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A B S T R A C T

We propose and test three different probabilistic classification techniques using data envelopment analysis
(DEA). The first two techniques assume parametric exponential and half-normal inefficiency probability dis-
tributions. The third technique uses a hybrid DEA and probabilistic neural network approach. We test the
proposed methods using simulated and real-world datasets. We compare them with cost-sensitive support vector
machines and traditional probabilistic classifiers that minimize Bayesian misclassification cost risk. The results
of our experiments indicate that the hybrid approach performs as well as or better than other techniques when
misclassification costs are asymmetric. The performance of exponential inefficiency distribution DEA classifiers
is similar or better than that of traditional probabilistic neural networks. We illustrate that there are certain
classification problems where probabilistic DEA based classifiers may provide superior performance compared to
competing classification techniques.

1. Introduction

Good solutions to classification problems can have a significant
impact on organization revenue and profitability. Typical high-impact
classification problems in organizational decision-making, are asso-
ciated with customer risk management (Bose & Chen, 2009) and or-
ganization default risk management, among others. A sub-set of the
classification problem is the asymmetric misclassification cost classifi-
cation problem, where the risk of misclassification is not symmetrical.
Bult and Wittink (1996) identified three different kinds of mis-
classification risk, and these three different risks were: symmetric
risk where all misclassification costs were equal, asymmetric homo-
geneous risk where misclassification costs were not equal but were
constant, and asymmetric non-homogeneous risk where misclassifica-
tion costs were not equal but were variable for each case. Zhao, Zhao,
and Song (2009) have observed similar asymmetric risk in credit card
markets.

Data Envelopment Analysis (DEA) models for classification
problems were first used in the 1990s (Troutt, Rai, & Zhang, 1994).
Currently, there are a lot of DEA models available for a variety of
business analytics tasks, such as solving inverse classification
problems (Pendharkar, 2002), data preprocessing (Pendharkar, 2005),
fuzzy classification (Pendharkar, 2012), interactive classification
(Pendharkar & Troutt, 2014), cluster analysis (Toloo, Saen, & Azadi,
2015), feature selection (Zhang et al., 2015), and dimensionality re-
duction (Pendharkar & Troutt, 2011). The DEA models can also be in-
corporated into radial basis neural networks to solving non-linearly

separable classification problems that may contain inputs with negative
values (Pendharkar, 2011a).

Most of the DEA based classification models use a dual variant of the
variable returns-to-scale BCC model (Banker, Charnes, & Cooper, 1984)
that provides non-linear (piecewise linear) classification decision
boundaries. For two-class problems, a separate model is solved for each
class, and two decision boundaries are obtained. When a problem is
linearly inseparable, there are overlapping examples belonging to two
different classes that appear between the two decision boundaries.
However, when a classification problem is linearly separable, there are
no such overlapping examples between the decision boundaries (see
Fig. 1). For linearly separable problems, traditional margin maximizing
support vector machines (SVMs) may be the best classifiers, and DEA
models should not be used. DEA models are primarily suitable for lin-
early inseparable problems. These models may also be applied to non-
linearly separable problems when combined with neural networks as
hybrid models (Pendharkar, 2011a).

The primary contribution of this paper is to design and use DEA
models for probabilistic classification. To our knowledge, probabilistic
classification DEA models have never been used for such tasks. The
existing DEA models for classification only predict binary class labels
making them difficult to use for classification problems where mis-
classification cost is asymmetric. As mentioned before, there are three
different kinds of risks associated with classification problems, and
existing DEA classification models only address symmetric risk classi-
fication problems. Probabilistic classification DEA models are more
general and can be used for both symmetric and asymmetric risk
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classification problems. These models can also allow decision-makers to
specify subjective class prior probabilities to directly minimize Bayesian
misclassification risk. This flexibility of allowing a decision-maker to
provide subjective estimates to solve a broader range of classification
problems (involving different kinds of risks) makes probabilistic DEA
classification models more advanced than traditional DEA classification
models.

There are two primary classification techniques to minimize
Bayesian misclassification risk. The first one is an SVM that minimizes
Bayesian misclassification cost risk. Pendharkar (2015) study used this
technique and illustrated that these SVMs are very competitive and
hard to outperform for linearly inseparable problems. The other tech-
nique available for minimizing Bayesian misclassification cost risk is
the probabilistic neural network (PNN) classifier (Specht, 1990).

It is well known that DEA inefficiency scores may be modeled as
exponential or half-normal distributions. Banker (1996) has often used
these inefficiency score distributions for hypothesis testing. We believe
that similar distributions may be used to develop probabilistic DEA
classifiers. Additionally, a hybrid DEA-PNN model may also be used to
further develop DEA based probabilistic classifiers. For the hybrid
model, the DEA may be used for data preprocessing to select hard-to-
classify region examples. These are then selected and used by the PNN
model to learn class probability density functions (PDFs) using a Parzen
window kernel estimation (Parzen, 1962).

In this paper, we develop three different probabilistic DEA based
classifiers for linearly inseparable classification problems. The first two
classifiers are built using exponential and half-normal DEA inefficiency
score distribution assumptions. The third classifier uses DEA efficiency
score threshold-based data preprocessing, to select high-efficiency ex-
amples to train a PNN for probabilistic estimation. Generally, selecting
high-efficiency score examples that appear in the hard-to-classify
region, and using these examples to train a PNN, may lead to
improved learning of individual class PDFs (rather than using all ex-
amples, as is usually the practice in traditional PNN). We use
simulated and real-world bankruptcy prediction datasets to test our
approaches, and compare them with the cost-sensitive SVM and the
traditional PNN that are known to minimize Bayesian misclassification
cost risk. We use symmetric and asymmetric misclassification costs in
our experiments.

This paper is organized as follows: In Section 2 we provide the
classification problem definition and misclassification cost minimizing
decision rule, review relevant DEA classification models from literature
and propose minor extensions to one model. In Section 3 we propose
two probabilistic DEA classification models for linearly inseparable
classification problems and describe the competing Bayesian mis-
classification cost risk minimizing SVM and PNN models. In Section 4
we describe our data and experiments. In Section 5, we conclude our
paper with a summary and discussion, and suggest a few directions for
future research.

2. Problem statement, brief review of existing DEA classification
models, and minor extensions

This section is divided into two parts. First, we provide the classi-
fication problem definition and Bayesian misclassification cost mini-
mizing rule. We then review related DEA models for classification
proposed in the literature and propose minor extensions to one of these
models so that it becomes suitable for probabilistic classification.

2.1. Probabilistic classification problem and misclassification cost
minimizing decision rule

For DEA based classification models, we consider a binary classifi-
cation problem consisting of a vector xi = (xi1,…,xim)T∈R+ of m at-
tributes defined over a set of n input examples, where i=1,…,n. The
primary objective of DEA based classification is to learn a function f:
(Rm)+→ {0,1}, which best classifies the input examples. Our problem
definition assumes that all components of the decision-making attribute
vector are positive. Additionally, we assume that the classification
function is probabilistic and minimizes misclassification cost.

Probabilistic classification requires the use of conditional prob-
ability density functions to identify the probability that an example xi is
a member of either class c=0 or c=1 (Duda & Hart, 1973). Assuming
that P(1) and P(0) are class prior probabilities, and P (xi|0) and P (xi|1)
are conditional probabilities that xi is member of either class 0 or 1
respectively, then posterior probabilities, P(c|xi) for c=0,1, are ob-
tained using the Bayesian rule:

=P c x P x c
P x

( | ) ( , )
( )

,i
i

i (1)

where

= = +P x c P x c P c P x P x P x( , ) ( | ) ( ), and ( ) ( ,0) ( ,1).i i i i i (2)

Since, for both values of c=0, 1; the value of denominator in Eq.
(1) remains same (see Eq. (2)), we have:

∝P c x P x c P c( | ) ( | ) ( ).i i (3)

When probabilistic classification problems are used to minimize
misclassification costs, we need to define additional misclassification
cost variables. Assume that C(1|0) represents the cost of misclassifying
an example into class 1 when correct class assignment should be class 0,
and C(0|1) is defined similarly. The expected cost of assigning an ex-
ample xi to class c=0,1 can be written as follows:

= +C c C c P x C c P x( ) ( |0) (0| ) ( |1) (1| ).i i i (4)

The objective of misclassification cost minimizing classification
problem is to determine a class c∈{0,1} for each example xi, so that
following expression is minimized:

Linearly Inseparable Classification ProblemLinearly Separable Classification Problem

DEA Model 1 Frontier
DEA Model 2 Frontier

B

B

Fig. 1. Classification problem types and DEA model frontiers.
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The optimal solution to the objective function can be found, for the
training dataset, by using following Bayesian misclassification cost
minimizing decision rule:

= < =c x C C cDecide class 0 for if (0) (1); otherwise, decide class 1.i ii

(6)

Application of Bayesian misclassification cost minimizing decision
rule for DEA classification problems requires additional DEA classifi-
cation specific considerations that we describe later in Section 3.

2.2. Overview of DEA based classification and minor extensions

Before describing DEA models for classification, we introduce some
preliminaries. First, we assume that all components of the decision-
making attribute vector are positive. This assumption is necessary to
introduce early DEA based classification models. These early models
were later extended to relax this constraint. We also assume that the
class labels for binary classification problem are 0 (reject) and 1 (ac-
cept). Additionally, we assume a set, Z, that contains indices of training
examples that have a class label of 0. We also assume a set, O, that
contains indices of training examples with class label 1. If the cardin-
ality of sets is given by |Z|= k and |O|= l, then k+ l= n.

There are two different types of DEA classification models in the
literature. Both of these models were largely developed independent of
each other and were inspired by DEA additive and DEA ratio models.
Both models appeared in literature nearly simultaneously. The DEA
classification based on ratio model was proposed by Troutt et al.
(1994), and the DEA classification based on the additive model was
proposed by Sueyoshi (1999). We present both of these models in this
section. We present DEA classification based on additive DEA model
first. However, before we describe these models, we mention a few
points about some differences between traditional DEA models and DEA
models used for classification. The DEA models used for classification
are slightly different from traditional DEA models that contain both
input and output vectors. DEA classification models—either input-
minimizing or output-maximizing—do not contain either an input or an
output vector. The missing input or output is assumed to be a uni-
dimensional vector, of constant value 1, and is omitted from DEA
classification models. As a result, we do not use input or output vector
terminology in this section. We note that non-traditional DEA models
with constant input (Lovell & Pastor, 1999), missing inputs
(Masoumzadeh, Toloo, & Amirteimoori, 2016; Toloo, 2013) or missing
outputs (Toloo & Kresta, 2014) are well studied in DEA literature. A
recent study (Toloo & Tavana, 2017) investigates some of the compu-
tational challenges associated with these models, and proposes a com-
putationally efficient procedure to solve them.

We also assume that the classification problem is linearly insepar-
able (i.e. class overlap is present). A reader may make a few observa-
tions. First, linearly separable classification problems are simple pro-
blems and support vector machines may be used for maximum margin
classification. Such problems are not suitable for the application of DEA
based classifiers (see Fig. 1 for linearly separable and inseparable pro-
blems for two attribute datasets). Second, non-linearly separable pro-
blems may be converted into linearly separable, or inseparable pro-
blems, using Kernel transformation. Third, multi-class classification
problems may be converted into a series of binary classification pro-
blems using error correcting output codes (Witten, Frank, & Hall,
2011).

The additive DEA classification model (Sueyoshi, 1999) requires
two steps to learn a classification function. In the first step, following
goal programming formulation is solved to identify classification
overlap:
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where +χ i1 and −χ i1 are positive and negative deviations from the piece-
wise linear frontier ∑ == β x dj

m
j ij1 . The constant η > 0 is necessary to

avoid trivial all zero solution and is usually a very small number. The
slacks +χ i1 and −χ i1 are positive and negative deviations from the piece-
wise linear frontier ∑ = −= γ x d ηj

m
j ij1 . Given a new test case xt, its class

can be identified using following criteria:
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case belongs to overlapping region.

For cases belonging to the overlapping region, following second
stage DEA classification problem was solved to classify them into one of
the two classes:
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The overlapping region cases can be either classified into class 1
(accept) or class 0 (reject) based on whether these cases lie on or above
the discriminant line∑ ==

∗ ∗π x dj
m

j ij1 or below it. Cases falling below the
line were classified into class 0, otherwise these were classified as those
belonging to class 1 (Sueyoshi, 1999). This original additive DEA
classification model was later extended to incorporate negative vari-
ables (Sueyoshi, 2001), and, in another study, a computationally in-
tensive mixed integer programming formulation was proposed to re-
solve cases belonging to class overlap region (Sueyoshi, 2004).

Toloo et al. (2015) illustrated the limitations of model (7) in that the
results of this model were sensitive to the value of parameter η > 0.
They illustrate that the model (7) provides different results for different
values of η, and for higher values of η, the model even fails to solve the
most trivial discrimination problem with two groups that are linearly
separable with no group classification overlap. To resolve this limita-
tion, Toloo et al. (2015) proposed following formulation to identify
group classification overlap:
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Model in formulation (9) removes arbitrariness of η from model in
formulation (7) and is slightly simple because it involves fewer vari-
ables.

In case of classification problems that are linearly inseparable,
group overlap exists. Toloo et al. (2015) argued that the second stage
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classification overlap resolution formulation (8) is also flawed due to its
arbitrary value of constant η > 0. To resolve this issue, Toloo et al.
(2015) proposed following second-stage formulation for resolving
classification cases belonging to the group overlapping region:
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The ratio DEA classification model was proposed by Troutt et al.
(1994). It provides one non-linear (piecewise linear) classification
boundary with datasets containing examples from only one class. Troutt
et al. (1994) model assumes that examples from only one class (accept
class) are available, and learning an efficient frontier for the accepted
cases represented the classification frontier. Assuming that the training
dataset contains k examples from accept class, this efficiency frontier
was learned by solving the following DEA efficiency program for each
of these i={1,…,k} examples:
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All examples with =∗ϕ 1i were deemed efficient. Assuming that E∗ is
the set of all efficient cases in training data then given a new test case
xt, following DEA efficiency formulation was solved to determine its
class prediction:
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Assuming ∗a1 and ∗bj as optimal weights in formulation (12), fol-
lowing rule was used to classify the new test case:
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Pendharkar (2011a) further extended DEA ratio model to linearly
inseparable classification problems containing examples from both
classes. In our research, we use and extend the Pendharkar (2011a)
model for probabilistic classification, which is also known as the DEA
model in envelopment form (Lovell & Pastor, 1999). However, before
we explain our extensions, we first describe the Pendharkar (2011a)
model. While this model assumes that the class labels for binary clas-
sification problem are 0 and 1, these class labels are not determined
arbitrarily. Assuming that μ0 and μ1 are mean vectors of m-attributes
that belong to the training dataset, then class labels should be such that

>μ μ‖ ‖ ‖ ‖1 0 . If a violation occurs, class relabeling must be carried out for
both training and holdout datasets so that this condition is satisfied.
Two separate frontiers are developed separately for each class using
two different DEA models (Pendharkar, 2011a).

Fig. 1 shows the two frontiers for a linearly inseparable classifica-
tion problem. Model 1 frontier is drawn using class 0 examples from the
training dataset (i.e. i∈ Z). We assume that all the examples belonging
to class 0 are now labeled vector xz= (xz1,…,xzm) with z=1,…,k. For
each of these examples i={1,…,n} i∈ Z, the efficiency, = ∗ξ ϕ1/i i , is
computed by solving the following output maximizing DEA, which we
title as Model 1 (Pendharkar, 2011a).

∑ ∑− ⩾ = … = ⩾

= …

= =
Maxϕ λ x ϕ x j m λ ϕ λ

z k

,Subject to: 0, 1, , ; 1, ,

0, 1, , .
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z zj i ij
z

k

z i z
1 1

(14)

Similarly, we assume that all the examples belonging to class 1 are
labeled as xu= (xu1,…,xum) with u=1,…,l. For each of these examples
i={1,…,n} and i∈O, the efficiency, = ∗ξ ϕi i , is computed by solving
the following input minimizing DEA, which we title Model 2
(Pendharkar, 2011a).

∑ ∑− ⩽ = … = ⩾

= …
= =

Minϕ λ x ϕ x j m λ ϕ λ

u l

,Subject to: 0, 1, , ; 1, ,
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u i u
1 1

(15)

Pendharkar (2011a) did not specify any procedure to identify when
a test example may be considered to fall under overlap region, but he
provided a nearest neighborhood classification rule to classify a test
example belonging to the overlap region by taking projections of this
test example on Model 1 and Model 2 efficiency frontiers. If for xt test
example, xt1 and xt2 are its Model 1 frontier and Model 2 frontier
projections then the Euclidean distances of the test example from its
projections were used to classify the test example as either belonging to
class 1 or class 0. Specifically, following rule was used to classify test
example belonging to class overlap region: If − > −x x x x‖ ‖ ‖ ‖t t t t1 2 then
class= 1, elseif − < −x x x x‖ ‖ ‖ ‖t t t t1 2 then class= 0; else class= random
{0,1}, where random {0,1} is random classification of an example to
either class, using uniform class assignment probability.

In our minor extension to Pendharkar (2011a) model, we provide a
simple procedure to include negative decision-making attributes and
provide rules (Table 1) to identify the location of test example with
respect to two efficiency frontiers. Additionally, we note the existence
of “blind” classification regions in Pendharkar (2011a) model and
highlight that the proposed rules are useful in identifying whether
classification overlap region exists. Formal identification of classifica-
tion overlap region is important because our proposed probabilistic
DEA classification model should not be used for classification problems
that do not contain classification overlap region.

Negative decision-making attributes can be incorporated into DEA
efficiency analysis. For example, semi-oriented radial measure models
allow a decision-maker to incorporate negative attributes (Emrouznejad
& Latef, 2010) in DEA models. Additionally, neural network models can
also be used for efficiency analysis of large-scale data containing ne-
gative attributes (Toloo, Zandi, & Emrouznejad, 2015). In our exten-
sion, when decision-making attributes are negative, we consider two
possible transformations to make these decision-making attributes po-
sitive. The first approach uses a positive definite Kernel transformation
similar to the one used in Kernel-based SVMs. The second transforma-
tion is to add a positive constant = += … = …K abs x ψ(min ( ))i n j m ij1, , , 1, to
each attribute vector of the entire training and test datasets. The second
transformation moves the entire dataset into the positive quadrant, and
the mean value of each attribute is increased by K; the standard de-
viation remains unchanged. As an example, the following matrix D il-

lustrates three input vectors in a dataset = ⎡

⎣
⎢

−
−

⎤

⎦
⎥

3 10 5
4 3 10
5 3 35

, then

= … = …abs x(min ( ))i n j m ij1, , , 1, =10. Assuming some arbitrary positive con-
stant ψ=5, we get K=15. Adding this value of K to each attribute, the

Table 1
Test vector location based on its efficiency score.

Model 1 efficiency score Model 2 efficiency score Region

Less than 1 Less than 1 Overlap
Less than 1 1 Under Model 1 frontier
1 Less than 1 Above Model 2 frontier
1 1 Blind
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transformed dataset D’ is ′ = ⎡

⎣
⎢

⎤

⎦
⎥D

18 5 20
19 12 25
20 18 50

. Care must be taken in se-

lecting a value of ψ > 0 to ensure that when K is added (to training and
future test or currently available holdout samples), the classification
problem always remains in the positive quadrant. Thus, ψ may be a
small or large positive constant. In our research, for datasets with ne-
gative attributes, we use the second transformation. The reason for this
is its simplicity, and it allows us to compare our techniques with a SVM
that uses a linear Kernel. For our purpose, we relegate the use of non-
linear Kernel transformations to non-linearly separable classification
problems.

To identify the location of a training data example with respect to
two frontiers, two important observations may be made. First, the ef-
ficiency score, ξi, of each example, may be used to indicate the distance
of that example from the frontier. Lower efficiency scores indicate that
an example is far from the frontier and is easy to classify. Higher effi-
ciency scores indicate that the example is either on the frontier (when
ξi=1), or close to it. In both cases, the example falls into the “difficult-
to-classify” region because the classification problem is linearly in-
separable. Second, examples lying inside the overlap region need to be
clearly identified. To do this, we assume that R0 and R1 are DEA re-
ference sets (i.e. examples that get values of ξi =1) for Model 1 and
Model 2. To identify examples that fall inside the overlapping region
additional DEA analysis is required. First, we conduct DEA analysis
using Eq. (14) and reference set R0 for each of the examples i∈O one at
a time. The examples that get a value of ξi < 1 with i∈O fall below the
Model 1 frontier (overlapping region). Similarly, the second DEA ana-
lysis uses Eq. (15) and reference set R1 for each of individual examples
in set Z, where i∈ Z. The examples that get a value of ξi < 1 with i∈ Z
fall above the Model 2 frontier (overlapping region). This analysis will
also indicate if a problem is linearly separable, because in such cases, no
examples will be found in the overlapping region. For linearly separable
classification problems, SVM models may be better suited for solving
the classification problem and DEA models should not be used any
further.

The location of a test example vector xt (also called the holdout
sample example), with respect to DEA frontiers, may be identified by
solving two similar DEA models. For Model 1, the efficiency of the test
vector is computed using dataset ∪x Rt 0 and Eq. (14). For Model 2, the
efficiency for the test vector is computed using dataset ∪x Rt 1 and Eq.
(15). There are four regions a test vector may belong to: below Model 1
frontier (outside the overlap area), above Model 2 frontier (outside the
overlap area), inside overlap area, or in one of the blind regions shown

using the letter “B” in Fig. 1. Table 1 illustrates how the efficiency score
of the test example from two models may be used to identify its loca-
tion.

3. Probabilistic DEA model and Bayesian misclassification cost
minimizing benchmarking classification models

This section is divided into three sub-sections. First, we describe
class PDF estimation using exponential and half-normal inefficiency
PDF assumptions. These probability estimations are foundations for
probabilistic DEA classification for exponential and half-normal in-
efficiency PDFs. In our second sub-section, we provide an overview of
traditional PNN and hybrid DEA-PNN. Both of these techniques directly
use the Bayesian misclassification cost minimizing classification rule.
Finally, we describe one of the best-known Bayesian misclassification
cost minimizing SVMs. This SVM and traditional PNN serve as bench-
marks to evaluate the three different probabilistic DEA models pro-
posed in our study.

3.1. DEA classification probability estimation and classification rule

The procedure to estimate class probabilities is carried out for
holdout/test sample examples only. The training dataset is used only to
provide reference sets R0 and R1. These reference sets are then used for
each example in the holdout sample as described at the end of Section
2. Let ξt0 and ξt1 be the Model 1 and Model 2 efficiency scores for a test
example t=1,…,s. Corresponding to each efficiency score, and for the
purpose of this research, we define variables εt0 and εt1, called the in-
efficiency scores1 for test example t. The value of this variable can be
obtained using the following expression:

= − = … =ε ξ t s c1 , where 1, , , and 0,1.tc tc (16)

Like the efficiency scores, the inefficiency scores can take values
between zero and one. The DEA literature commonly uses exponential
and half-normal distributions for inefficiency score distributions
(Banker, 1993). Fig. 2 illustrates these two distributions. Banker et al.
(1990) argue that the exponential distribution is appropriate when an
analyst believes that a lot of observations will lie close to a DEA fron-
tier; a half-normal distribution is appropriate when an analyst expects
that fewer observations will lie close to DEA frontier.
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Fig. 2. Inefficiency score distributions.

1 This is also referred to as efficiency score deviations in literature (Banker, Kauffman,
& Morey, 1990).
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In our research, we assume that both training and test examples are
drawn from the same underlying population distribution. We call this
assumption representativeness. It is similar to the common production
process assumption in DEA literature. Depending on the inefficiency
score distribution assumption of the analyst, the parameters of dis-
tributions will be learned using the inefficiency scores of training da-
taset examples, and a Maximum Likelihood estimation procedure. Let εi
represent the inefficiency score for each of ith training examples.
Assuming exponential distributions for class 0 and class 1, the PDFs for
class 0 (i.e., i∈ Z) and class 1 (i∈O) inefficiency scores may be re-
presented as follows:

∼ ∈ ∼ ∈f ε exp α i Z f ε exp α i O( ) ( ) for , and ( ) ( ) for .0 0 1 1 (17)

The parameters of the distributions, α0 and α1, are estimated using
the following expressions:

∑ ∑= =
= ∈ = ∈
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ε α
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1
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The representativeness assumption assumes that the parameters
computed using a training data distribution will be similar to in-
efficiency distributions that may be seen in holdout samples.

When a half-normal distribution assumption is made for class 0 and
class 1 inefficiency distribution scores, the PDFs for these inefficiency
scores may be represented as follows:

∼ ∈ ∼ ∈f ε HN σ i Z f ε HN σ i O( ) ( ) for , and ( ) ( ) for .0 0 1 1 (19)

The parameters of distributions, σ0 and σ1, are estimated using
following expressions:
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(20)

While it is certainly possible to consider mixed inefficiency score
distributions for class 0 and class 1 training dataset examples (e.g.,

∼f ε exp α( ) ( )0 0 and ∼f ε HN σ( ) ( )1 1 ), we do not consider such dis-
tributions here, to keep the scope of our research more focused.

For a test example xt, with its inefficiency scores εt0 and εt1 and
exponential inefficiency score distributions, the probabilities that the
example belongs to class 0 (i.e., P(0|xt)) and class 1 can be estimated
using a cumulative distribution function (CDF) of the exponential dis-
tribution as follows:

∝ − ∝ −− −P x e P x e(0| ) 1 and (1| ) 1 .t α ε t α εt t0 0 1 1 (21)

A reader may note that these probabilities are not normalized, and
indeed normalization is not necessary to apply the Bayesian classifi-
cation rule that we will describe below.

For half-normal inefficiency score distributions, similar prob-
abilities may be computed using CDF for the half-normal distribution as
follows:
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The Φ(v) in Eq. (22) is an error function defined as:

∫= −v
π

e dqΦ( ) 2 .
v q

0

2

(23)

In our research, we approximate the value of the error function
using its Maclaurin series as:

⎜ ⎟≈ ⎛
⎝
− + ⎞

⎠
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π
v v vΦ( ) 2

3 10

3 5

(24)

Since the test example is classified using the Bayesian classification
rule, we describe additional DEA classification specific considerations
needed to apply this classification rule. Assuming that the mis-
classification cost is zero for correct classification, i.e. C (1|1)= C
(0|0)= 0, the Bayesian misclassification cost minimizing classification

rule picks a class c based on the following rule:

× > × = =P x C P x C c cIF (1| ) (0|1) (0| ) (1|0) THEN 1, ELSE 0.t t

(25)

The rule in Eq. (25) will classify most holdout sample cases. An
exception will occur when the test example xt falls into the blind region
“B” shown in Fig. 1. In such an event both P(1|xt) = P(0|xt)= 0. When
this situation occurs, special consideration is necessary. If mis-
classification costs are asymmetric (C (0|1) ≠ C (1|0)), then the ex-
ample is classified into a class that yields lower misclassification cost.
This process can be done by changing P(1|xt)= P(0|xt) = 1 and then
applying the rule (Eq. (25)). However, when misclassification costs are
symmetric (C (0|1)= C (1|0)), then the example is classified in a class
that has higher prior probability. If prior probabilities are equal then
the decision maker needs to provide a preferred default class.

The representativeness assumption does not require a decision-
maker to provide prior probabilities because these can be determined
using examples from the training dataset. In our research, we do this,
and we assume that the preferred class is class 0. However, we do re-
cognize different possibilities, where prior probabilities may be sup-
plied by a decision-maker, or by a combination of decision-maker
supplied prior probabilities that may be updated using observed
training data.

3.2. Hybrid DEA probabilistic neural network

PNN is a pattern classifier that uses a Parzen density estimation
(Parzen, 1962) and Bayesian decision rule for classification (Specht,
1990). A typical PNN with binary outputs is illustrated in Fig. 3. In this
figure, the number of input nodes is equal to the number of decision-
making attributes, and the number of pattern nodes is equal to the
number of examples in the training data set. A PNN stores all training
examples in memory. For a test example t, the input nodes will be as-
signed values of m corresponding to different attributes of xt. For each
of the i={1,..,n} pattern nodes, the value of its output oi can be

computed as = −∑ =
−

o ei j
m xij x j

t

σ1
( )2

2 2 , where σ is a smoothing parameter for
the Gaussian kernel. The third layer contains summation nodes, which
sum the outputs oi of patterns belonging to each class in training data.
Using the previously described convention (set Z containing indices of
training examples that have a class label of 0, and set O that with in-
dices of class label 1), the summation of outputs for class 0 (S0) and
class 1 (S1) are computed as follows: = ∑ ∈S ok i Z i0

1 and = ∑ ∈S ol i O i1
1 .

The last layer is the output layer, which classifies summation layer
outputs to one of the two classes using prior probabilities for each class,
and applying the Bayesian decision rule. If P(c) denotes the prior

n pattern nodes

summation nodes

Output Node

Class 0Class 1 

m input nodes

Fig. 3. A probabilistic neural network for classification.
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probability element c∈ {0,1} then the output node, for each example,
chooses a class c that maximizes the expression ×

∈
P c Sargmax[ ( ) ]

c
c

{0,1}
. The

key design parameter in the performance of PNN is selection of an
appropriate value of σ. We optimize this parameter using a bisection
procedure described in Pendharkar (2011b).

A hybrid DEA-PNN will use DEA Models 1 and 2 to select certain
sub-sets of training dataset examples for learning PNN. That is, instead
of using all n examples in a PNN, a hybrid DEA-PNN will consider fewer
training dataset examples that have high ξi values. As mentioned be-
fore, examples with low ξi values are farther away from the frontiers
and are easy to classify. Eliminating these examples may improve the
predictive capabilities of a PNN because the class PDF distribution will
be learned using difficult to classify examples. Fig. 4 illustrates a two-
attribute example of the original training dataset, and a DEA processed
training sub-set with high ξi value examples. There are fallacies in DEA
data processing as well. It may be argued that DEA data processing may
select too few examples for the training dataset. This can happen when
there are only a few examples in the overlapping zone and original
training dataset is small. Rejecting low-efficiency examples from
smaller original training datasets may hurt the learning of class PDFs.
While there may well be such clinical cases, in general, the DEA is well
known to be biased in assigning high-efficiency scores to examples
(Dyson & Thannassoulis, 1988). For large datasets, with the confirmed
existence of overlapping regions, DEA data processing should usually
help. Additionally, even for smaller datasets, attrition of case selection
via DEA data processing may be controlled by using lower threshold
efficiency scores to reject cases from the original training dataset. For
our research, we use a threshold of 0.9. If an example in the original
training dataset has ξi < 0.9, then that example is eliminated and not
included in the DEA processed training dataset. For the sake of com-
parison, we use both traditional PNN on the original training dataset,
and another hybrid DEA-PNN on the DEA processed training dataset. By
using both of these PNNs, it is easy to identify if there are any perfor-
mance improvements via DEA data processing.

When misclassification costs are considered, the Bayesian mis-
classification cost risk minimizing rule from Eq. (25) is applied for
classification. The details are as follows. From Bayesian theory, we have
P(xt|c)∝ Sc. Furthermore, from Bayes Theorem, P(c|xt) ∝ P(xt|c)× P(c).
By using P(c|xt)= P(xt|c)× P(c), we can apply Eq. (25) to classify a test
example. Prior probabilities are computed using a number of examples
belonging to each class in the original training dataset. The re-
presentativeness assumption made earlier assumes that prior prob-
abilities of classes observed in the real world are represented in the
original training dataset. When any violations of these assumptions do
occur, then these priors may be provided by an expert.

3.3. Bayesian misclassification cost minimizing support vector machine

We use a Bayesian misclassification cost minimizing SVM from
Pendharkar (2015) study. Assuming an m-dimensional vector β=(β1,
…,βm)T∈R, and C(0|1)≥ (2× C(1|0)− 1), this SVM can be mathe-
matically formulated as follows:
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(26)

The formulation (26) assumes that C(0|1)≥ (2× C(1|0)− 1). In
the event where C(0|1) < (2× C(1|0)− 1), then the training and
holdout sample data can be relabeled by swapping labels and costs
C(0|1) and C(1|0), so that the new data adheres to the original as-
sumptions. If classes are relabeled, then they are relabeled for both
training and test datasets to ensure consistency. For a test example, if

+ ⩾β x β 0T t
0 it is classified into class 1, otherwise it is classified into

class 0. We solve the formulation (26) in the primal using CPLEX
software. We optimize the value of Δ from a set of values {2−3, 2−2,
2−1, 20, 21, 22, 23} so that the resulting value minimizes training data
misclassification cost, and not necessarily the objective function of the
formulation. Thus, for a given training dataset, we run procedure (26)
seven times (once for each value of Δ), and use the model where Δ
provides the lowest misclassification cost for the training dataset.
Pendharkar (2015) compared formulation (26) to several cost-sensitive
linear classifiers, and found that the SVM is very robust, and performs
very well against other competing linear classifiers.

4. Data, experiments, and results

We perform our experiments using simulated datasets and real-
world bankruptcy prediction datasets. All datasets have continuous
decision-making attributes associated with two classes, and the classi-
fication problem is linearly inseparable. Simulated data allows us to
create ideal conditions where the representativeness assumption is sa-
tisfied, although violations of this assumption may occur in real-world
datasets. They also allow us to simulate parametric normal and non-
normal class PDFs. The real-world datasets contain non-parametric
PDFs as they would normally occur in real-world decision-making si-
tuations. By testing our techniques across different datasets, we can

DEA Model 1 Frontier
DEA Model 2 Frontier

B

B

DEA Model 1 Frontier
DEA Model 2 Frontier

B

B

xi1xi1

xi2
xi2

Original Dataset DEA Processed Dataset Containing High Efficiency Examples

Fig. 4. Original training dataset vs. DEA processed dataset.
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observe the robustness of each one.
Our simulated datasets were generated using SAS software proce-

dures, for five decision-making attributes associated with two different
classes, and three different group distributions each taking a value from
the set D={Normal, Exponential, Uniform}. Each dataset contained
300 examples, with 150 examples belonging to group 1 and the rest
belonging to group 0. The group means for each of the decision-making
attributes were set to 100 for group 1 and 90 for group 0. The standard
deviation for all decision-making attributes was assigned a constant
value of 10. A total of five datasets were generated for each of three
different group distributions. For five datasets and each data distribu-
tion, P(5,2)= 20 unique permutations of training and holdout samples
were used for our experiments. In all experiments with simulated da-
tasets, three different misclassification cost asymmetries were defined
so that each of these asymmetries took a unique value from the set
$={Zero, Low, High}. In the case of Zero information asymmetry, all
misclassification costs were assumed to be equal to one, and all correct
classification costs were assumed to be equal to zero. For Low asym-
metry the misclassification cost category was assigned the following
values: C(1|1)= C(0|0)= 0, and C(1|0)= 2, C(0|1)= 1. A High
asymmetric misclassification cost category was assigned the values:
C(1|1)= C(0|0)= 0, and C(1|0)= 4, C(0|1)= 1.

Tables 2–4 illustrates holdout sample results for different mis-
classification cost asymmetries. In the results presented, EDEA refers to
exponential DEA and HNDEA refers to half-normal DEA. Results in each
cell are averaged for 20 holdout sample tests for each of the different
techniques and data distributions. The results indicate a pattern. For a
normal data distribution, cost-sensitive SVM provides a lower mis-
classification cost average; for exponential and uniform data distribu-
tions, hybrid DEA-PNN provides the lower average. The PNN appears to
consistently provide the worst average for normal data distributions,
and the hybrid DEA-PNN exhibits this trend also.

We perform the analysis of variance (ANOVA) statistical test with

misclassification cost as a dependent variable, and distribution (D),
technique (T) and misclassification cost ($) as independent factors.
Table 5 illustrates the ANOVA results. They indicate that for all three
factors, their two-way and three-way interactions were significant at
99% level of statistical confidence. The R-squared value was about
81%.

Given the statistical significance of all three factors in predicting
misclassification cost, we performed a post hoc analysis for the pairwise
difference in means using Tukey’s method, and represent the results in
homogeneous subsets at 95% level of statistical confidence. Table 6
illustrates the results for the technique factor. Techniques with no dif-
ference in means belong to the same subset. The results indicate that,
overall, the DEA-PNN outperformed all other techniques, followed by
the SVM. No difference in means was observed for PNN and EDEA; and
for EDEA and HNDEA techniques.

Tukey’s homogeneous subsets for distribution and cost factors are
shown in Tables 7 and 8. The results indicate no difference in means for
Uniform and Exponential distributions. The mean values in Tables 2–4
indicate that the DEA-PNN had the lowest means for uniform and ex-
ponential distributions. However, for normal distributions, SVM had
the lowest means.

As a hybrid technique, the DEA-PNN selects a subset of training
examples to learn class distribution PDFs, and PNN uses all of the
training examples. Of 300 examples in the training dataset, the DEA-
PNN used about 69 examples on average for learning class distribution

Table 2
Misclassification cost statistics for zero misclassification cost asymmetry.

Distribution DEA-PNN EDEA HNDEA PNN SVM

Exponential 22.20
(4.86)

54.40
(9.24)

59.20
(9.90)

27.25
(4.89)

30.50
(4.58)

Normal 43.75
(6.67)

43.90
(5.95)

44.00
(6.12)

69.45
(7.21)

39.50
(5.56)

Uniform 39.50
(4.90)

48.85
(5.89)

48.90
(6.01)

49.65
(7.21)

44.20
(4.09)

Table 3
Misclassification cost statistics for low misclassification cost asymmetry.

Distribution DEA-PNN EDEA HNDEA PNN SVM

Exponential 33.35
(6.58)

80.05
(18.66)

88.05
(20.45)

36.85
(7.15)

51.65
(6.38)

Normal 62.90
(9.54)

59.55
(9.02)

59.15
(8.67)

92.30
(11.50)

55.15
(7.46)

Uniform 53.85
(6.38)

59.60
(6.02)

60.15
(6.38)

70.75
(10.72)

62.10
(9.22)

Table 4
Misclassification cost statistics for high misclassification cost asymmetry.

Distribution DEA-PNN EDEA HNDEA PNN SVM

Exponential 51.75
(7.06)

132.75
(37.5)

140.95
(40.2)

54.30
(13.16)

84.30
(8.21)

Normal 83.85
(12.04)

81.35
(13.55)

80.90
(12.79)

127.40
(18.2)

73.45
(11.96)

Uniform 70.90
(6.96)

78.05
(8.61)

78.95
(9.55)

94.35
(14.36)

77.90
(10.04)

Table 5
The full factor ANOVA summary table.

Source Type III sum
of squares

Degrees of
freedom

Mean square F-ratio Significance

Model 591521.7 44 13443.7 85.64 0.000**

Intercept 3742548.2 1 3742548.2 23841.77 0.000**

T 65143.7 4 16285.9 103.75 0.000**

D 4928.9 2 2464.5 15.70 0.000**

$ 281624.6 2 140812.3 897.04 0.000**

T×D 194212.9 8 24276.6 154.65 0.000**

T× $ 5840.3 8 725.5 4.62 0.000**

D×$ 11859.9 4 2964.9 18.89 0.000**

T×D×$ 27947.2 16 1746.70 11.13 0.000**

Error 134213.1 855 156.9
Total 4468283.0 900
Corr. total 725734.8 899

R-squared=0.815 (adjusted R-squared=0.806); **Significant at 99% level of
statistical significance.

Table 6
Overall pairwise difference in means Tukey’s post hoc test for technique factor.

Technique Subset 1 Subset 2 Subset 3 Subset 4

DEA-PNN 51.34
SVM 57.64
PNN 69.14
EDEA 70.94 70.94
HNDEA 73.36

Mean square error= 156.974; Harmonic mean sample size= 180.

Table 7
Overall pairwise difference in means Tukey’s post hoc test for distribution
factor.

Distribution Subset 1 Subset 2

Uniform 62.51
Exponential 63.17
Normal 67.77

Mean square error= 156.974; Harmonic mean sample size= 300.
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PDFs, with a minimum of 36 examples in one training dataset and
maximum of 100 examples in another. Thus, the DEA-PNN rejected
over 66% of the training dataset examples from learning class PDFs.
Table A1 in the Appendix A provides the breakdown of examples used
by the DEA-PNN for each of its five training datasets and three data
distributions. The second column shows the number of examples in
Class 1 of the training dataset that received efficiency score values of 1.
The third column shows the number from Class 0 that received effi-
ciency score values of 1. The fourth column shows the other high-effi-
ciency score value examples that were retained by the DEA-PNN, with
their efficiency score values varying from between less than one and
greater than or equal to the threshold value of 0.9. Lastly, the fifth
column is sum of the numbers appearing in the preceding three columns
and shows the total number of examples considered in learning PDFs
for the DEA-PNN.

Simulated dataset results seem to indicate that the DEA-PNN may be
a promising technique to use when dataset class distributions are either
exponential or uniform. However, the SVM may be more appropriate
when dataset class distributions are normal. As mentioned earlier, si-
mulated datasets represent ideal distributions, representativeness as-
sumption, equal class priors, and variable independence conditions that
are rarely observed in the real world. Real-world datasets do not adhere
to these ideal conditions and may contain distributions that are only
approximations of ideal statistical distributions. In our simulated da-
tasets, decision-making variables were generated independently
without any correlations. Real-world decision-making variables may
have positive or negative correlations between them and are very dif-
ferent from simulated datasets. Additionally, the number of examples
belonging to both classes in real-world datasets may not be equal. With
unequal examples, and sometimes smaller datasets, sampling may lead
to a violation of the representativeness assumption as well.

We tested our techniques on two real-world datasets from the do-
main of corporate bankruptcy prediction. These datasets were gener-
ated and used in a previous study (Pendharkar & Nanda, 2006). There
are two corporate bankruptcy datasets. The first dataset contains 100
examples, with 50 firms that filed for bankruptcy and 50 that did not,
between the years 1987 and 1992. The second dataset contains 83
firms, where 22 of these filed for bankruptcy and the remaining 61
firms were financially solvent, from the years 1993 to 1995. Both da-
tasets contained five decision-making variables (ratios):

• Earnings Before Interest and Taxes/Interest Expense,

• Earnings Before Interest and Taxes/Assets,

• Current Assets/Current Liabilities,

• Retained Earnings/Assets,

• Market Value of Equity/Book Value of Debt.

Since the five ratios had higher values for non-bankrupt firms, we
gave them a class label of “1”, and assigned “0” to bankrupt firms. Some
ratios were negative so we processed the data using the method de-
scribed in Section 2 to move data into the positive quadrant. The two
datasets represent an interesting scenario in terms of class bias, where
the percentage of examples belonging to both classes is balanced in the
first dataset and unbalanced in the second.

Given the already small sample sizes of our real-world datasets,
splitting them into two for training and test purposes would further

reduce the sample size. Under such circumstances, we decided to use V-
fold experimentation. In a V-fold sampling, the original dataset is di-
vided into five split datasets of approximately equal size (five split-
datasets of 20 examples each for the first dataset). We made sure that
class balances are not impacted in the split datasets (for example, in the
first dataset, each split dataset contained 10 instances each of bankrupt
non-bankrupt firms). Once five split datasets are formed, V-fold sam-
pling uses four of them to create a training dataset, and the fifth as a test
dataset. Five unique training and test experiments can be performed
using V-fold sampling, where each example appears either in a training
or a test dataset in different experiments.

Tables 9 and 10 report test dataset results for each fold, their means,
and paired t-test results on the difference in means between different
techniques. While the difference in means between techniques was not
statistically significant, it is important to note that the mean value of
DEA-PNN is higher than that of PNN for zero and low misclassification
cost asymmetry. Since DEA-PNN is a hybrid technique that selects only
a subset of examples selected by PNN, it appears that it had too few
examples to learn class PDFs in bankruptcy prediction datasets. Table
A2 in the Appendix A provides a breakdown of the number of examples
selected by the DEA-PNN to learn its class PDFs. This number was 39 on
average. The PNN, on the other hand, used all 80 training examples to
learn its PDFs. The results appear to suggest that the selection threshold

Table 8
Overall pairwise difference in means Tukey’s post hoc test for cost factor.

Cost Subset 1 Subset 2 Subset 3

Zero 44.35
Low 61.70
High 87.41

Mean square error= 156.974; Harmonic mean sample size= 300.

Table 9
Holdout sample misclassification cost for first dataset (1987–1992).

Fold DEA-PNN EDEA HNDEA PNN SVM

Zero misclassification cost asymmetry
1 6 14 14 0 15
2 18 7 7 20 13
3 16 4 4 20 12
4 7 8 7 11 8
5 6 6 6 0 6
Average 10.6 7.8 7.6 10.2 10.8

Low misclassification cost asymmetry
1 20 16 16 20 16
2 10 10 8 0 20
3 2 6 6 0 20
4 14 13 13 14 6
5 19 7 7 20 6
Average 13 10.4 10 10.8 13.6

High misclassification cost asymmetry
1 20 16 16 20 12
2 0 16 16 0 20
3 0 12 12 0 20
4 18 24 24 18 9
5 19 8 8 19 12
Average 11.4 15.2 15.2 11.4 14.6

Table 10
Pairwise |t|-value for the difference in means for first dataset (1987–1992).

EDEA HNDEA PNN SVM

Zero misclassification cost asymmetry
DEA-PNN 0.73 0.79 0.17 0.08
EDEA 1 0.42 1.79
HNDEA 0.46 2.00
PNN 0.13

Low misclassification cost asymmetry
DEA-PNN 0.97 1.15 1.09 0.10
EDEA 0.19 0.47 0.83
HNDEA 0.21 0.89
PNN 0.39

High misclassification cost asymmetry
DEA-PNN 0.75 0.75 0 0.46
EDEA 0 0.75 0.14
HNDEA 0.75 0.14
PNN 0.46
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of 0.9 used by the DEA-PNN may have led to under sampling. In both
cases the difference in means between techniques is not significant, but
it is important to note that sample size and threshold selection do play a
role in the performance of DEA-PNN. Performance degradation may
occur due to low sample size and/or due to a violation of the re-
presentativeness assumption.

Tables 11 and 12 report the results for the second dataset. The re-
sults indicate that the PNN had the worst statistically significant per-
formance when misclassification cost asymmetry was zero. Further-
more, the EDEA and the HNDEA performed better than the DEA-PNN
under the same zero asymmetry. However, all techniques performed
statistically similarly when the misclassification cost asymmetry was
low or high. Table A3 in the Appendix A provides a breakdown of the
number of examples selected by the DEA-PNN to learn its class PDFs.
On average, the DEA-PNN used about 51 examples. In contrast, the first
fold of PNN contained 88 training examples and the other four folds
contained 84 training examples.

In comparison to the simulated dataset results, the EDEA and the
HNDEA results for real-world datasets were much better. One reason for
this improvement may be the problem domain. It is well known in
bankruptcy prediction literature, that class distributions for these pro-
blems are similar to exponential distributions (Lee, 2014), and techni-
ques that perform well on exponential distributions generally do well
for bankruptcy prediction problems (Ono, 2006) also.

5. Summary, discussion, and directions for future work

Our study indicates that probabilistic DEA techniques may hold the
promise of improved classification results in certain focused classifi-
cation problem domains. This DEA classification niche requires a line-
arly inseparable classification problem with continuous decision-
making attributes. Additionally, monotonicity, where higher values of

decision-making attributes lead to classification into the class label of 1,
and exponential class distributions may be desired. Generally, the DEA-
PNN technique performs as well as or better than competing mis-
classification cost-sensitive SVM. However, the DEA-PNN can select too
few examples to learn its class distribution PDFs when training data
sample sizes are small (fewer than 100 examples). Using traditional
PNN as a benchmark allows a decision-maker to detect if training
sample sizes are too small, and may, therefore, impact the performance
of DEA-PNN. Thus, a decision-maker may use DEA-PNN and PNN re-
sults together and improve classification accuracy by making adjust-
ments to the DEA-PNN threshold so that the results it produces are
always better than or equal to those of the PNN.

In a classification problem where all decision-making variables are
categorical, the DEA technique should not be used. However, for mixed
decision-making attributes, where some variables are continuous and
others are categorical, a few modifications can be made to incorporate
categorical variables. First, if these categorical variables are ordinal,
then Banker and Morey’s (1986) non-controllable models can be used to
incorporate them along with other continuous variables. If all catego-
rical variables are non-ordinal and binary, then these binary variables
can be relabeled using a methodology that is similar to the class re-
labeling described in Section 3. For categorical variables that are nei-
ther binary nor ordinal, training data needs to be split for each category
of the variable, and separate DEA models may be built for each cate-
gory. Such an analysis is combinatorial in nature and requires large size
datasets so that training datasets for each category have linear in-
separable classification problems. In practice, non-ordinal categorical
variables, along with continuous variables, may impose a limit on the
use of DEA models for classification problems. For such problems, a
better approach may be to use hybrid techniques that process catego-
rical variables and continuous variables separately. Perhaps use of de-
cision trees for categorical variables, and DEA for continuous variables
may be an option for such a hybrid technique. Future research is needed
in this area.

Table 11
Holdout sample misclassification cost for second dataset (1993–1995).

Fold DEA-PNN EDEA HNDEA PNN SVM

Zero misclassification cost asymmetry
1 7 6 6 11 7
2 9 6 5 13 9
3 8 5 5 14 8
4 10 10 10 11 9
5 8 4 6 14 5
Average 8.4 6.2 6.4 12.6 7.6

Low misclassification cost asymmetry
1 6 8 8 6 11
2 12 5 5 12 11
3 10 6 7 8 10
4 10 13 13 12 9
5 9 8 8 11 10
Average 9.4 8 8.2 9.8 10.2

High misclassification cost asymmetry
1 6 10 10 6 12
2 16 5 5 16 12
3 12 9 10 8 12
4 10 15 15 10 13
5 11 13 13 11 14
Average 11 10.4 10.6 10.2 12.6

Table 12
Pairwise |t|-value for the difference in means for second dataset (1993–1995).

EDEA HNDEA PNN SVM

Zero misclassification cost asymmetry
DEA-PNN 2.99* 2.82* 4.58* 1.37
EDEA 0.40 4.00* 1.87
HNDEA 4.23* 1.18
PNN 4.22*

Low misclassification cost asymmetry
DEA-PNN 0.75 0.66 0.53 0.72
EDEA 1.00 1.12 1.30
HNDEA 1.00 1.21
PNN 0.28

High misclassification cost asymmetry
DEA-PNN 0.20 0.13 1.000 0.95
EDEA 1.00 0.07 1.50
HNDEA 0.14 1.38
PNN 1.42

* Significant at 95% level of statistical significance.
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Appendix A

See Tables A1–A3.
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