according to the recognized patterns, combin-

ng with some technical indices as features. Finally, machine learn-

ng algorithms are utilized to build learning models. We directly

mplemented the learning algorithms using a well-known open

ource machine learning tool WEKA ( Hall et al., 2009 ). The details

f the training sample generation and learning model building will

e further discussed in Section 4 and Section 5 , respectively. 

.3. Prediction API and XwExplorer 

The function signature of the prediction API has been discussed

n Section 2.4 . Another main function of the prediction API is to

enerate the instance to be predicted given the continuous se-

uence of dates through parameter duration . This function will be

urther discussed in Section 4.4 after the details of the training

ample generation are introduced. XwExplorer is an easy-to-use vi-

ualization tool for users to build the learning models and check

he results of the training sample generation and prediction. 

. Training sample generation 

In this section, we will present our training sample generation

cheme in Xuanwu in detail. 

.1. Morphological patterns for classes 

Our training sample generation scheme is based on the shape

f the close prices of a stock in predefined fixed trade durations.

ifferent from some studies that focus on the traditional techni-

al shapes defined by stock analysts ( Jeon, Hong, & Chang, 2017 ),

e only focus on several simple shapes. Traditional prediction by

echnical shapes is to make prediction when the predefined shapes

ppear, which usually does not work well because of the weak

orrelations between the trend of the price movement and these

echnical shapes ( Nassirtoussi et al., 2014; Patel et al., 2015 ). Our

ethod is to predict the probability of forming a predefined shape

n a fixed duration when we only see some of data in early trade

ays. We define the close prices in a fixed duration which form a

pecific shape as a pattern. In our system, there are three kinds of

urations as follows. 

efinition 1. Pattern (Prediction) Duration ( PD ) is a time span

ithin which we expect the trend of close prices exhibits a spe-

ific pattern. 

efinition 2. Model (Training) Duration ( MD ) is a time span

ithin which all data points are used as a training sample. 
2 http://ta-lib.org/ . 

T  

i  

D  
efinition 3. Test (Input) Duration ( TD ) is a time span within

hich all data points form an input instance whose labels and

heir probabilities will be predicted. 

Fig. 2 shows the relationship among the three durations. PD is

lways greater than both MD and TD , because it embraces a pattern

i.e., the shape of the line connecting all close prices) that is ex-

ected to be eventually observed. The set of all data points within

D is named a Clip . Obviously, we cannot use a Clip as a train-

ng sample, because a meaningful forecast is to make prediction

s soon as possible. The earlier we make a correct prediction, the

reater the benefit will be. In our system, we use all data points

ithin MD as a training sample. The time span of MD is two-thirds

hat of PD , which not only results in good prediction accuracy but

lso leaves enough room for price movement (increase or decrease)

nd enough opportunities for decision making. Simply speaking,

he shape of a Clip determines the class label of its correspond-

ng training sample. Usually, an unlabeled instance to be predicted

hould have the same dimensions as the training sample. However,

n a real-world environment, we hope that the system can exhibit

ome robustness. For example, if the system can make prediction

iven 10 days of data, it should be able to work if 9 (or 11) days

f data are given, even though it might not be so good. Thus, the

ength of our input duration (i.e., TD ) is not necessarily the same

s that of MD . 

In our system, we have seven predefined PD and MD pairs,

hich reflect the actual requirement of the small investment com-

anies. For each pair, we can train five different models: (1) M : a

odel for four main classes, (2) UA : a model for classes UA1 and

A2 , (3) DA : a model for classes DA1 and DA2 , (4) UR : a model

or classes UR1, UR2 , and UR3 , and (5) DR : a model for classes

R1, DR2 , and DR3 . (The meanings of these classes can be found

n Section 2.3 ). Table 1 lists all predefined durations and their cor-

esponding models. 

The patterns predefined in the current version of Xuanwu are

llustrated in Fig. 3 . It is well known that two typical trends - Con-

inuous Up and Sideways Up - usually arouse investors’ interests.

hese two kinds of trends form the first main class Up . Accord-

ngly, the mirror image of these two trends, namely Continuous

own and Sideways Down , form the second main class Down . If the

http://ta-lib.org/
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Fig. 3. Patterns predefined in Xuanwu . 

Fig. 4. Heuristic algorithms for recognition of patterns Continuous Up and Sideways 

Up . 
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close prices of the stock do not change considerably in a fixed du-

ration, it will be the third class Flat . Those shapes that cannot be

classified into the above three classes form the last class Unknown ,

which usually has large vibrations. The ten sub-classes, UA1, UA2 ,

... , etc., can be simply derived from classes Up and Down by calcu-

lating and ranking the growth and decline rates of absolute prices

and relative returns. 

4.2. Pattern recognition algorithms 

To avoid labeling samples by humans, Xuanwu introduces un-

supervised heuristic algorithms to recognize patterns. Fig. 4 illus-

trates the basic idea of our algorithms for recognition of patterns

Continuous Up and Sideways Up . 

The recognition of pattern Continuous Up is relatively simple.

First, we calculate the growth rate ( G ) by comparing the close

prices of the first and the last trade days. We allow the close prices

of the first and last trade days to vary in the range [ −δG, δG ] (e.g.,

δ = 20% ). Then, we can draw two lines AB and CD . Finally, we check
ll points between the first and last trade days. If a certain propor-

ion η (e.g., η = 95% ) of points are in the area ABCD , this Clip can

e classified as Continuous Up . 

The recognition of pattern Sideways Up is more complicated. We

utline the main steps in Algorithm 1 . The algorithm has more pa-

lgorithm 1 Recognition for pattern Sideways Up . 

nput: A Clip , α1 , α2 , δ and η
utput: Whether the Clip is Sideways Up 

1: F lag = F ALSE

2: Calculate the growth rate ( G ) 

3: for each point S between 50% and 80% PD do 

4: if the close price of S in the range [ α1 G, α2 G ] then 

5: Draw an area ABCD and a line DE (points A , B , C, and D

are determined by α1 and α2 ; point E is determined by

δ) 

6: if a proportion η of points between the first point and S

are in area ABCD and a proportion η of points between S

the last point are above line DE then 

7: F lag = T RUE

8: return F lag 

9: end if 

10: end if 

11: end for 

12: return F lag 

ameters but the principle is the same as the recognition of pat-

ern Continuous Up . When we draw an area that the points should

ie in, we have a larger search space, because point S can move in

he range [50% PD , 80% PD ]. All parameters in Algorithm 1 can be

et as follows: δ = 20% , α1 = 5% , α2 = 10% and η = 95% . Note that

hen recognizing Sideways Up we do not need line 4 in Fig. 4 . 

For patterns Flat, Continuous Down and Sideways Down , the al-

orithms are very similar. 

.3. Training samples 

Xuanwu is designed with the intention of covering as many as

hapes that a stock appear in its trade history. For each stock, we

se a sliding window method to cut its historical transaction data

nto multiple Clips as Fig. 5 shows. The window size equals to a

redefined prediction duration ( PD ). From the first trade day to the

ast trade day, the step of window sliding is one day. As we can

ee in Fig. 5 , Clip1 and Clip2 follow pattern Continuous Up . They
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Fig. 5. Using sliding window method to cut transaction data of a stock into Clips . 
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f  
ill be labeled as class Up . As the window moves, Clip3 does not

ollow any pattern, so it will be labeled as class Unknown. Clip5

gain follows Continuous Up, Clip18 follows Continuous Down and

lip30 follows Sideways Up . Thus, our method generates as many

amples as we can, which covers all situations we may encounter

n the future. 

Note that Clips just represent the patterns that we are in-

erested in, while they are not training samples. As mentioned

n Section 4.1 , the training sample should be the first MD

oints of a Clip whose duration is PD . Formally, for a Clip C =
 F 1 , F 2 , . . . , F PD , y } , the corresponding training sample will be C =
 F 1 , F 2 , . . . , F MD , y } , where F i (i ∈ [1 , P D ]) is the data in trade day i

nd y is the class label of this sample. F i ) serves as a part of fea-

ures of the training sample. Because our pattern recognition algo-

ithm is based on the close prices of a stock, F i at least contains

ne element close price. We can extend F i by adding more infor-

ation as follows: 

 i = { closeprice i , openprice i , highprice i , 

lowprice i , v olume i , t 
(1) 
i 

, t (2) 
i 

, . . . , t (n ) 
i 

} , (2)

here t (k ) 
i 

(k ∈ [1 , n ]) is the k -th technical index of trade day i . Fi-

ally, the features of the training sample can be extended to high

imensions, because it includes information of multiple trade days.

.4. Test instance 

As defined in Section 4.1 , test duration ( TD ) does not neces-

arily equal to model duration ( MD ), because the perdition API in

ection 2.4 tells us that users can provide the duration with any

umber of continuous dates as the input. The system will find the

ost suitable model for prediction, if parameter modelName is not

pecified. For example, if the duration includes 9 days, the sys-

em will select model M1510 in Table 1 for prediction. However,

his model requires the features of an test instance have exactly 10

ays’ information. To address this issue, we introduced an interpo-

ation method with linear scaling which has been widely used in

mage processing ( Lehmann, Gonner, & Spitzer, 1999 ) to extend or

hrink the test duration. 

. Model training 

The current version of Xuanwu partially utilizes the off-the-self

lassification algorithms implemented in WEKA ( Hall et al., 2009 )

o build learning models, among which we find that the models

rained by the random forests ( Breiman, 2001 ) perform well. To

urther improve the performance of the learned classifiers, we fo-

us on two issues in model training: imbalanced class distribution

nd feature selection. 

.1. Learning with random forests 

As described in Section 2.4 , the prediction interface outputs the

robability of a Clip being a certain pattern (class). The prediction
odel is built by the random forests ( Breiman, 2001 ), which oper-

te by constructing a multitude of decision trees at training time.

he decision tree divides the features through its internal nodes

o establish the classification model. When creating partitions to

 feature, the goodness of a partition is measured by purity. If a

artition is pure, for each sub-branch of this node, its instances

elong to the same class. For node m , let N m 

be the number of

raining samples arrived. For the root node, we have N m 

= N. Sup-

ose N 

k 
m 

out of N m 

instances belong to class k and 

∑ 

k N 

k 
m 

= N m 

. If

 test instance ( Clips ) x arrives at node m , the probability that it

elongs to class k will be estimated as: 

ˆ 
 ( k | x , m ) ≡ p k m 

= 

N 

i 
m 

N m 

. (3) 

or a node m presenting feature f , the best partition maximizes

he purity that is measured by information gain. First, we define

he entropy of node m as: 

ntropy (m ) = −
K ∑ 

k =1 

(
p k m 

log 2 p 
k 
m 

)
, (4) 

here K is the total number of classes. Then, for the v val-

es of feature f , instances on node m are split into v partitions

 m 1 , . . . , m v } , where m j (1 ≤ j ≤ v ) contains those instances in m that

ave outcome the v th value of f . We define the information gain on

ode m as follows: 

ain (m ) = Entropy (m ) −
v ∑ 

j=1 

| m j | 
| m | × Entropy (m j ) . (5)

To overcome the over-fitting problem when using a single clas-

ification decision tree, we utilize the ensemble of multiple deci-

ion trees (i.e., random forests) to make prediction. Suppose we

hould construct a random forest with B decision trees. Each time,

e perform a uniform random sampling with replacement on the

raining set to get a sub training set with N samples. Then, we use

t to build a decision tree h b whose output vector p b = [ p 1 
b 
, . . . , p K 

b 
]

rovides the probabilities of an instance being all classes. Finally,

he probability of a test instance x being class k is calculated as: 

ˆ 
 ( k | x , H ) = 

1 

B 

B ∑ 

b=1 

p k b . (6) 

inally, the hard class label of instance x can be obtained through

 plurality voting: 

 (x ) = argmax 
k ∈ 1 , ... ,K 

ˆ P (k | x , H) , (7)

here function L () returns the hard class label. 

.2. Imbalanced class distribution 

Intuitively, the numbers of Clips that follow the patterns Con-

inuous Up, Sideways Up, Continuous Down, Sideways Up, Flat are

ar less than the number of Clips that belongs to Unknown . Thus,
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(  
it will appear imbalanced learning problem ( He & Garcia, 2009 ).

Usually, the differences of the numbers of samples belonging to

classes Up, Down and Flat Sideways Up are not too large. To form a

better training set, we should balance the number of samples for

all classes using the undersampling technique. 

In fact, our imbalanced-class treatment is embedded in the con-

struction of random forests. Algorithm 2 shows the skeleton of the

Algorithm 2 Skeleton of model training. 

Input: Training set E 

Output: Random forests H

1: Count the numbers of instances in four main classes i.e.,

n 1 , n 2 , n 3 and n 4 
2: n := min { n 1 , n 2 , n 3 , n 4 } 
3: for each class k do 

4: Sample n instances based on the descendent order of D i in

Eq.(8) 

5: end for 

6: The selected instances form a new training set E ′ sized N = 4 n 

7: for b :=1 to B do 

8: Randomly sample (with replacement) N instances from

training set E ′ 
9: Conduct feature selection [optional] 

10: Build a decision tree h b 
11: end for 

12: Random forest H is the ensemble of { h 1 , h 2 , . . . , h B } defined by

Eq.(6). 

13: return H 

model training for the four main classes. We first count the num-

bers of Clips ( n 1 , n 2 , n 3 , n 4 ) belonging to four main classes Up,

Down, Flat , and Unknown , respectively. The number of instances n

for each class will be the minimum of them. Then, we sample n in-

stances for each class (expect the class with n instances) based on

the descendent order of D i in Eq. (8) . The new train set contains

4 n instances selected. Finally, we build a random forest H which

is an ensemble of B decision trees. Note that before building deci-

sion trees, we may select a subset of features to further optimize

the performance of models. The feature selection procedure will

be discussed in the next sub-section. The similar processes demon-

strated in Algorithm 2 also can be applied to build sub-class mod-

els. 

As for our undersampling in step 4, it is based on the measure

of dissimilarity of instances, which is different from the traditional

random sampling. Suppose that we will sample n instances from

a pool totally containing n 4 instances belonging to class Unknown ,

for each instance x i in the pool, we calculate the measure of dis-

similarity as follows: 

D i = 1 / 

n 4 ∑ 

j=1 

dist( x i , x j ) , (8)

where function dist () returns the Euclidean distance between two

instances x i and x j . Then, we select the first n instances after all

instances are sorted in descendent order of D i . Our undersampling

method guarantees that the selected n instances have the largest

diversity, which increases the quality of the models learned from

them. 

5.3. Feature selection 

As mentioned in Section 4.3 , the features of a training sample

can be extended by adding multiple technical indices of each trade

day, which results in very high dimensional features. Usually, for

each trade day in a training sample, we only use four price infor-

mation, close price, open price, high price and low price, to train
earning models. If the MD of a sample is 6, its feature dimension

ill be 24. Since we do not know whether other information (e.g.,

olume and technical indices) has positive impact on the perfor-

ance of learned classifiers, feature selection techniques can be

sed for tuning their performance, which has been widely used

y some stock prediction systems ( Huang, Chang, Cheng, & Chang,

012; Ni et al., 2011; Tsai & Hsiao, 2010 ). 

Although there are a lot of feature selection methods can be

sed, finding an optimal combination of features is still an NP-

ard problem ( Dash & Liu, 1997 ). In our system, we use the For-

ard Sequential Search method, which selects one among all the

andidates to the current state. It works in an iterative manner

nd once a candidate is selected it is not possible to go back. It

oes not guarantee an optimal result but has fast search speed.

f the length of total sequence is n , the number of search steps

ust be limited by O ( n ) and the complexity is determined tak-

ng into account the number t of evaluated sub-sets, which gives

 (n t+1 ) . We need to modify this method a bit, because our fea-

ure selection works on each trade day in a sample, that is, once

 candidate is selected, MD features will be added. For the fea-

ures F i of trade day i in a training sample, it starts with F i =
 closeprice i , openprice i , highprice i , lowprice i } , the forward step con-

ists of: 

 

′ 
i := { F i ∪ f (k ) 

i 
∈ F i \ F i | J( F i ∪ f (k ) 

i 
) is bigger } , (9)

here F i is the complete set of features of trade day i and J is an

valuation measure. Xuanwu uses the empirical risk of the learned

odel as the evaluation measure J which is defined as: 

 ≡ R emp (H) = 

N ∑ 

i =1 

I ( H( ̃ x i ) , y i ) , (10)

here I () is an indicator function. The stopping criterion can be:

 F ′ i | = n ′ (if n ′ has been fixed in advance), the value of J has not

ncreased in the last j steps, or it surpasses a prefixed value J 0 . 

. Evaluation 

We evaluate our proposed system Xuanwu on 495 stocks in

henzhen Growth Enterprise Market in China. The time span of the

ransaction data of these stocks is within the range from January

5, 2010 to October 1, 2016. 

.1. Experimental setup 

We generated the data sets that can be used for model training

rom the raw transaction data of all stocks, using the methods de-

cribed in Section 4 and Section 5.2 . Since our prediction scheme

s based on several fixed prediction durations, Table 1 shows that

e need to build 70 learning models with the feature selection in

onsideration. Thus, we created 70 data sets for our evaluation. For

ach data set, we randomly held out 30% of its instances with re-

pect to each class for testing and the remaining 70% of instances

re used to train models. The models were trained using the ran-

om forests implemented in WEKA ( Hall et al., 2009 ) with the de-

ault parameter settings. Because we tuned the class distributions

o a relatively balanced status, we use the simple accuracy as our

erformance measure. Furthermore, since we randomly conducted

 30/70 splits to the data sets, we repeated the experiments ten

imes and the average values of accuracy and their standard devia-

ions are reported. 

.2. Results on four main classes 

We first evaluated the performance on the four main classes

i.e., Up, Down, Flat and Unknown ) with respect to seven P D − MD
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Table 2 

Classification accuracy on four main classes (percent). 

B/F \ PD-MD 10-6 15-10 20-13 30-20 

B 62.1 ± 3.2 65.7 ± 2.7 66.4 ± 3.1 70.8 ± 1.9 

F 65.2 ± 2.9 67.2 ± 3.1 69.9 ± 2.8 74.2 ± 2.6 

B/F \ PD-MD 40-26 50-33 60-40 avg. 

B 70.2 ± 2.1 69.8 ± 3.8 67.8 ± 2.5 67.5 ± 2.7 

F 75.1 ± 3.7 72.2 ± 2.8 70.3 ± 2.2 70.6 ± 2.9 
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Table 3 

Classification accuracy on ten sub-classes (percent) . 

PD-MD B/F UA DA UR DR 

10-6 B 56.9 ± 3.1 57.2 ± 2.8 52.5 ± 3.7 51.8 ± 2.9 

F 59.2 ± 2.4 61.1 ± 3.3 58.5 ± 4.1 57.2 ± 3.1 

15-10 B 60.4 ± 2.7 62.3 ± 2.2 55.6 ± 3.1 56.2 ± 3.5 

F 62.7 ± 3.1 65.7 ± 2.7 60.7 ± 3.3 59.7 ± 2.5 

20-13 B 62.8 ± 2.4 63.5 ± 2.6 59.8 ± 2.1 57.5 ± 3.3 

F 65.3 ± 2.6 68.2 ± 2.1 63.9 ± 3.1 61.2 ± 4.1 

30-20 B 67.3 ± 1.9 66.8 ± 2.1 64.3 ± 2.4 65.3 ± 2.7 

F 71.2 ± 2.2 72.6 ± 2.5 69.1 ± 2.4 68.5 ± 2.9 

40-26 B 66.9 ± 2.4 65.4 ± 1.9 65.4 ± 2.3 65.8 ± 2.5 

F 70.1 ± 2.1 69.1 ± 3.1 68.3 ± 2.8 69.6 ± 3.2 

50-33 B 65.4 ± 3.3 66.3 ± 2.5 64.7 ± 2.7 63.6 ± 2.2 

F 68.4 ± 2.9 70.0 ± 2.7 66.1 ± 2.2 66.6 ± 2.8 

60-40 B 63.0 ± 2.2 64.5 ± 3.1 64.8 ± 2.8 64.3 ± 2.4 

F 66.7 ± 2.5 68.1 ± 2.8 67.3 ± 2.5 68.2 ± 2.7 

avg. B 63.2 ± 2.6 63.7 ± 2.5 61.0 ± 2.7 60.6 ± 2.8 

F 66.2 ± 2.5 67.8 ± 2.7 64.8 ± 2.9 64.4 ± 3.0 
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airs (i.e., “10 − 6 ”, “15 − 10 ”, “20 − 13 ”, “30 − 20 ”, “40 − 26 ”, “50 −
3 ”, and “60 − 40 ”). The experimental results are listed in Table 2 .

he baseline of the performance of the learned models is marked

s “B” in Table 2 , where the features of each trade day only include

our values (i.e., close price, open price, high price and low price).

omparatively, the performance optimized with feature selection

s marked as “F”. When we conducted the selection selection, we

earched the candidates which consist of “volume” and other 74

echnical indices calculated by Ta-Lib 3 . 

From Table 2 , we can draw the conclusions as follows. (1) When

eatures of each trade day in each training instance only include

our values, the average accuracy of all seven models is 67.5%.

mong these models, we find the performance of “30 − 20 ” and

40 − 26 ” is significantly better than that of the other. That is, our

ystem is more suitable for predicting the trend of stock price in a

elatively long term with the trade duration in the range of 30 to

0 days. (2) When more information such as “volume” and some

echnical indices are added into the features, the performance of

ll models has been improved. The average of the increment is

reater than 3% (in absolute value). (3) Although we randomly

hoose 70% samples for model training, the standard deviations of

ll models are sound. The maximum absolute value of the standard

eviations is only 3.7%. Small standard deviations suggest that our

nsupervised algorithms for stock movement shape identification

re accurate, which increases the robustness of the learned mod-

ls. 

.3. Results on ten sub-classes 

Our system adopts a tow-stage prediction scheme to obtain

ore refined results. For example, when a test instance is pre-

icted as class Up , it will be re-predicted using the model UA to

urther determine the level of the increment of the price, i.e., the

ncrement will be in the range [10%, 30%] (class UA1 ) or greater

han 30% (class UA2 ). In this experiment, we still follow this tow-

tage prediction scheme: a test instance is first predicted by the

ain model that includes four main classes and then re-predicted

y a specific sub model according to the results of the main model.

hat is, if the test instance x belongs to class UA1 , our exper-

ment evaluates the joint probability distribution P r(( x = UA1 ) ∪
( x = UP )) . Since our models are trained for different predefined

xed prediction durations, there are totally 56 learned models if

he feature selection are taken into account. All experimental re-

ults are listed in Table 3 . 

From Table 3 , we can draw the conclusions as follows. (1) Com-

ared with Table 2 , the performance of all models in Table 3 de-

reases. This is because that the joint probability distribution

annot be greater than the marginal probability distribution. For

xample, we always have P r(( x = UA1 ) ∪ ( x = UP )) ≤ P r( x = UP ) .

owever, the average performance of these models is greater than

0%, which means that they are still available in a real usage. (2)

he performance of the models for absolute price movements (i.e.,

A and DA ) outperforms that of the models for relative return
3 http://ta-lib.org . 

p  

o  

f  
hanges (i.e., UR and DR ). Relative return is more related to the

arket status (e.g., in bull or bear). We found that using relative

eturn while not the close price is more difficult to identify typical

hapes, with results in lower accuracies. The models built with the

elative return are especially useful when the market is in a typ-

cal bull or bear, where the shapes of most stocks are Continuous

p ( Continuous Down ). (3) For the models UA and DA , the perfor-

ance of “30 − 20 ” and “40 − 26 ” is greater than that of the oth-

rs, which is consistent with the results of the main model. For the

odels UR and DR , besides the “30 − 20 ” and “40 − 26 ” models,

he “50 − 33 ”, and “60 − 40 ” models also have good performance.

hat is, if we consider the relative return, our system is suitable

or long-term prediction with the trade duration in the range 30

o 60 days. (4) Consistent with the results of the main model,

hen more information such as “volume” and some technical in-

ices are added into the features, the performance of all models

as been improved. The average of the increment is greater than

% (in absolute value). (5) The robustness still maintains for these

ore subtle model according to the standard deviations. Using rel-

tive return only slightly increases the absolute values of standard

eviations. 

.4. Results under the market volatility 

In this experiment, we investigate the performance (in terms of

ccuracy) of our system under the market volatility. We extracted

he data between August, 2014 and May, 2015 to generate test set

 bull , in which the market is a bull market with the composite in-

ex increasing from 1331 to 3542, the data between June, 2015

nd January, 2016 to generate test set T bear , in which the market is

 bear market with the composite index decreasing from 3718 to

994, and the data between February, 2016 and September, 2016

o generate test set T shocking , in which the composite index fluctu-

tes between 1192 and 2149 with the maximum value 2324 and

he minimum value 1880. 

Table 4 shows the classification accuracies for ten sub-classes

f fourteen predefined models under three typical market patterns

bull, bear and shocking), where “A” presents that the models ( A-

odel ) are trained using the samples whose classes are identified

hrough their absolute close prices and “R” represents that the

odels ( R-Model ) are trained using the samples whose classes are

dentified through their relative returns. From this table, we can

raw the conclusions as follows. (1) For the bull and bear mar-

et, the accuracies of the A-Model s are significantly improved, com-

ared with the values in Table 3 . The reason is that under a bull

r bear market, stocks usually have typical ascending or declining

orms that are easier to be correctly classified. (2) For the shock-

http://ta-lib.org
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Table 4 

Classification accuracy under three typical market patterns 

(percent). 

PD-MD A/R T bull T bear T shocking 

10-6 A 76.8 ± 2.1 74.9 ± 2.2 58.3 ± 3.1 

R 54.1 ± 2.4 53.3 ± 2.8 53.7 ± 2.4 

15-10 A 78.6 ± 2.2 79.9 ± 3.1 63.6 ± 3.2 

R 64.7 ± 2.8 65.2 ± 2.7 59.8 ± 2.3 

20-13 A 80.1 ± 1.9 78.2 ± 2.6 66.7 ± 3.1 

R 63.7 ± 2.4 64.8 ± 2.7 63.3 ± 4.1 

30-20 A 83.1 ± 2.0 80.3 ± 1.9 72.1 ± 2.7 

R 68.4 ± 1.9 67.3 ± 2.2 65.8 ± 3.1 

40-26 A 82.9 ± 2.1 83.5 ± 1.6 71.7 ± 2.7 

R 67.7 ± 2.2 68.3 ± 1.9 66.7 ± 3.1 

50-33 A 79.4 ± 1.8 82.2 ± 2.1 70.2 ± 2.3 

R 67.1 ± 2.6 66.3 ± 2.3 65.9 ± 3.2 

60-40 A 77.8 ± 1.9 78.2 ± 2.7 68.2 ± 2.6 

R 68.1 ± 3.1 66.9 ± 2.3 66.6 ± 2.8 

avg. A 79.8 ± 2.0 79.6 ± 2.3 67.3 ± 2.8 

R 64.8 ± 2.5 64.6 ± 2.4 63.1 ± 3.0 

Table 5 

Comparisons with Shynkevich et al. (2017) in accuracy (percent). 

PD-MD SVM ANN k-NN Ours 

10-6 (10-7) 58.9 ± 3.6 55.2 ± 9.3 43.9 ± 6.6 65.2 ± 2.9 

15-10 (15-10) 60.1 ± 4.6 55.9 ± 10.5 41.4 ± 5.4 67.2 ± 3.1 

20-13 (20-15) 61.5 ± 3.6 57.0 ± 8.1 42.1 ± 6.4 69.9 ± 2.8 

30-20 (30-20) 59.6 ± 3.7 52.6 ± 10.0 40.8 ± 5.1 74.2 ± 2.6 

40-26 (30-25) 60.4 ± 5.1 54.4 ± 9.5 41.4 ± 5.2 75.1 ± 3.7 

50-33 (30-30) 60.9 ± 5.3 55.4 ± 8.8 41.8 ± 5.4 72.2 ± 2.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Comparisons with Shynkevich et al. (2017) in return per trade (percent). 

PD-MD SVM ANN k-NN Ours 

10-6 (10-7) 4.23 ± 0.68 3.43 ± 1.45 1.78 ± 1.14 4.58 ± 1.45 

15-10 (15-10) 5.34 ± 0.99 4.52 ± 2.01 2.12 ± 1.52 6.02 ± 1.73 

20-13 (20-15) 6.41 ± 1.18 5.43 ± 2.28 2.36 ± 1.89 7.25 ± 2.28 

30-20 (30-20) 7.72 ± 1.68 6.02 ± 3.35 2.94 ± 2.46 9.65 ± 2.64 
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i  
ing market, the accuracies of the A-Model are similar with their

values in Table 3 but obviously worse than their values under a

bull or bear market, because the shapes of stocks under a shock-

ing market are more complicated to be correctly classified. (3) For

all market patterns, the accuracies of the R-Model s are similar with

their values in Table 3 . The models trained using relative returns

are more consistent in different market patterns. Overall, Because

our training data cover sufficient historical information, their gen-

erated models are robust to the market volatility. 

6.5. Comparisons with existing work in accuracy 

Although direct comparisons among existing work are not easy

because of different data preprocessing, model training meth-

ods and learning goals, we tried to select some recent work

on the prediction of stock price movement and make relatively

fair comparisons. Shynkevich, McGinnity, Coleman, Belatreche, and

Li (2017) investigated the impact of varying input window length

on the prediction accuracy. In their work, each training example

consists of a sequence of technical indicators which are calcu-

lated from transaction data on trade days. They investigated the

prediction performance under different learning algorithms (i.e.,

support vector machines, neural networks and k-nearest neigh-

bors) by setting the numbers of the trade days (i.e., the length

of the sequence) to 1, 3, 5, 7, 10, 15, 20, 25 and 30. Table 5

lists the comparison results in accuracy between the existing work

( Shynkevich et al., 2017 ) and ours. 

The first column of Table 5 represents the output-input models

of both methods. The PD-MD pairs in the parentheses are the clos-

est values to their counterparts of our method. The columns SVM,

ANN and k-NN shows the performance of their methods in term

of accuracy and the last column shows the performance of our

method. Obviously, the performance of our method outperforms

that of their method in both mean values and standard deviations

under all PD-MD models. Furthermore, compared with their work,

our method wins at two points: (1) our method provide more
ubtle classes, compared with theirs which only has three classes

p, Down and NotMove ; and (2) the performance of our method

ill increase as the prediction duration increases. In their original

tudy, they found some output-input ( PD-MD ) models, such as “7-

”, “10-7”, “15-10”, “20-15”, and “30-20”, can archive higher per-

ormance compared with the other pairs. Their results have shown

ome consistency with our selections of PD-MD pairs, which is that

he performance could be better if the length of model-duration is

round two-thirds that of prediction-duration. 

.6. Comparisons with existing work in return per trade 

Return per trade is a commonly used metric when evaluating

he performance of a trading system. An actual trading system

ay have complicated trading rules which may be generated dy-

amically according to the movement of stocks ( Arévalo, García,

uijarro, & Peris, 2017; Cervelló-Royo, Guijarro, & Michniuk, 2015;

ang & Chan, 2007 ). Although the trading rules are out of the

cope of this study, we still introduce very simple rules for eval-

ate the returns using our prediction system. When the prediction

f a stock is Up , we buy the stock at the moment of the prediction

nd then sell it on the last day of a prediction duration ( PD ). The

eturn of this trade can be calculated as: 

 p,m 

= (C p − C m 

) /C m 

, (11)

here C p is the close price on the last day of prediction duration

 PD ), C m 

is the close price on the day that the prediction is made,

 p, m 

is the return from a trade. When the prediction of a stock is

own , we sell the stock at the moment of the prediction and then

uy it back on the last day of a prediction duration. The return

rom of trade can be calculated as: 

 m,p = (C m 

− C p ) /C m 

. (12)

e must point out that here we made a very large simplification

o real-world systems. We presume that return per trade, as de-

ned above, neglect transaction costs. Additionally, actual trades

ill hardly be negotiated in the same level as closing prices. 

To compare with the existing study ( Shynkevich et al., 2017 ),

e randomly choose 50 stocks and the returns are calculated for

he trades made during the testing phase. Return of single stock

s averaged over the total number of trades made for this stock.

inally, the return per trade is averaged over 50 stocks for each PD-

D pair. Table 6 lists the comparison results in return per trade. 

The return per trade value will increase as the investment pe-

iod increases. Because the longest investment period in the com-

ared study is 30 days, we only list the comparison results un-

er four PD-MD pairs. Consistent with the previous comparison

esults in Section 6.5 , the values of return per trade obtained

y our method are obviously greater than those of the existing

ethod under all PD-MD pairs, since the prediction accuracies of

ur method are always better. The comparison results reveal that

ven under such simple trade rules, our system can bring extra re-

urns. 

. Conclusion and future work 

For small startup investment companies, due to limited funds,

t is impossible to trade in the stock market frequently. Instead,
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hey are interested in moderate investment periods that last a

eek to three months. To address the prediction of the stock price

rend in such periods, this paper proposes a novel data-driven sys-

em Xuanwu . The system gets through all machine learning pro-

esses from generating training samples from the original trans-

ction data to building the prediction models without any human

ntervene. It first uses a sliding window method to cut the his-

orical transaction data of each stock into multiple Clips whose

ength equals to a predefined prediction duration. Then, according

he shapes that the close prices of these Clips appear, it utilizes an

nsupervised heuristic algorithm to classify them into four main

lasses: Up, Down, Flat , and Unknown . For the Clips belonging to

lasses Up and Down , they are further classified into different lev-

ls which can reflect the extents of their growth and decline rates

ith respect to both absolute close price and relative return rate.

he training sets are derived from these Clips by sampling different

lasses of samples for imbalanced class distribution. Finally, learn-

ng models are trained from these training sets with or without

eature selection. 

The real-world evaluations on seven-year Shenzhen Growth En-

erprise Market (China) transaction data show the advantages of

he proposed systems as follows. First, the unsupervised training

ample generation is effective and efficient, accelerating the model

eproduction. Second, the performance of our learning models out-

erform some existing methods in terms of accuracy and return

er trade, because our learning method integrates random forests,

mbalance learning and feature selection in a uniform process. Fi-

ally, our prediction models are robust to the market volatility. 

There is a large room for performance improvement in the

uture. First, we will study the prediction performance when

ifferent learning algorithms are applied to the training sets.

econd, more complicated feature selection methods will be exam-

ned to select better combinations of features. Finally, our unsur-

rised heuristic algorithms for pattern recognition can be further

mproved for more different shapes. 
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