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Highlights 

 The paper focuses on the social collaboration feature of manufacturing services, and we try to 

illustrate how social traits have impacts on the competitiveness of service in service social 

network (SSN). We believe it is important to consider collaboration capacity as a critical 

competitive factor in service composition when large number of online services orchestrated 

together. This paper attempt to integrate social network, service computing and synergy theory 

to address the new problem of service selection in SSN, and proposed a novel manufacturing 

service composition method based on weighted synergy network, where synergy effect is 

measured from the perspective of social relationships strength. The major contributions of the 

paper are:  

 Define and extract five types of social relationships that have impacts on service performance in 

SSN, and develop calculation methods to measure each relationship strength.  

 A service synergy effect model is proposed through the weighted aggregation of five types of 

social relationships strength, where the weight distribution of each relation factor is obtained by 

using information entropy and rough set.  

 (3) Develop a new service selection optimization model based on synergy effect for building task 

driven dynamic alliance, and use a simulation experiment of service selection in intelligent 

automobile cloud manufacturing to verify its validity and advantages.  
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Abstract: Service social network is an umbrella term used to describe several interaction and collaboration 

phenomena that are shaping the future of how services are provided on the cloud manufacturing platform. 

Social relationship plays an important role when services are orchestrated with each other to build 

manufacturing business process, a role which has not been adequately investigated in previous research. 

The existing manufacturing service composition methods consider functional qualifications and Quality of 

Service (QoS) as major competitiveness factors. It is difficult to adopt them to situations where synergy 

effect is required and social relationships have significant impact on ensuring effective resources, 

information and knowledge hand-off in the complex task process. Focusing on the social collaboration 

feature of manufacturing services, a service composition method based on synergy effect is proposed. 

According to the data of service interaction and cooperation on the cloud platform, we extract and describe 

service social network and five kinds of relationships, namely interactive transaction, co-community, 

physical distance, resource-related, social similarity relationship. Based on the calculation of these 

relationships strength, the service synergy network is derived through the weighted aggregation. A service 

selection model that maximizes the overall synergy effect based on collaboration requirement is presented. 

The validity and advantages of our model and algorithm is validated through simulation experiment of 

intelligent automobile cloud manufacturing. The results show that our approach is not only efficient, but 

also finds better service scheme in line with the actual manufacturing scenario. 

 

 Keywords: Service composition, Service social network, Social relationship, Synergy effect. 

 

 

1. Introduction 

 

In Internet era, customer requirements reveals new characteristics, such as diversification, 

personalization and complex products. For example smart connected products such as smart watch, 

wearable devices, air conditioning equipment connect to internet are composed of physical, smart, 

connectivity components (Porter and Heppelmann, 2014). Additionally, these products are generally 

provided as services which requires large scale collaboration among geographically distributed developers, 

support personal and infrastructure. Enterprises with limited resources and capacity cannot independently 

construct the complete manufacturing value chain and transform raw materials into end products (Azevedo 

et al., 2017). Thus, it is necessary to collaborate with others for complementary resources to build business 

process to seize these emerging market opportunities. As services become the predominant vehicle of 

resource provisioning in industries, the selection of the most suitable services and their composition to 

support business work-flow based on dynamic alliances becomes extremely important. A muti-subject, 

cross-organization and cross-region collaborative design and manufacturing process needs to be 

automatically composed and a dynamic task-driven temporary cooperation alliance needs to be created 

with online services.  

Current research has explored various criteria and models for service composition in the context of 
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Service Oriented Architecture (SOA) (Jula et al. 2014). They primarily use functional characteristics and 

Quality of Service (QoS) attributes as service selection criteria (Zhang et al. 2016; Lu and Xu 2017). These 

approaches generally consider each service as independent which needs to complete the sub-task assigned 

to it satisfactorily. However, in cloud environment large number of services that provide same or similar 

functions and has similar QoS attributes may be available which makes service selection more difficult. 

Additionally, there exist some dependent relationship constraints among complex sequential sub-tasks, 

such as resource logistics, and information and knowledge delivery (Castro et al. 2013), which bring out 

the synergy requirements for better service performance. In practice, service groups corresponding to the 

complex task should consider collaboration factors, and must not only have the requisite qualifications and 

satisfied QoS, but also own high-level synergy effect in order to ensure resources, information effective 

hand-off and smooth flow of sub-tasks. Moreover, high level collaboration will reduce the time and cost of 

coordination and promote the manufacturing efficiency and reliability (Liu et al. 2016). Meanwhile, it may 

result in sharing more resources, information and knowledge with associated service units, which can 

improve the service's own QoS (Zhu et al. 2016). Non-collaboration phenomenon, such as different 

platforms, longer distance and few interactive transactions can increase logistics and communication time 

cost, resulting in loss of productivity. Service conflicts may even appear when they compete and occupy 

the same resources at the same time, and non-compatibility may lower service QoS, increase the 

connection disorder due to policy restrictions and interface mismatch (Huang et al. 2016), and bring out a 

significant negative impact on the tasks execution. The recent approaches for service selection ignores 

these collaboration and conflict factors, which may result in sub optimal operation process, even task 

interruption or failure. Hence, to effectively build a task based dynamic alliance, synergy effect should be 

measured in detail and considered as a key competitiveness factors in manufacturing service composition.  

Synergy is the creation of a whole that is greater than the simple sum of its parts. The synergy effect, 

first proposed in the 1960s by Ansoff (Ansoff and Brandenburg 1967), can be formed through cooperation 

with enterprises with complementary resources, which can realize 1+1>2. Subsequently, it is widely used 

in various fields (Health, Chemistry and Human management). Many scholars have proposed the definition 

and calculation model of synergy effect for building strategic alliances, developing collaboration networks, 

and organizing co-development projects and cross-functional teams (Feng et al. 2010; Schall 2016). (Lopes 

and Almeida 2014) identified three kinds of synergies: project scope synergy, fiscal synergy and 

information synergy. (Schaeffer and Cruz-Reyes 2016) identified interests, technology and resource 

synergy in R&D project portfolio selection. (Kumar et al. 2013) put forward a compatibility model to 

capture the degree of collaboration between different workers. (Rusek et al. 2016) defined collaboration 

relation as compatibility of municipal services based on similarity. (Gutiérrez et al. 2016) regarded the 

collaboration efficiency as the number of positive social relationships among members. Although the 

above research does not provide detailed measurement of synergy effect, it helps to enlighten our study. 

Wisdom manufacturing (Yao et al., 2015) can provide comprehensive one-stop services for different 

users on demands, by integrating muti-level, muti-granularity manufacturing resources on cloud platform. 

These services having new characteristics of adaption, collaboration and socialization, can interact online 

and transfer resources offline between each other (Golightly et al. 2016). They will automatically 

cooperate and build a variety of social relationships based on task and social factors, forming dynamic 

service social network (SSN) that evolve over time. Various types of social relationships such as 

Interactive transaction, Co-community, Physical distance, Resource-related and Social similarity, which 

will certainly improve task performance and reduce time, cost when service orchestrated together, can 

affect production efficiency and the satisfaction degree of members involved. Social relationships offer an 
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good opportunities to advance our understanding of service collaboration in terms of resource, information 

and knowledge. The wide application of industry internet and social network has generated big data of 

service interaction as a basis for computing social relationship, and also provided the possibility for 

quantifying the service synergy capacity from the perspective of relationship strength in SSN. Then, 

synergy effect as the important part of service competitiveness and their impacts on service selection are 

discussed in this paper are essential but not adequately investigated in previous research.  

In manufacturing service socialized environment, complex tasks require multiple service units with 

different functions collaborate and interact with each other to complete complex tasks. Services with 

similar functions compete to play its role in certain tasks. Performance of composed services depends not 

only on individual service capabilities but also on collaborative capability of services. When large number 

of online services orchestrated together, it is important to consider collaboration capacity as a critical 

competitive factor. This paper attempt to integrate social network, service computing and synergy theory to 

address the new problem of service selection in SSN, and proposed a manufacturing service composition 

method based on weighted synergy network, where synergy effect is measured from the perspective of 

social relationships strength. The major and original contributions of the paper are: (1) Define and extract 

five types of social relationships that have impacts on service performance in SSN, and develop calculation 

methods to measure each relationship strength. (2) A service synergy effect model is proposed through the 

weighted aggregation of five types of social relationships strength, where the weight distribution of each 

relation factor is obtained by using information entropy and rough set. (3) Develop a new service selection 

optimization model based on synergy effect for building task driven dynamic alliance, and use a simulation 

experiment of service selection in intelligent automobile cloud manufacturing to verify its validity and 

advantages. The proposed approach considering collaboration relationship factor can generate more 

efficient solutions and obtain the optimal service scheme in line with the actual situation.  

The rest of the paper is organized as follows. Section 2 discuses related literature on service selection 

and social networks. Section 3 presents a socialized service selection framework, extracts service social 

network and defines five social relationships. Section 4 present the service synergy network model. Section 

5 constructs the service composition model considering synergy effect and applies an improved GSA 

algorithm for solving the problem. Section 6 describes the simulation experiment and results. Finally, 

conclusions and direction for future work are presented in Section 7.  

2. Related Literature 

2.1 Manufacturing service selection 

The primary focus of manufacturing service selection has been to select services that have the highest 

degree of match with the functional requirements of the task through use of a syntactic or semantic search 

algorithm (Le and Quintanilla et al. 2016; Tao et al. 2017). A number of local optimal (Xu. 2015) and 

global optimal (Liu and Zhang 2016;Chen et al. 2015) models based on QoS for service selection have 

been proposed. Some researchers also considered transaction features (Wu and Zhu 2013), trust and other 

non-functional attributes of the service (Cao et al. 2015). They used QoS and trust in multi-attribute 

decision models and artificial intelligence and goal programming techniques to solve the optimization 

problem (Mehdi et al. 2015, Cremene et al. 2015). Current research regards each service as an independent 

and isolated entity having no interactions with other services or consumers and considers QoS as a fixed 

value, ignoring the impact of service correlation on QoS. (Jin et al. 2015) proposed three types of 

relationships between component services: composable, business entity and statistical relationships to 

develop a service-correlation-aware QoS model. Semantic relationships between services which are 

relatively easier to extract has been the focus for discovering and composing services (Guo. 2011). 
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Although the above research began to consider the correlation among component services, it is still limited 

to the semantic description and its influence on QoS, ignoring the social behavior characteristics of 

services, especially social relationships and their collaboration factors.  

In recent years, social network theory has made significant progress and attracted the attention of many 

researchers. Social network methods are naturally infiltrated to service science because of the social nature 

of business services. (Benatallah et al. 2003) defined the service community as a collection of Web 

services with common functionality and distinct non-functional properties. (Yahyaoui et al. 2013) 

emphasized that Web services should not be treated as isolated components, since similar Web services 

compete against each other and different Web services collaborate with each other during composition and 

may replace other services when failure occurs. Understanding and capturing the way services collaborate, 

the factors which influence and enhance co-work in the future via SSN, and various types of social 

relationships between services is needed. Business entity relationships and compatible and conflict 

relationships were further studied (Tao et al. 2012). (Atzori et al. 2014) developed SIoT system 

architecture by integrating social network and IoT services together, and studied various relationship types 

(parental, co-location, co-work, ownership, social object relationship). However, their analysis was limited 

to IoT services in limited geographic situations and did not include business-level services. (Chen et al. 

2013; Chen et al. 2015) constructed the global social service network (SSN) and provided generic quality 

criteria for social links which included dependency satisfaction rate, QoS preference, sociability preference 

and preferential service connectivity to improve the quality of service management. Although researchers 

focus on a service’s sociability for improving the quality of service discovery, a model for supporting a 

service’s social synergy is still not available. Most social relationships mentioned above are built based on 

only network theory and have no business-level meanings in the manufacturing process. Thus, a service’s 

social behavior and its ability to enhance service collaboration has not been investigated in depth. 

2.2 Manufacturing service social relationship 

Service ecosystems based on cloud manufacturing are evolving by combining off-line resources and 

on-line services in a way that has enterprise-wide and societal dimensions. Major vendors of services are 

constructing social service ecosystems and are using social network platforms such as Facebook, Twitter 

and Flick to advertise and offer their resources and services (Hashmi et al. 2016). Services show high 

sociability and autonomously carry out social behaviors such as setting up several kinds of relationships, 

communicating with other services. A service’s sociability is the intent to or actual action of interacting 

well with other nodes (Atzori et al. 2012). A SSN is constructed to mirror services’ social reality, depicting 

a mutual belief and willingness to support the services’ future social collaboration. Various types of 

relationships which have clear business meanings such as contact, friendship, follower, co-community and 

common interest can improve synergy effect and performance in social networks (Huang et al. 2014; Ha et 

al. 2015). Service nodes can take part in different communities and provide its resources and capacities to 

others (Manupati et al. 2015). The social capital of services will increase with the number of communities 

they participate in, leading to a higher probability of acquiring more network resources and further 

collaboration chances. This co-community relationship also enhances the service platform synergy effect, 

which has been widely studied in the E-commerce domain (Lim et al. 2015). In addition, a location factor 

has been found to impact the strength of social relationships among mobile nodes in the Internet of Things 

(An et al. 2013). Far distance can increase move time and cost, hinder service interaction. However, all 

relationships are used to analyze the network structure and trust management. How and which social 

relationships influence the service collaboration and enhance synergy benefit has not been investigated.  

Moreover, service relationship also exists in a physical environment and has been a focus of attention 
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in supply chain studies. Superior collaborative productivity originates from the creation and sharing of 

valuable resources that are complementary, rare, hard to imitate, and irreplaceable (Lillis et al. 2015). A 

resource related relationship can provide economies of scale and scope. Alliances enable sharing of 

complementary resources (Beesabathina et al. 2015) and combining of heterogeneous resources leads to a 

surplus over the value that each ally could create independently. Companies tend to build service chains 

with compatible resources that they can leverage and integrate to create a synergy surplus (Adegbesan 

2009). Physical distance that produce more obstacles and increased cost is an important relationhip factor 

in enterprise communities (O'Leary and Cummings 2007). (Handley and Benton 2013) recognized 

location-specific factors: geographic distance, geographic dispersion and cultural distance, which generate 

high levels of information load, complexity and uncertainty. Geographically distant services suffer from 

lower familiarity and larger delays, with higher logistic and transportation costs (Aguezzoul 2014). 

Moreover, Identity-based attachment and Bond-based theory can to some extent explain why the strong to 

strong collaboration phenomenon always appears in different domains, and why entities prefer to form a 

common group with similar entities (Fiedler and Sarstedt 2014). (Connelly et al. 2013) asserted that the 

greater the similarity between firms, the greater the chances that they will establish collaboration based on 

the homogeneous behavior theory. Service similarity can enhance inter-alliance joint learning, trust and 

interaction, and is considered a primary factor to improve the success rate and collaboration efficiency 

(Meo et al. 2011). In addition, services can set up sporadic or continuous transaction relationships 

autonomously during their operation. Past transaction experience, long-term orientation and 

interdependence can produce trust-based synergies and reduce opportunism (Kumar et al. 2014). Learning 

the service’s past social interactions, usage patterns or service habits will help discover and build alliances 

with enterprises with which they had a prior transaction history and collaboration relationship (Ahuja and 

Zaheer 2012). Furthermore, from a muti-relational perspective, resource sharing and complementary, 

transaction experience, distance, trait similarities are key factors contributing to the synergy effect 

(Touboulic et al. 2015). These research studies indicate that different social relationships can capture the 

way services collaborate for common benefit and can serve as an important additional basis for service 

evaluation and selection. However, these factors could not be analyzed and quantified precisely in the 

offline environment. The relationship factors described above haven’t been classified clearly, nor have they 

been integrated with online social relationships to measure the synergy level.    

Scrutinizing how connected services are related to each other in the online environment, researchers 

have identified various social relationships among entities. They found heterogeneous nature of these links, 

and developed nonlinear models to study the relationship synergy effect (Choi and Yeniyurt 2015). A 

service may exhibit multifaceted behavior and possess different positions, when one specific types of 

relationships provide less valuable information. One relationship serving as catalyst or constraint may 

affect other relationships among services. Most relationship data cannot be sensed and computed 

accurately in real time, leading to poor service network to enable effective service composition. (Maamar 

et al. 2011) identified a social relationship based framework of interconnected nodes of people, devices, 

and services, however, the muti-relational perspective that exists among services is seldom studied.  

From a service collaboration perspective, synergy effect is measured by two elements: compatibility and 

resource sharing. Service in the same community will reduce interaction cost and time, improving 

collaboration QoS. Using the IoT and big data technologies in these domains, service relationships derived 

from both online and physical environments can be integrated to achieve synergy. Based on the deductive 

analysis, five types of significant relationships that are more valuable to reinforce synergy effect, have 

been identified and abstracted, namely interactive transaction, co-community, physical distance, 
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resource-related and social similarity relationship. Despite this, service social network is still at an 

exploratory stage. Related issues such as how to define and extract service social relationships, 

classification and calculation of social relationships and aggregation rules for synergy effects have not 

been addressed. A muti-dimensional service synergy network should be constructed to emphasize how 

service collaboration through social relationships affects dynamic service performance.   

3. Manufacturing service selection based on social relationship analysis 

With online services becoming more intelligent, socialized and personalized, the convergence of social 

networks and Internet of Services (IoS) will be of great significance to promote service cloud applications 

in manufacturing industries. Social relationships between services must be considered as an important 

factor for the development of long-term synergy effects. Service selection needs to focus on collaboration 

factors that were previously neglected in complex task context. In this section, we first extract service 

social network and five types of social relationships which have a positive influence on service synergy. 

Then, a social service selection process based on weighted synergy network is presented. 

 3.1 Service social network 

Based on the service interaction behavior sensed by IoT, five types of relationships such as interactive 

transaction, co-community, physical distance, resource related and social similarity relationships are 

extracted and defined. Representing services as nodes and social relationships as edges, service social 

network can be formed and represented as an indirect network graph  ,,, EAVG
SN

  as shown in Fig.1. 

 
n

vvvV ,,,
21
 represents set of service nodes, A is QoS set of service nodes,  

m
EEEE ,,,

21
 is the set 

of edges i.e., social relationships,  
m

 ,,,
21
 represents the edges strength. The diverse social 

relationships and network structure described above can be identified and visualized by deeply mining the 

large-scale data from the cloud platform. To further understand the meaning and functions of these 

relationships, we analyze the original sources of these relationship definitions as follows: 

Service social network

Interactive transaction 

Co-community 

 Phys ical distance 

Resource-related 

Social similarity 

R&D service

Parts Manufacturing 
service

Assembly service

 

Figure 1. Service social network 

  Interactive transaction relationship (SRIT) describes the collaboration history that two services have 

part in common complex tasks. If services i and j both participate in the same task Tk, i.e., usually i and 

j→Tk, there exist a SRIT(i,j). (Guo et al. 2010) proposed statistical cooperate correlation referring to the 

relationship that two or more services are often banded to execute a task. (Chen et al. 2013) put forward 

sociability preference degree to define and compute the cooperation relation in the same work-flow. SRIT is 

used to reveal service habits that show with whom the service has collaborated previously and with whom 

it prefers to work in the future. Since the amount of interactive transaction varies in different periods, we 

assume the transactions in the recent period have larger impacts. Hence, the total transaction volume in all 

periods and current collaboration activity are used to quantify the relationship strength.  

Co-community relationship (SRCOC) is constructed when services come into contact and interact with 
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each other in the same community. If services i and j belong to the same platform k, i.e., usually i and 

j∈platform k, then SRCOC(i,j) represent a co-community relationship. (Mezni H et al. 2017) emphasized the 

importance of co-platform relation to lower communication cost in muti-cloud environment. Services in 

the common platform will have stronger mutual trust, lower interaction and coordination cost. Larger the 

number of co-communities in which both service providers participate closer their connections will be and 

the higher the service synergy level. Hence, the proportion of the co-community in all the communities the 

service participated in is used to evaluate the relationship strength.  

Physical distance relationship (SRDis) describes the distance factors and service location associated 

with delays, logistic cost and transportation time, and plays a role in determining the willingness of firms 

to engage in service alliance (Aguezzoul. 2014). L(i) and L(j) represents the location of service i and j, 

there exist SRDis(L(i),L(j)). When L(i) =L(j), it means a co-location relationship. (An et al. 2013) gave the 

definition and calculation of distance factor through the similarity function of position information. 

Distance is a complex concept containing geographical, cultural and social elements. However, its concrete 

value may have no meaningful in business level, it is possible to map different distance intervals to travel 

time which will simplify the calculation and meet the requirement of manufacturing context.  

Resource-related relationship(SRRR) reflects the level of resource sharing and resource complementarity 

among different service units or providers. If services i and j both use the same resource Rk, i.e., usually i 

and j＊Rk, and the resource Rs is owned by i and Rt is owned by j are complementary, there exist SRRR(i,j). 

(Freitag et al. 2015) considered that the surplus depends on the level of the sharing and complementarity 

between both services’ resources. (Lopes and Almeida. 2015) considered positive and negative resource 

synergy as the crucial factors in many portfolio situations. Each service shares several types of resource 

and different volumes per type. Hence, the sharing amount is based on resource volume per type multiplied 

by type number. The complementarity level equal to the number of different resources owned and is used 

to measure the relationship.  

Social similarity relationship (SRSim) describes the similarity level of service nodes in individual 

profile, social attributes and operation environments. Social similarity can enhance mutual trust and 

promote service longtime collaboration (Chung S et al. 2015). (Rusek R et al. 2016) proposed that service 

similarity can be calculated by the distance between values of their attributes such as affiliation, delivery, 

nature, presence, scope and stakeholder. (Pan Y et al. 2017) constructed a new multidimensional service 

similarity model by aggregating collaborative, preference and trajectory similarity in online to offline 

(O2O) service context. In SSN, SRSim(i,j) depends on the service’s popularity, ownership, reputation and 

co-partners. Hence, a similarity model aggregating four attributes can be built to analyze the relationship 

strength. 

3.2. The service selection based on synergy network 

Due to the constraints of task relationships, collaboration factor should be considered in service 

composition process. Based on the above ideas, this paper proposes a manufacturing service selection 

process based on synergy network, as shown in Fig. 2. We illustrate the process using a fictitious example 

of automobile manufacturing. The manufacturing task has been decomposed into 3 sub-tasks (R&D T1, 

Parts Manufacturing T2 and vehicle assembly T3). We need to select one service for each sub-task and 

make sure these services have the best synergy effect. The selection process consists of the following steps: 

Step1: Automatically perceive real-time user requirements. Select candidate services using existing 

methods, and obtain candidate service sets (CS1, CS2, CS3) for each task. (S11, S12) for task T1, 

(S21,S22,S23,S24) for task T2, (S31,S32,S33) for task T3. 
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Step2: Calculate five service social relationships based on social network analysis, and compute synergy 

effect and create service weighted synergy network WSN, according to the task constraints. 

Step3: Based on the WSN created in Step2, evaluate the synergy effect of service composition. Then, 

select the optimal combination of service instances that results in the highest synergy effect. 

Step4: Execute and monitor in real-time using the system platform which allows users to evaluate 

service performance and provide feedback. 

S

S12

S11

Service matching 

Task decomposition

T1 T2 T3

Calculate service synergy effect

The optimal service composition path instance

TASK

Candidate set 1 Candidate set 2 Candidate set 3

Service selection

S21

S23

S

24

S32

S

33

S31

S

22

S

33

S22

Figure legends:

Different 

functional services 

Service 

candidate set

T

S1

1

Multi-dimensional 

social network

Service weighted 

synergy  network 

 
Figure 2. Social service selection process based on synergy network 

4. Social synergy network model 

Service synergy quality is a task-level interaction and social relationship effectiveness construct, which 

is defined as the extent to which the services collaboratively exploit shared capacity while minimizing cost 

and time through cooperation during the task process. The service synergy effect depends on social 

relationships between services and can be aggregated from the five relationship factors (RFs) described 

above. Computing the synergy effects to create WSN is the key task of the social service selection process 

described above. There is a need for an efficient and effective way of measuring the synergy effect. The 

process of calculating and creation of WSN consists of the following three steps:  

  (1) Calculate the relationship strength of each relationship factor (RF): Based on the characteristics of 

each relationship, the strength of each relationship factor (RF) is computed as described in Section 4.1.     

  (2) Aggregate RF relationship strength: Using the rough sets and information entropy method, we assign 

a weight to each RF. Based on the weights assigned to the relationship strength, synergy effect between 

service pairs is computed. Section 4.2 describes the aggregation method.   

  (3) Create service weighted synergy network: Connect all service nodes that have a strong synergy effect. 

We only consider direct synergy relationships when creating a weighted synergy network in Section 4.2. 

4.1 Calculating the social relationship strength 

Each relationship strength is computed using service characteristics and their interaction.  

4.1.1 Interactive transaction relationship 

In a SSN, service collaboration can happen in different time periods. The collaboration time CTi and 

transaction amount TAi may vary across unit period UPi. Hence, interactive transaction strength QSIT(i, j) 

depends on the total transaction amount TA across all periods and collaboration activities CA in the most 
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recent period. QSIT(i, j) can be computed as: 
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            (1) 

Where 
,

k
U P

i j
C T  and 

,

k
U P

i j
M denote the collaboration time and transaction amount in kth period.

,

n o w
U P

i j
C T is 

collaboration time between i and j in the most recent period.  

4.1.2 Co-community relationship   

Communities include various cloud platforms, alliances and online groups. Co-community relationship 

strength QSCOC(i, j) depends on number of co-community in which both services participates. Given a 

service i and j, QSCOC(i, j) can be calculated as follows: 

           

                 
 

All

COC
NR

jiNR
jiQS

,
,                           (2) 

Where
A ll

N R is the total number of communities in which both services participate.   ,N R i j denote the 

number of co-communities that are common between service i and j.  

4.1.3 Distance relationship 

The geographical distance D(i, j) can be calculated from geographic maps and other factors. Considering 

the impact of distance on the production plane and task process, we transform D(i, j) into four types of 

travel time to better represent the distance relationship. Based on the service rules and transportation model 

used by logistics companies, we define 4 levels of travel time (AT), AT1 on demand (one week), AT2 

short-term (one month), AT3 medium-term (two to six months) and AT4 strategic long-term (more than six 

month). If the travel time between services i and j is ATk∈ (AT1, AT2, AT3, AT4), the distance relationship 

strength QSDis(i, j) can be mapped to a discrete value corresponding to ATk. Hence, given a service i and j, 

QSDis(i, j) can be computed based on the rules defined by domain experts as follows: 

                                 
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                    (3)
                  

                  

Where AT(i, j) is the travel time between service i and j, 1, 0.6, 0.3, 0 are the values of QSDis(i, j) 

normally distributed between [0,1]. Higher QSDis(i, j) denotes a better distance-based synergy effect based 

on shorter travel time and lower cost.   

4.1.4 Resource-related relationship 

Resource-related relationship strength dependents on the level of resource sharing (RS) and resource 

complementarity (RC). The type and amount of resource sharing determines the RS level. The RC is 

computed based on the focal firm’s SIC code and that of its partners. Hence, QSRR(i, j) measuring the 

resource-related relationship strength can be modeled as follows:   

                       
  jijiRR

RCwRSwjiQS
,2,1

,                            (4) 
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              (5) 

 
 ,tp i j and  ,a m i j denote type and amount of resource shared per type, there are several types of 
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manufacturing resource, such as machine, material, human, knowledge resources and so on. 

 ,
d ifferen t

N i j represents the number of different resource types.  ,
a ll

N i j is the number of all resource types 

in i and j. w  denotes the weight assigned to
,i j

R S  and 
,i j

R C . 

4.1.5 Social similarity relationship   

Similarity relationship strength QSSim(i,j) can be measured by the similarity level between service i and j, 

based on four social attributes (service popularity SP, ownership O, reputation R and the number of 

common partners CP). Hence, service i, j can be characterized by multi-dimension vectors (SPi,Oi,Ri,CPi) 

and (SPj,Oj,Rj,CPj). Comparing the distance of service profile, QSSim(i,j) can be computed as follows: 

                               
 jid

jiSIMjiQS
Sim

,1

1
,,



                    (6) 

    Where    




4

1

2
,

i

ji
aajid represents Euclidean Distance between service i and j, which has 4 

attributes (SPi,Oi,Ri,CPi). Higher QSSim(i, j) indicates a higher service synergy effect. 

4.2 Aggregating RF relationship strength and creating WSN   

  Synergy effect is calculated by aggregating five types of social relationship. The value of social 

relationship has various forms(such as numerical, Boolean or real) and of different importance. Judging the 

overall synergy effect can be abstracted as a classification problem which can be solved by Rough Set 

Theory(RST). In this paper, we define the knowledge representation system of RFs in a unified framework 

with RST  fVAUZ ,,, , whereU is set of synergy effect of various service relations. DCA  denotes 

attributes set, C and D denote condition attribute(feasible relations between services nodes) and decision 

attribute set (synergy effect of selected service relations) respectively.V represents the value range of these 

attributes, VUf : denotes the comprehensive map function. Thus, the synergy effect calculation is 

transformed to the classification of value range of synergy effect. The equivalence relation is the core of 

RST, it describes the similarity of different synergy effect in U . For any attribute set AB  , equivalence 

relation can be denoted as          ayfaxfBaUUyxBIND ,,:,  . Through attribute reduction, it 

can delete redundancy attribute and reserve only important attributes. 

Through this process, the knowledge representation system is built in a unified framework, and the RFs 

weight problem is transformed to the importance degree of condition attributes in rough set. Based on the 

original data, the relation instances can be firstly divided into several classes by fuzzy clustering method. 

After deleting an attribute or RFs, we re-classify the instances and obtain the new classification. The 

decision table is formed as list (Table A) in Appendix1. The change degree of the classification computed 

by information entropy can represents the importance of the attribute deleted. Through normalization, the 

weight distribution can be conducted, and the correlation of RFs measured by mutual information is also 

considered. Then, synergy effect defined as QS(i,j), can be quantified by the linear weighting of social 

relationship strength. It explicitly provides a measure tool of collaboration level between service i and j for 

various social links. Hence，QS(i,j) is aggregated by the equation as follows：   

                     1 2 3 4 5
,

IT C O C D is R R S im
Q S i j w Q S w Q S w Q S w Q S w Q S                     (7) 

1
w ,

2
w ,

3
w ,

4
w ,

5
w represents the weight of the five RFs. It is assumed that service node i and j have no 

synergy if QS(i,j)=0, and have the highest synergy effect if QS(i,j)=1. Here, synergy relationship strength 
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is normalized and distributed between [0,1]. The higher value means that the resource transfer, information 

interaction, knowledge sharing and hand off among services are better. 
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Figure 3. Service weighted synergy network WSN 

  Using equation (7), the pairwise synergy effect QS(R,T) can be computed. Then, we connect all service 

nodes whose pairwise synergy effect is greater than threshold value  . The WSN which describes synergy 

relationships among service nodes can be constructed as shown in Figure 3. Taking the services as nodes 

and collaboration relations as the edges, service synergy network can be described as  ,,, LAVG
WSN

  

using the graph theory.  
n

vvvV ,,,
21
 is service nodes set, A denotes the QoS set of all services, 

 
m

LLLL ,,,
21
 is the edges set.  

m
 ,,,

21
 represents the strength of the pairwise synergy effect 

between nodes. The dynamic changes of QoS, service state and synergy effect will adjust the network 

structure of WSN, which has impact on service alliance formation to accomplish customized task. 

5. Service Composition Model based on Synergy Effect 

In a large Service Social Network (SSN), many services may satisfy the functional requirements of the 

task and these services may have similar QoS. Hence, we can take collaboration capacity as a additional 

competitiveness criteria in selecting services. As discussed above social relationships of services can create 

a synergy effect and are an important consideration in service combination. Based on service synergy 

network we develop a service selection model that support social collaboration between services. 

5.1. Problem statement and variable definition 

In wisdom manufacturing, the user needs T=(Funset, QoS) perceived in real-time can be decomposed 

into multiple sub-tasks T=(T1,T2,…,Tm) according to the process knowledge and resource conditions. Each 

sub-task is semantically matched to available services, m candidate service sets CS=(CS1,CS2,…,CSm) are 

created for m sub-tasks, where each CSi=(S1,S2,S3,…,Sk). The weighted synergy network can be built as 

shown in Figure 6. Thus, service selection problem based on WSN can be stated as: select m desired 

services from the candidate sets to form a dynamic alliance whose overall synergy effect is highest. Table 1 

summarizes the notations used in problem representation.   

5.2. Service selection model 

5.2.1. Computing the service synergy effect 

  The service synergy effect is the nonlinear sum of pairwise synergy edges. Aggregation rules and 

methods of traversing synergy edges are needed to compose social services, which is different from 

aggregation based on QoS. The service in the business process can relate to other nodes in various 

structures such as sequential, parallel, branch and loop. Table 2 shows the service aggregation rules for 

four types of manufacturing process structures commonly used .  

5.2.2. Service selection model 

 Based on the analysis of WSN and the problem description, a new service selection model considers 

synergy effect is formed as follows： 
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Objective function (8) denotes the maximization of service synergy effect. Constraint (9) ensures that 

only one task can be done by a service, thus exactly q service nodes are assigned to q tasks in the service 

chain. Constraint (10) ensures that the service solution meet the QoS requirements. Constraint (11) require 

the service solution to meet the threshold value of synergy effect , and each pairwise synergy must be 

greater than . Based on the analysis of WSN, there exist several service paths that have higher synergy 

effect. We can transform social service selection problem into the shortest path problem, which can be 

solved by available algorithms, achieving the best service composition instance in SSN.  

Selecting the best service from a list of alternative services for each task such that all user’s QoS 

requirements are satisfied, is a non-trivial task as the number of possible combinations can be very huge. If 

there are N sub-tasks, each sub-task is corresponding to M candidate services, the number of service 

composition solution is N
M . With the increasing number of candidate services and sub-tasks, the size 

of feasible solution space grows exponentially, resulting in the phenomenon of combination explosion. 

Previous research modeled service composition problem(SCP) in two ways: the combinatorial model 

defines the problem as a Muti-dimension Muti-choice Knapsack Problem (MMKP) and the graph model 

defines the problem as a Muti-constrained Optimal Path Problem (MCOP), which are both known to be 

NP-hard. Hence, SCP in SSN is also a NP-hard problem. The exact methods, such as enumeration method 

and the branch and bound algorithm, can solve efficiently small or medium sized SCP, but be out of the 

run-time requirements for large-scale service situation. However, intelligent algorithms such as GA, PSO, 

and bee algorithm, have been applied to accommodate the new situation and perform well for large-scale 

SCP. GSA as a new heuristic algorithm has good search ability and efficiency, which is suitable for solving 

the optimization problem of service composition. Hence, an improved GSA algorithm is developed to 

solve the problem, and its sensitivity is better for large-scale problem structure.  

6. Experiment using a Case Study 

With the development of cloud based manufacturing services, many companies such as Honda, GM, and 

Dongfeng Motor are moving towards services based manufacturing mode supported by cloud computing. 

Service composition to build dynamic task driven manufacturing value chain becomes very important. In 

this section, we firstly introduce a simple example to explain how synergy effect have impacts on the 

competitiveness of service in service selection intuitively, then an extend experiment is described in detail 

to prove the advantage of our model considering service collaboration factor. 
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Figure 4. Intelligent vehicle manufacturing task order 

6.1 Motivated example 

Consider a vehicle manufacturing project T as a simple example, which has three sub-tasks R&D (T1), 

Parts Manufacturing (T2) and vehicle assembly (T3) as shown in Figure 4. These sub-tasks are executed 

sequentially, where R&D unit transfers the design drawings, data and model parameters to Manufacturing 

unit, Manufacturing unit produces parts in accordance with the design requirements of R&D, and hands off 

different types of parts to Assembly unit. Manufacturer must select from service pool the most suitable 

services to compose this manufacturing process. Suppose that services S1, S2 matches the functional and 

QoS requirements of T1, S3, S4 matches T2 and S5, S6, S7 matches T3. Figure 2(a) shows service 

relationships and QoS assumed for each service. QoS-aware service selection method will find two optimal 

combinations C1=(S1,S4,S6) and C2=(S2,S4,S6), whose overall QoS are the same as 0.7+0.6+0.9=2.2.  
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Figure 5. Candidate service network 

Figure 5(b) shows the service synergy network with assumed synergy effect. The synergy effects 

between S2 and S4, S4 and S6 are 0.2, 0.1 respectively, which is low, since these services belong to different 

platforms and have few cooperation experience. Thus, the actual execution results of C1, C2 will not be 

satisfied. Considering the synergy effect a combination C3= (S1, S4, S5) may be better as it has QoS of 

(0.7+0.6+0.8=2.1) which is very close to the optimal value 2.2. In C3, synergy effect between S1 and S4, S4 

and S5 are 0.8, 0.8 respectively, which means they have more cooperation experiences, sharing resources, 

which can reduce interactive cost and enhance collaboration efficiency. When considering collaboration 

requirement, synergy effect of C3 is 0.8+0.8=1.6, while the value of C1, C2 are 0.8+0.1=0.9, 0.2+0.1=0.3 

respectively. Therefore, while service QoS of C1, C2 and C3 are similar, considering synergy effect C3 is the 

optimal solution. To build a superior task driven dynamic alliance, collaboration factor should be 

considered in the service selection.  

6.2 Extend experiment  

Due to the difficulty in getting real data, we create a fictitious case study of automotive manufacturing 

cloud and generate synthetic data set to illustrate the application of our approach. Figure 6 shows 
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Automotive cloud based manufacturing services assumed for our study. A manufacturing process is 

assumed to be composed of six sub-tasks (R&D, Technology Simulation, Raw Material Buying, Parts 

Manufacturing, Vehicle Assembly, Selling Services). Multiple services are available for each sub-task in 

the service cloud. Our proposed model is applied to compose services based on their function, QoS and 

synergy requirement. The design of the simulation experiment and the computations are detailed below.   

Multi-level resource 

repository

Resource 

virtualization and 

servitization

Service cloud

Sub-tasks requirements 

Cloud manufacturing platform 

 Decomposed into 

detailed sub-tasks

Match and organizeAutomotive 

manufacturing task

Manufacturing service chain 

optimization

Manufacturing process 

based on 

optimal service solution 

 

Figure 6. Automotive cloud based manufacturing services 

6.2.1 Data Generation 

Two personal computers are employed to simulate the experiment environment. One PC is used to run 

the service composition system and selection algorithm, while the other PC is used to operate 

manufacturing service repository. Each candidate service set contains 10 services which are functionally 

equivalent and have similar QoS. There are 30 service providers who own several services. Social 

attributes such as popularity, reputation and common partners, are considered. The values of each attribute 

for candidate services are randomly generated from [0, 10], [0, 1], [0, 10] respectively. The travel time 

related to geographic distance between service providers is selected from four levels (AT1, AT2, AT3, AT4). 

Each service is assumed to have 5 kinds of resources: physical equipment, materials, information, working 

knowledge, software and people, and they can share one or more types of resources with others, and the 

quantity of shared resources is [0,10] for each type of resource. Service collaboration times and transaction 

amounts generated during a unit period are distributed in the intervals [0, 20] and [0, 50] respectively.  

6.2.2 Experiment Design: 

Based on the data of QoS and social relationships, service weighted synergy network is first constructed. 

Then, four experiments were carried out to demonstrate that our model and algorithm performs better than 

others. Table 3 shows the experiments performed. The analysis and results are described in section 6.3.  

6.2.3 Results of Experiment and analysis  

(1) Synergy network analysis 

Normalizing the relationship data to get consistent unit of measure and using the rough sets and the 

information entropy method, we obtain the comprehensive weight vector of five RFs (IT, COC, Dis, RR 

and Sim) as (0.38, 0.23, 0.05, 0.13, 0.21). SRIT has the highest weight value, meaning it is an most 

important RFs since it shows that service transactions have a larger impact on synergy effect than others.. 

By computing the pairwise synergy effect by aggregating five relationship factors, WSN can be constructed 

as shown in Fig.7. The values of pairwise synergy effect are distributed between [0.2, 0.8] with an average 

value of 0.63. We divide this range into three level, high level [0.6, 0.8], middle level [0.4, 0.6] and low 

level [0.2, 0.4]. Most pairwise synergy effect is distributed in the interval [0.45, 0.62]. In different WSN 

and even in different periods, the synergy level may be various.  
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Figure 7. Service synergy weighted network of 60 nodes     

In Experiment 1, the synergy effect values of all service compositions are obtained by the enumeration 

method as shown in Figure 8. It is easy to find that the solution values are distributed in the range [2.60, 

3.58]. We can divide all values into three intervals I1=[2.60, 2.95], I2=[2.95, 3.28], I3=[3.28, 3.58], which 

denotes low, middle and high synergy levels respectively. In our experiment, the synergy values are mostly 

in the range [3.05, 3.28], indicating they lie in a middle collaboration level. The optimal service scheme 1 

(S12,S26,S38,S47,S55,S67) (shown in Table 4) is obtained, it has the highest synergy effect of 3.58 but the 

computation time for the algorithm jumps to 3216.7ms. Hence, traditional solution method has difficulty in 

meeting the real-time requirement and solving the large-scale service problem. 
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Figure 8. Synergy effect values of all service compositions 

(2) Model comparison 

We apply improved GSA algorithm to solve the proposed model. We set the population size 400M , 

the maximum iteration times 100MaxT , the inertia factor 6.0min w , 1.1m axw , the learning 

factor 8.0
21
 cc to conduct Experiment 2. After about 50 iterations, we get the optimal scheme 2 

(S12,S25,S38,S47,S55,S63), whose objective function value is 3.54. To further illustrate the validity and 

adaptability of our method, we compare the results with a QoS-aware model developed by (Karimi, 

Isazadeh and Rahmani. 2017). Scheme 3 (S13,S26,S37,S48,S57,S63) is obtained based on QoS-aware model.  

 

Based on the result shown in Table 4, we find that QoS of three schemes are close to each other. The 

possible reason is that the QoS of each service is similar in cloud, and it is not a key criterion in service 

selection any more. Our proposed method not only has a good overall QoS, but also has high level of 

synergy effect, which is very close to the optimal value obtained by linear programming. Moreover, the 

processing time of our algorithm is lower than LPM. Although scheme 3 has the highest overall QoS value, 
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the synergy effect among services is the lowest at 2.68. Thus, using scheme 3 it is difficult to meet the 

collaboration requirements and task relations constraints. We further observe that S13 and S26 belong to 

different platforms, and the transaction level is low, leading to lower trust and higher communication cost. 

Moreover, physical distance between S37 and S48, S48 and S57 are the highest, resulting in higher logistics 

cost and time. Many problems will arise in the implementation process of scheme 3, such as poor 

interaction and low logistics efficiency, even task failure. Hence, our model considering synergy effect is 

more suitable and can obtain the optimal service scheme . 

(3) Algorithm comparison 

To verify the effectiveness of our algorithm, we compare it with basic PSO and GSA in Experiment 3, 

where the number of sub-tasks is fixed at 6, the number of services for each sub-task is varied from 100 to 

1000. Through 50-time tests, the fitness and search time of these algorithms are obtained as shown in 

Figure 9(a), (b). The mean fitness of PSO is higher than ours, and tends to be stable after 30 iterations, 

when its change is smooth and local optimum is raised. The fitness of GSA is the highest, although it has 

better global search but poor local search ability. The fitness of our algorithm decreases rapidly with the 

increase in number of iteration, and is at the lowest level. The processing time of all algorithms increases 

with the increase in number of candidate services. Hence, our algorithm has the least time and highest 

search efficient.  
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Figure 9. Mean fitness and search time 

The fitness is the difference degree between the current solution and optimal solution. When the number 

of services reach 500, the growth curve of our algorithm doesn’t show exponential change. Because 

two-way learning mechanism and clustering strategy are applied to remove disadvantaged candidate 

services and reduce the search space of optimal solution. Additionally, group interaction strategy in PSO is 

used to improve the search speed of GSA. 

As shown in Table 5, it is obvious that improved GSA algorithm performs better than GSA and PSO in 

max and mean results. Meanwhile, the SE value of improved GSA is less than other methods. It illustrates 

that the search results is more stable, and has better performance. With the increasing number of candidate 

services, the synergy value of all three algorithms increases. The possible reason is that services with better 

QoS are generated and selected in the manufacturing task, making the whole QoS of service composition 

scheme improved gradually.   

To verify the scalability and stability of our algorithm in larger scale service situation, the Experiment 4 

is performed. Five kinds of problem scale (number of tasks × number of available services) are set and 

represented as 6×15, 10×20, 20×30, 30×40, 40×50. The comparison of results of three algorithms are 

shown in Table 6, and confidence intervals (CI) on max fitness and time of our algorithm is superior to 

others. It was obvious that improved GSA algorithm performed better than basic GSA and PSO on search 
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time and max fitness in different problem scale. The search time growth of all three algorithms tend to be 

flat, it further illustrates that improved GSA algorithm is suitable for large-scale manufacturing services. 

7. Conclusions 

This paper presents an approach for composing services that considers social relationships between 

services. Successful completion of complex tasks requires building dynamic alliances between 

manufacturing services as all the providers need to work as a team, where selected services corresponding 

to sub-tasks must make sure that resource hand off, information and knowledge delivery are smooth and 

efficient. Hence, not only the individual competitiveness but the synergy effect between candidate services 

should be considered as important criterion for service composition. In cloud platform where services have 

social relationships, which can create synergy effect, and social network analysis is critical for finding 

appropriate services for creating dynamic alliance. Since this area has not been thoroughly researched 

before, the approach presented in this paper improves the quality of service composition and significantly 

contribute to literature in this area. The major contributions of the proposed method are described below.   

First, we provide new insight into IoS that integrates social network and synergy theory and adapts them 

to the new context. A new framework for service selection that considers the service synergy has been 

proposed. Based on the analysis of social interaction behavior, we defined five dimensions, namely, 

interactive transaction, co-community, physical distance, resource related, social similarity relationships 

and constructed multidimensional SSN, which can provide a basis for research in IoT, cloud manufacturing 

and service orchestration in the future. Second, present a service weight synergy network model to 

calculate the comprehensive synergy effect based on aggregation five relations strength: this model can 

serve as a basis for quantitative research on service assets. Third, a novel service composition model based 

on synergy effect that emphasizes collaboration factor is proposed. It overcomes the limitations of existing 

methods that only consider the functional and QoS attributes, and enhances the probability of successful 

collaboration among potential partners in SSN. Additionally, using an intelligent automobile 

manufacturing case experiment, the results reveal that our approach considering collaboration factor 

generate more efficient solution when organizing a business process with many services.   

Due to the complexity and diversity of service social relationships, this paper only considered a few 

relationship types and RFs. Minor relationships are omitted yet they still have an important impact on 

service selection. For further research, it is imperative to further analyze the attributes of social 

relationships, so as to integrate new types of social relationships into the model. A service relationship has 

attributes like social capital that can measure service social value which can help in evaluating 

collaborative efficiency. More attention needs to be paid to this. The services synergy effect changes 

dynamically with time and location. An update mechanism is needed to create and describe the dynamics 

and uncertainty of synergy relationship. Moreover, different service application domains and task types 

may have different preferences and may tend to differently weigh diverse relationship elements. Sensitivity 

analysis and domain-dependence of social synergy should be done to consummate our model in various 

contexts, such as health-care, education and so on. The needs to be extended to consider domain-specific 

properties. In addition, the model needs to be tested on real systems.   

 

 

 

Appendix 1: Method for computing Weights 

Suppose the knowledge representation system of RFs as  fVAUZ ,,, , whereU is non-empty finite 

set. DCA  denotes attributes set,  SimRRDisCOCITC ,,,, and  n
QSQSQSD ,,,

21
 denote 
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condition attribute and decision attribute set respectively. Then, the final RFs decision table can be 

constructed as shown in Table A. Based on the original data of each RFs of each instance, the relation 

instances are firstly divided into several classes by fuzzy clustering method. After deleting an attribute or 

RFs, we re-classify the instances and obtain the new classification. The change degree of the classification 

computed by information entropy represents the importance of the attribute deleted. Through 

normalization, the weight distribution of each RF can be conducted, and the correlation of RFs is 

computed by mutual information. The detailed computing process can be described as follow: 

 (1) Let  n
ISISISIS ,,

21
， represents a set of relation instances, which has m RFs or attributes (m=5). 

We can create the attribute matrix by computing the RFs of the instances.  

                                

mnmm

n

n
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sss

sss

IS









21

22221

11211

                         (1) 

  (2) The fuzzy similarity matrix  
nnij

rR


 is created by computing the similarity between the instances 

using the equation    




m

k

jkik

m

k

jkikij
xxxxr

11

.  

  (3) Using the equation  RtRRR
k


242

 , the fuzzy equivalent closure matrix is constructed. 

The cluster within each threshold  can be described as
i

C . There are m attributes to cluster the objects 

which results in k initial clusters  
k

CCCC ,,,
21
 . We then remove an attribute and re-cluster the object 

in m-1 attributes. the new clustering result can be obatined as  ''''
,,,

21 k
CCCC  . The cluster within each 

threshold '
 can be described as

'

i
C . Finally, all results of classification will be recorded. 

(4) After removing one relation factors, the size of the mutual information  '
;

ii
CCE within the same 

threshold range can be calculated by          ''''
, CCHCHCCHCHCCE  , and the amount of 

information contained in different attributes will be calculated by the following equation: 

                                mjCCE
r

M

r

i

iij
,,2,1,;

1

1

'
 



                 (2) 

It shows that the information
j

M of the deleted RF is less contained in the cluster. It means that the 

importance of the deleted RF is small.  

(5) Finally, by comparing the amount of information j
M involved in various RFs, and the weight 

distribution of different RFs can be computed as follows: 

                                    





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                              (3) 
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Table 1 Summary of notations 

Symbol Meaning 

n  The number of candidate services 

h  The number of desired candidate service sets 

j  task node, 1, 2 , 3 ...,j m  

j
n  The number of candidate service sets

j
C S , then 

1

h

j

j

n n



  

q  The total number of required services to form a dynamic alliance 

j
q  The total number of services chosen from the candidate service set

j
C S ,

1

h

j

j

q q



  

k  The number of the relationship factors (RFs) of synergy effect 

j
N  The index set of candidate services in

j
C S  

l
Q S  The relationship factors (RFs) of collaboration relationship, 1, 2 , 3 ...,l k  

 ,Q S i j  The synergy effect between services i and j 

l
w  The weight of each 

l
Q S , then

1

1

k

l

l

w



  

x  The decision variable 1
i

x  , if candidate
i

W S is selected, 0
i

x  otherwise 

 

 

Table 2 Aggregation rules of service synergy effect 

Synergy  

relationship 
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Table 3 Experiment descriptions 

Experiment   Experiment objective Model  Solution Algorithm Result explanation 

1 
Obtain the optimal service 

composition 
Our proposed model  

Linear programming 

method (LPM) 

Obtain optimal scheme 

(S12,S26,S38,S47,S55,S67) 

2 
Comparison with other 

Model 

Our model 

QoS aware model  
Improved GSA 

Our model and algorithm 

performed better  

3 
Different Number of 

Available Services 
Our model 

Improved GSA, PSO, 

GSA 

Our algorithm performed 

better than GSA, PSO 

4 Different Number of Tasks Our model 
Improved GSA, PSO, 

GSA 

Our algorithm perform better 

than GSA, PSO 

 

 

Table 4 Comparison of result from different model 

The scheme 

order number   
Service composition instance QoS Synergy effect 

Processing Time 

(ms) 

1 (S12,S26,S38,S47,S55,S67) 4.34 3.58◎  3216.7 

2 (S12,S25,S38,S46,S55,S63) 4.28 3.54◎ 678.5 

3 (S13,S26,S37,S48,S57,S63) ◎4.39 2.68 654.3 

 

 

 

Table 5 Comparison of result of different algorithms 

Number of 

services 

Improved GSA  PSO GSA 

Max Mean (SE*) Max Mean (SE*) Max Mean (SE*) 

100 3.84 3.54 [0.543] 3.62 3.35 [0.635] 3.75 3.46 [0.641] 

200 3.98 3.67 [0.642] 3.70 3.41 [0.724] 3.84 3.63 [0.638] 

400 4.25 4.02 [0.638] 3.96 3.68 [0.718] 3.95 3.72 [0.694] 

800 4.36 4.13 [0.657] 4.15 3.84 [0.736] 4.14 3.86 [0.732] 

1000 4.44 4.24 [0.674] 4.26 3.93 [0.729] 4.23 4.02 [0.746] 

SE*=standard errors ACCEPTED M
ANUSCRIP

T

file:///C:/Users/Administrator/AppData/Local/Youdao/Dict/Application/7.2.0.0703/resultui/dict/javascript:;
file:///C:/Users/Administrator/AppData/Local/Youdao/Dict/Application/7.0.1.0214/resultui/dict/result.html?keyword=algorithm
file:///C:/Users/Administrator/AppData/Local/Youdao/Dict/Application/7.0.1.0214/resultui/dict/result.html?keyword=algorithm
file:///C:/Users/Administrator/AppData/Local/Youdao/Dict/Application/7.0.1.0214/resultui/dict/result.html?keyword=algorithm


 

 

 

Table 6 Comparison of result of different problem scale 

 Problem scale (task×service) 

6×15 10×20 20×30 30×40 40×50 

Improved 

GSA 

Max fitness 8.75 10.36 11.56 12.43 15.63 

CI(95%) [8.62, 8.78] [10.24, 10.51] [11.47, 11.74] [12.39, 12.50] [15.58, 15.76] 

Time 421 613 785 908 912 

CI(95%) [415, 427] [604, 618] [8.62, 8.78] [8.62, 8.78] [8.62, 8.78] 

PSO 

Max fitness 9.21 11.38 12.69 14.57 18.14 

CI(95%) [9.17, 9.28] [11.32, 11.47] [12.63, 12.78] [14.48, 14.66] [18.06, 18.23] 

Time 435 684 955 1003 1112 

CI(95%) [428, 447] [668, 702] [942, 971] [994, 1125] [1097, 1146] 

GSA 

Max fitness 9.34 12.25 13.54 16.45 20.68 

CI(95%) [9.25, 9.42] [12.18, 12.37] [13.48, 13.62] [16.37, 16.53] [20.61, 20.73] 

Time 511 852 1052 1102 1207 

CI(95%) [503, 522] [837, 869] [1046, 1074] [1087, 1125] [1193, 1224] 

CI=confidence interval 

 

Table A RFs decision table 

U C D 

QS(R,T) IT(R,T) COC(R,T) Dis(R,T) RR(R,T) Sim(R,T) 

IS1 s11 s12 s13 s14 s15 QS1 

IS2 s21 s22 s23 s24 s25 QS2 

.... .... .... .... .... .... .... 

ISj sj1 sj2 sj3 sj4 sj5 QSj 

.... .... .... .... .... .... .... 

ISn sn1 sn2 sn3 sn4 sn5 QSn 
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