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Abstract—Polar Codes are a recently proposed class of linear
block error correction codes. They are provably capacity achiev-
ing codes over Binary Discrete Memoryless Channels (B-DMC)
and have hence garnered a lot of interest from the scientific
community. It is also a proposed channel coding method for
5G technology. Bit-Interleaved Coded Modulation with Iterative
Decoding (BICM-ID) is a well known design to improve the
error correcting performance of underlying channel codes over
continuous channels especially Additive White Gaussian Noise
(AWGN) channels. The novel idea in this paper, is to combine
these powerful error correcting techniques i.e. integrate Polar
Codes in a BICM-ID design to produce a high performance
Bit-Interleaved Polar Coded Modulation with Iterative Decoding
(BIPCM-ID) system. The error correcting performance of such
a BIPCM-ID system has been analyzed through simulations over
AWGN channel and multiple modulation schemes. Additionally
error floor removal has been implemented and system perfor-
mance has been discussed.

I. INTRODUCTION

Arikan in his paper [1], proposed a new channel coding
scheme by “polarizing” channels w.r.t. their capacities. The
process of channel polarization helps to classify every bit
channel w.r.t. channel capacity which is used to create a scheme
of encoding information bits into a codeword. This form of
classification provides a new family of linear block codes called
Polar Codes.

BICM-ID is a state-of-the-art error correcting scheme. The
coded-modulation scheme was proposed in [2] for improving
error correction capabilities by using channel coding and
modulation schemes as a combined unit instead of independent
modules. Adding diversity to the codes by interleaving, should
improve the error correction performance as proposed in [3], to
hence provide the Bit Interleaved Coded Modulation (BICM)
design described in [4]. BICM’s demerits can be overcome by
exchanging extrinsic information between multiple modules of
the Iterative Decoding (ID) chain iteratively, to improve error
correcting capability over every iteration [5]. Such a BICM-ID
scheme is helpful for error correction of codes received over
AWGN and Fading channels.

The idea is to encode the input data bits into codewords
generated by polar encoding, interleaving and then modulating
them at the transmitter end. Similarly, at the receiver end polar
decoder, demodulator, interleaver and de-interleaver iteratively
perform their tasks and exchange extrinsic information to
produce codeword estimates. The aim in this paper is to develop

such a novel BIPCM-ID system and analyze its error correcting
capability.

Although Arikan’s original idea of channel polarization is
limited only to Binary Erasure Channels (BEC) the BIPCM-ID
needs to be analyzed over AWGN channels. Thus, a modified
approach of channel polarization for AWGN channels is used.
The polar decoder which is to be integrated in an ID chain
should be a Soft-Input Soft-Output (SISO) decoder so that it
can produce extrinsic information to be exchanged with, as
well as process the inputs from, the other modules in the ID
chain. Modifications can also be made to remove the error floor
altogether. These issues have been addressed in this paper.

The rest of the paper is organized as follows. In Section II,
an overview of Polar Codes and BICM-ID is provided for the
reader to get a basic understanding of these concepts. Section
III describes the novel approach of integrating Polar Codes in a
BICM-ID design by generating the extrinsic information from
the decoder module to be used for ID and how the channels
are polarized for a AWGN channel. Section IV, provides the
simulation results of the BIPCM-ID system, with detailed
discussions about the parameters used and the corresponding
performance results obtained. Section V provides the key points
which merit further research and the existing limitations which
can be improved upon. The concluding remarks are mentioned
in Section VI.

Notations: Letters in bold fonts denote vectors. X and Y
denote the Random Variables (RV) corresponding to the input
and output of a channel respectively. W denotes a channel
as well as the Probability Density Functions (PDF) of the
RVs across the channel. N denotes the length of a codeword.
Z denotes the Bhattacharyya parameter. L denotes the Log-
Likelihood Ratio (LLR) values.

II. PRELIMINARIES

In this Section, a general overview of the concepts of Polar
Codes and BICM-ID are provided which lay the foundation
for developing the target BIPCM-ID system.

A. Polar Codes

1) Channel Polarization: Channel polarization is a technique
used to segregate multiple channels with identical capacities,
such that the channels are polarized w.r.t. their capacities, i.e.
every channel can be categorized as a high capacity or a low
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capacity channel after channel polarization. The aim is to
construct such code sequences which can provably achieve the
symmetric capacity C(W ) for a given B-DMC W , by using
the high capacity channels to transmit the information bits
and using the low capacity channels to transmit the frozen
bits, i.e. bits with pre-defined values, knowledge of which is
also available at the decoder (receiver) and is used during
the decoding process as a priori knowledge. Depending on
the coderate, the channels with the highest capacities after
polarization are used to encode information bits while those
with lowest capacities are used to encode frozen bits. The
idea of channel polarization is to segregate/partition all the
bit channels based on the total available capacity, which is
determined by the underlying channel used.

For a binary input RV X ∈ {0, 1} and corresponding output
RV Y w.r.t. a given channel, the corresponding conditional
PDFs are used to denote the amount of information content
and the hence the channel capacity. For B-DMC channels, the
mutual information is denoted as [6]:

I(W ) =
∑
y∈Y

∑
x∈X

WX,Y (x, y) log2

(
WX,Y (x, y)

WX(x)WY (y)

)
(1)

and channel capacity is the maximum mutual information of
the channel [6]:

C(W ) = max

(
I(W )

)
(2)

If the aforementioned B-DMC is a symmetric channel then
(1) can be modified to denote the symmetric

(
W (x = 0) =

W (x = 1) = 0.5
)

channel capacity as follows [1]:

I(W ) = 1
2

∑
y∈Y

∑
x∈X

WY |X(y|x) log2
(

WY |X(y|x)
1
2WY |X(y|x=0)+ 1

2WY |X(y|x=1)

)
(3)

The Bhattacharyya parameter is used to measure the simi-
larity i.e. correlation between different distributions. For any
B-DMC it is denoted as [6]:

Z(W ) ,
∑
y∈Y

√
WY |X(y|x = 0)WY |X(y|x = 1) (4)

As the PDFs of the channel RVs are always in the range
[0, 1], it is easily deduced from (3) and (4) that both I(W ) and
Z(W ) will also be within [0, 1]. It is seen from (3) and (4),
that I and Z have an inversely proportional relation (terms in
the denominator of (3) are the terms in numerator of (4)). Z
can thus be used as a parameter to determine the phenomenon
of channel polarization as it is an indicator of the channel
capacity, i.e. high value of Z(W ) indicates low capacity and
vice versa.

Suppose channel polarization transforms two copies of
channel W into two channels, one with lower (W−) and
the other with higher (W+) capacity, then the condition
I(W−) + I(W+) = 2I(W ) always holds true and the total
capacity is preserved under Shannon’s Theorem. This process
is shown in Fig. 1.

Fig. 1. Black-box depiction of the atomic circuit.

For a 2-bit channel transformation (W,W ) → (W−,W+)
as shown in Fig. 1, a circuit for channel polarization, is designed
such that [1]:

I(W−) + I(W+) = 2I(W ) (5)
I(W−) ≤ I(W ) ≤ I(W+) (6)

Similarly w.r.t. the Z parameters for Fig. 1, following properties
hold [1]:

Z(W+) = Z(W )2 (7)

Z(W−) ≤ 2Z(W )− Z(W )2 (8)
Z(W−) ≥ Z(W ) ≥ Z(W+) (9)

From (7) and (8), it implies that,

Z(W−) + Z(W+) ≤ 2Z(W ) (10)

This idea of channel polarization can also be generalized to
N (with N = 2n, where n is a positive integer) independent
copies of W channels, in order to synthesize another set of
N channels W (i)

N : 1 ≤ i ≤ N such that, as N becomes large,
the fraction of indices i for which I(W

(i)
N ) ≈ 1 approaches

I(W ) and the fraction of indices i for which I(W
(i)
N ) ≈ 0

approaches 1− I(W ) while preserving the conditions [1]:

N∑
i=1

I(W
(i)
N ) = NI(W ) (11)

N∑
i=1

Z(W
(i)
N ) ≤ NZ(W ) (12)

Within the scope of this paper, (7) and (8) are used for
Z(W ) ∈ (0, 1). This is because Z(W ) = 0 means it is a
noiseless channel and Z(W ) = 1 means it is a completely noisy
channel, both cases are not applicable for real channels and such
channels cannot be polarized to channels with lower/higher
capacities, because even after polarization all the channels
would have Z(W ) = 0 or Z(W ) = 1 effectively resulting in
no polarization.

2) Polar Encoding: One way to obtain the aforementioned
channel polarization is shown in Fig. 2, which is encapsulated
by the “Network” box in Fig. 1. Thus, w.r.t. Fig. 2 for input
vector u = [u1, u2] for u1, u2 ∈ {0, 1}, the output vector
c = [c1, c2] for c1, c2 ∈ {0, 1} is generated as follows:

c1 = u1 ⊕ u2 (13)
c2 = u2 (14)



Using Fig. 2, Fig. 1 can be modified to Fig. 3. Fig. 2 along
with (13) and (14) are used to provide the matrix representation
of the channel polarizing circuit given by (15), which is the
generator matrix for encoding a codeword of size N = 2 and
is the transpose representation of the matrix provided in [1].

F =

[
1 1
0 1

]
(15)

Fig. 2. 2 → 2 bit atomic circuit for channel polarization [1].

Fig. 3. 2-bit channel transformation [1].

A similar channel transformation for N = 4 is shown in
Fig. 4.

Fig. 4. 4-bit channel transformation [1].

The connections to the circuits in every consecutive stage
need to be permuted such that channel transformation using (7)
and (8) is possible, i.e. two identical channels with Z(W ) are
polarized to channels with Z(W−) and Z(W+) respectively.
The same structure can be generalized to a N -bit circuit
such that N = 2n. Consequently, the generator matrix can
be represented by [1],

GN = BN · F⊗n (16)

where, BN , RN (I2⊗RN/2)(I4⊗RN/4)···(IN/2⊗R2) is the
permutation matrix which creates the desired connections and
⊗ is a Kronecker product. F⊗n is the Kronecker product of the
matrix provided by (15), with itself of the order of n = log2N .
Hence, for an input uN (consisting of K information and
N − K frozen bits), the codeword cN is generated by (17)
using (16).

c>N = GN · u>N =
(
BN · F⊗n

)
· u>N (17)

where, uN = πu(uK uN−K), with uK being the information
bit vector, uN−K being the frozen bit vector and πu is a
function which maps the bits w.r.t. the bit channel capacities
after channel polarization.

3) Polar Decoding: As previously mentioned, to integrate
Polar Codes in a BICM-ID design, a SISO decoder is required
for exchanging extrinsic information amongst the constituent
modules in an ID chain. Amongst, the proposed techniques for
polar decoding, Belief Propagation (BP) decoding mentioned
by Arikan in [7] is a valid candidate.

Fig. 5. Mathematical representation of Fig. 2 for BP decoding.

The circuit structure of the decoder is inherently the same
as the encoder. Fig. 5 shows the LLR value calculation at
each node of an atomic circuit. Comparing Fig. 5 to Fig. 2,
the XOR connection results in a boxplus operation, while the
direct connection is a simple addition operation of the LLR
values. Lleft is used to denote the left-going LLR values, while
Lright is used to denote the right-going LLR values.

Li+1,node1
left = Li,node3left �

(
Li,node4left + Li+1,node2

right

)
(18)

Li+1,node2
left = Li,node4left +

(
Li,node3left � Li+1,node1

right

)
(19)

Li,node3right = Li+1,node1
right �

(
Li,node4left + Li+1,node2

right

)
(20)

Li,node4right = Li+1,node2
right +

(
Li,node3left � Li+1,node1

right

)
(21)

For any atomic circuit comprising of arbitrary stages i and
i + 1

(
i ∈ [0, n − 1]

)
, the LLR values are calculated using

(18), (19), (20) and (21) which are the log-domain notations
of Likelihood Ratio calculations given in [7].

B. BICM-ID

The idea of combining modulation and coding as a single and
co-dependent process to improve error correcting performance
of the channel coding techniques was proposed in [2]. This
approach of coded-modulation was modified, by interleaving



the coded bits to increase code diversity [3]. For the BICM-ID
design w.r.t. this paper, multiple codewords are serially/parallely
concatenated with the bits of each codeword interleaved with
those of the other concatenated codewords, to generate a
pseudo-random interleaving. Bits of the same codeword, if
interleaved such that they are far apart enough in time to
exceed the coherence time, then it would result in different
effects of the channel on the bits of the same codeword hence
increasing diversity. This provides error protection based not
on constraint length (maximum length of codeword, N ), but
with increased correlation amongst multiple codewords and
decreased correlation amongst bits of the same codeword.
Ideally maximum diversity can be achieved if the codewords
are interleaved such that every bit of the same codeword
are transmitted at separate sets of coherence time. Increasing
channel diversity is a desired property for a majority of the
real-time channels.

The constraint length of the codeword, determines if bit-
interleaving would be useful, as the length should be large
enough such that transmission time of the entire codeword is
longer than the coherence time. This technique of BICM is par-
ticularly helpful in case of fading channels, or channel models
in which there exist higher degrees of uncertainty/disturbance.

Fig. 6. Block diagram of a BICM design at the transmitter end.

A BICM transmitter is shown in Fig. 6. For the source
producing a vector u of K information bits and N −K frozen
bits, it is encoded to a codeword [c1, c2, ...., cN ] of length N for
a given coderate of K/N of the encoder. A number (say D) of
such codewords are concatenated to produce a block c =
[c11, c12, ...., c1N , c21, c22, ...., c2N , ...., cD1, cD2, ...., cDN ] of
length D ×N . c is then bit interleaved by a bit interleaver π
to produce c′. π is a one-to-one correspondence π : i → i′,
which maps bit at position i to bit at position i′, i.e. π(i) = i′,
thus resulting in a time re-ordering of the coded sequence c
to produce the sequence c′, i.e. c′i = cπ(i). The bits of c′ are
then converted to complex channel symbols x, depending on
the modulation scheme used by the modulator. For an 2m-
ary constellation map χ obtained by the m-to-one mapping µ
(µ : (0, 1)m → χ) of the encoded and interleaved bits, (22)
holds.

xt = µ(c′t) (22)

where, c′t = [c′t,1, c
′
t,2, · · · , c′t,m] is a set of m bits of the

interleaved codewords at an instance t for c′t,i = c′(t−1)m+i.
Number of instances t would depend on the constellation map
used for modulation/demodulation m, length of a codeword
N and the number of codewords concatenated for interleaving
D i.e. t ∈ [1, D×Nm ] and D×N

m ∈ N.

xt ∈ χ is the modulation symbol obtained by modulating
c′t using (22). These symbols xt are then transmitted across
the channel and the corresponding received output yt is:

yt = atxt + nt (23)

where, for an AWGN channel, nt is the additive noise term
with Gaussian distribution (with spectral density N0/2) and
the attenuation/fade coefficient at = 1 ∀t.

Fig. 7. Block diagram of a BICM design at the receiver end.

A BICM receiver is shown in Fig. 7. The decoder module in
the receiver is based on Maximum-Likelihood (ML) decoding
as provided in [5]. The ML decoder uses the Free Euclidean
Distance (FED) between the transmitted and received symbols
to estimate the received symbols and consequently the received
bits.

Bit interleaving introduces an additional random modulation
causing a reduction in the minimum FED of the received
symbols, which might degrade performance over an AWGN
channel [3]. To overcome this limitation, for a 2m-ary modula-
tion scheme, if m−1 bits are known by ideal feedback then the
corresponding modulation is simplified to a binary modulation
of the unknown bit position thus significantly increasing the
FED of binary modulation w.r.t. the specific bit position. This
is the basis of ID technique, i.e. more reliable bits are used to
improve estimation of less reliable bits iteratively as shown in
Fig. 8.

Fig. 8. Block Diagram of ID chain for a BICM-ID design.

For ID, on receiving the channel symbols, the demodulator
calculates maximum a posteriori bit metrics corresponding to c′.
This is the extrinsic information generated by the demodulator.
The bit metrics are then deinterleaved and provided to the
decoder. The ML-based decoder estimates the input to generate
the decoded output. Additionally, it also produces extrinsic
information, bit metrics corresponding to which are interleaved
to produce a priori information for the demodulator, which are
used for demodulating the channel symbols again in the next
iteration of ID. This entire process is iterated as many times
as is required to converge to a solution.



III. BIPCM-ID

The novel BIPCM-ID system is developed by using Polar
Codes as the underlying error correcting codes in a BICM-
ID design which is shown in Fig. 9. Clearly, the conventional

Fig. 9. Block Diagram of a BIPCM-ID design.

encoder and decoder modules are replaced by the polar encoder
and decoder modules, respectively. Polar encoding is performed
exactly as described in Section II.

The decoder however is the trickier module to be integrated
within the design. As previously discussed, a SISO decoder is
used to generate soft LLR values for ID, which in this case
would be the BP decoder as explained in Section II. To be able
to use the BP decoder for ID, LLR values corresponding to the
extrinsic a posteriori probabilities pextr(c) need to be calculated
which would be interleaved and forwarded to the demodulator
for a consecutive iteration. Thus, extrinsic information should
also be an output generated by the decoder for every iteration
of the ID. The desired decoder structure is shown in Fig. 10.

Fig. 10. Polar decoder in a BIPCM-ID system.

A. Extrinsic Information

At each node of the BP decoder (see Fig. 5), there are 2 LLR
values available. One is a left-going LLR value while the other
is a right-going LLR value. Owing to the circuit structure for
generating Polar Codes, it is evident that there are n = log2N
stages within the circuit with every stage having N nodes each.
The BP decoder however, is a black box module for the other
components in the ID chain at the receiver which means that
the interleaver and deinterleaver have access only to the left
and right-going LLR values at the first and last stages w.r.t.
the circuit structure of the decoder. As evident from Fig. 9,

the input to the decoder is a set of N left-going LLR values.
These input LLR values would be represented as L0

left i.e. LLR
values at the initial stage 0 of the decoder. Thus, the left-going
LLR values at the decoder output can be represented as Lnleft
i.e. LLR values at the last stage n of the decoder. The same
convention is used to represent the right-going LLR values.
i.e. Lnright are the right-going LLR values at the output of the
decoder, while L0

right are the right-going LLR values at the
input of the decoder.
L0

left consists of the LLR values corresponding to the
codeword to be decoded, provided as input to the decoder.
Thus,

L0,i
left = Lĉi = loge

papri(ci = 0)

papri(ci = 1)
(24)

and,
L0

left =
[
L0,1
left, L

0,2
left, L

0,3
left, · · ·L

0,N
left

]
(25)

Lnright consists of the a priori knowledge of frozen bits and
they are set such that the LLR value calculations (as provided
in Sec. II-A3) in the decoder should not affect the estimate
of the frozen bits as well as help in calculating LLR values
corresponding to information bits. Thus,

Ln,iright = loge
p(ui = 0)

p(ui = 1)
=


+∞, if ui is a frozen bit = 0

−∞, if ui is a frozen bit = 1

0, if ui is not a frozen bit
(26)

and
Lnright =

[
Ln,1right, L

n,2
right, L

n,3
right, · · ·L

n,N
right

]
(27)

The LLR values at the input to the decoder belong to the
same domain as the output of the encoder which is evident
from Fig. 9. The LLR values L0

left and L0
right at the input to

the decoder should contain maximum amount of information
about the codeword. L0

right correspond to the set of right-going
LLR values which are calculated at the last instance, i.e. right-
going LLR values are calculated from stage n to stage 0. Thus,
intuitively L0

right should contain maximum amount of extrinsic
information from the decoder to be used for ID, as its values
would reflect decoding effects from all the stages of the decoder.
The simulation results (discussed in the following section) have
been generated by using L0

right and the Bit Error Rate (BER)
characteristics clearly show that L0

right is the proper choice for
extrinsic information.

The LLR values at the decoder output as shown in Fig. 10,
are used to estimate the input. From, Fig. 9, it is evident that
the leftmost LLR values Lnleft and Lnleft correspond to the same
domain as input to the encoder, which are the bits that need
to be estimated. Hence, w.r.t. Fig. 10, the output LLR values
used to estimate the input vector is denoted by (28).

Lout = Lnright +Lnleft (28)

where, Lnright ∈ {0,+∞,−∞}. These LLR values are soft
decision values which can be transformed to hard decision
values by the following method:

ûi =

{
0, if Lout,i ≥ 0

1, if Lout,i < 0
(29)



B. Channel Polarization

Arikan proposes to use the value of Z to polarize channels.
However his method of polarizing channels is specific only to
BEC. The aim in this paper is to develop a BIPCM-ID system
over an AWGN channel. So, if W is a Binary Input AWGN
(BI-AWGN) channel with input X ∈ {+1,−1} (x = +1 =⇒
bit 0 and x = −1 =⇒ bit 1), (4) can be modified as [6],

Z(W ) =

∫
∀y∈Y

√
WY |X(y|x = −1) ·WY |X(y|x = +1)dy

(30)
where,

WY |X(y|x = +1) =
1√
2πσ2

e
−(y−1)2

2σ2 ,

WY |X(y|x = −1) = 1√
2πσ2

e
−(y+1)2

2σ2 .

Solving (30) by substituting the corresponding values of WY |X
gives [9]

Z(W ) = e−
1

2σ2 = e−S/N (31)

for
S

N
=
Es
N0

=
Eb
N0
·Rmod ·Rc

where Es/N0 is the energy per symbol to noise power spectral
density ratio, Eb/N0 is the energy per bit to noise power
spectral density ratio, Rmod is the number of bits in one
symbol and Rc is the coderate of the channel. Evidently, from
(31), it can easily be concluded that Z(W ) used for channel
polarization of an AWGN channel is a function of the channel’s
Signal to Noise Ratio. Thus, Channel State Information (CSI)
of an AWGN channel can be exploited to polarize channels
and using (31), Z(W ) can be updated when value of Eb/N0

changes. However CSI of the AWGN channel may not always
be available at the transmitter. In such a situation the value
of Z(W ) (to polarize channels) is once determined and kept
unchanged for a certain design setting throughout all channel
conditions (i.e. all values of Eb/N0 over a specific N ).

BER simulations have shown that using CSI to polarize
channels do not provide optimal BER performance and better
BER can be achieved by fixing Z(W ) to polarize channels in
all channel conditions. Consequently, within the scope of this
paper, CSI is not used for channel polarization. As discussed
already in Sec. II-A2, values of Eb/N0 are considered such
that Z(W ) ≈ 0 or Z(W ) ≈ 1 are avoided. For this paper,
Eb/N0 in the range [−5 dB,10 dB] have been considered to
polarize channels using (31) and the corresponding BER curves
have been analysed.

Fig. 11 shows the range of values of Z(W ) which provides
the optimal BER performance corresponding to encoding
and decoding of Polar Codes, over multiple values of N
and different modulation schemes with Gray mappings for
Rc = 1/2 over AWGN channel. The optimal BER performance
is determined by the curve with the lowest BER in the waterfall
region of the BER curve, i.e. the region where the BER curve
tends to vanishingly low values (of the order of 10−4 or lower).
For a given N in Fig. 11, the leftmost bar depicts the optimal
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Fig. 11. Z values providing optimal BER performance for given N and
modulation scheme.

values of Z(W ) for Binary-Phase Shift-Keying (BPSK), the
center bar for Quadrature-Phase Shift-Keying (QPSK) and the
rightmost bar for 16-Phase Shift-Keying(16PSK) modulation
schemes.

From Fig. 11 it can be concluded that for N = 128,
1) While using the BPSK modulation scheme, polarizing

channels with Z(W ) ≈ 0.1066 gives the optimal BER
performance. From Fig. 11 it is evident that any value
in the range ∀Z(W ) ∈ [0.1015, 0.1495] (denoted by
Z128
BPSK) would provide the same optimal BER perfor-

mance.
2) While using the 16PSK modulation scheme, polarizing

channels with Z(W ) ≈ 0.1689 gives the optimal
BER performance. From Fig. 11 it is evident that any
value in the range ∀Z(W ) ∈ [0.1536, 0.2223] (denoted
by Z128

16PSK) would provide the same optimal BER
performance.

The aforementioned values have been determined for the
condition when Polar Codes are the only error correction
method. However, with the parameters used, the same com-
parative BER performance is applicable for a BIPCM de-
sign as bit-interleaving and coded-modulation framework is
unaffected/would not affect i.e. independent of the process
of channel polarization. These values of Z(W ) are used to
design a BIPCM system which in turn would be the benchmark
for comparing performance of the novel BIPCM-ID system,
simulation results of which are provided in the following
section.

IV. SIMULATION RESULTS

For the novel BIPCM-ID system, Error Free Feedback
(EFF) is obtained by ideal feedback which is available at the
receiver, i.e. a priori information to the demodulator (bit metrics
corresponding to papri(c) in Sec. II-B) corresponding to the
bits generated after interleaving (as in Fig. 6) and provided by
the transmitter. The EFF results for the BIPCM-ID has been
obtained from simulations.



For EFF, the 2m-ary constellations are converted to binary
signal labeling (equivalent to BPSK modulation) amongst 2m−1

pairs. Although using Gray mapping provides smallest distance
between 1-bit neighbors (w.r.t. the constellation map), the inter-
symbol FED for a pair of binary labeling for ideal feedback
(EFF) remains unchanged from the original constellation map.
Thus, for a non-ID scheme, Gray mapping would be the
best choice for symbol mapping. However, for ID schemes,
as iterations would not be able to change the binary signal
labeling, using Gray mapping would not help in improving
error performance over successive iterations within ID. If a
constellation map is selected such that the Harmonic Mean
of the minimum squared FED is effectively increased, then
there is scope for improvement of error correcting performance
over successive iterations within ID. A SSP map provides such
desired characteristics and is hence used for mapping symbols
in the ID scheme.

The BIPCM-ID system has been analyzed with the following
values of the system parameters:

1) N = 128.
2) Number of codewords concatenated for interleaving D =

1600. Thus, the blocks c, c′, ĉ and ĉ′ are of size D×N =
1600× 128 = 204800 bits.

3) Coderate = 1/2.
4) Gray mapping used for non-ID scheme (BIPCM) and

SSP mapping used for ID scheme (BIPCM-ID).
5) The LLR value calculation within the BP decoder is

done iteratively with one stage at a time and both the left
and right going LLR values are calculated over every
iteration. 60 iterations are used for calculating the LLR
values w.r.t. one codeword, for converging to the solution.

As Polar Codes have been designed with the constraint
N = 2n, only 2m-ary schemes would be used for mapping the
symbols. The BER performance of a BIPCM-ID system for
16-PSK modulation is shown in Fig. 12.

Error Floor

Fig. 12. BER performance of BIPCM-ID, with 16-PSK modulation scheme.

Owing to the results shown in Fig. 11 and by (31), using
Z128
16PSK for channel polarization over 16PSK modulation

scheme provides the optimal BER performance for non-ID
usage of Polar Codes, which in this case is the BIPCM system
with 16PSK Gray constellation map marked by the blue curve
in Fig. 12. It is the optimal performance achievable by the
BIPCM system and is thus the benchmark over which BIPCM-
ID system performance is assessed. The red curve represents
the EFF performance of the BIPCM-ID system indicating
its performance limit and providing the corresponding error
floor. For a BIPCM-ID system, using 16PSK SSP mapping
and Z(W ) = 0.5, provides the optimal BER performance
and the performance improvement over increasing number
of iterations (indicated by # = 0, 1, 2 and 5) is shown in
Fig. 12. As expected from any ID scheme, BER performance
of the BIPCM-ID system improves with increasing number of
iterations and the amount of improvement over consecutive
iterations reduces for higher number of iterations. BIPCM-
ID with at least 5 iterations clearly outperforms BIPCM at
Eb/N0 ≈ 7.3 dB beyond the BER range of the order of
10−3 and it achieves vanishingly small BER (of the order
of 10−5) at Eb/N0 ≈ 7.5 dB and beyond. This proves that a
BIPCM-ID system can be designed which can outperform the
corresponding BIPCM system.

The least complex modulation scheme is BPSK. However,
BPSK is inherently a Gray mapping scheme with fixed FED of
the constellation map with no alternate mappings available. This
makes using BPSK suitable for a BIPCM system but not for
BIPCM-ID. The analysis provided in [10] shows that all known
constellation maps for any modulation scheme would inherently
have an error floor in a BICM-ID design, beyond which the
error performance cannot be improved inspite of using a very
high number of iterations for ID. The idea proposed in [10] is
to introduce differential encoding/decoding to remove this error
floor. Using a Differential Binary Phase Shift-Keying (DBPSK)
modulation scheme would thus not only remove error floor of
the system, but also provide a modulation scheme for BIPCM-
ID system which can be compared to the BIPCM system over
BPSK, with no added code redundancy but little additional
complexity. Fig. 13 shows the corresponding comparative BER
performance.

Referring to Fig. 11 and (31) Z128
BPSK is used for channel

polarization to achieve optimal performance of the BIPCM
system. The blue BER curve in Fig. 13, shows the optimal BER
performance of BIPCM with BPSK modulation scheme and is
the benchmark to compare performance of the corresponding
BIPCM-ID system. The BIPCM-ID system designed with
DBPSK modulation scheme has no error floor and Z(W ) =
0.5, provides the optimal BER performance. Behaviour of
performance improvement for increasing number of iterations
(indicated by # = 0, 1, 2 and 5) is as expected (similar
behaviour as with using 16PSK modulation). BIPCM-ID with at
least 5 iterations clearly outperforms BIPCM at Eb/N0 ≈ 2 dB
beyond the BER range of the order of 10−2. Thus, DBPSK
modulation can be used to design a BIPCM-ID system without
an error floor, which can outperform the corresponding BIPCM
system, hence resulting in a high performance system with
vanishingly small BER (of the order of 10−6) at low values



No Error Floor

Fig. 13. BER performance of BIPCM-ID, with BPSK/DBPSK modulation
schemes.

of Eb/N0 ≈ 2.2 dB and beyond.
The aforementioned results thus prove that it is possible to

design a BIPCM-ID system over different 2m-ary modulation
schemes which can outperform a corresponding BIPCM system.

V. FUTURE WORK

The BER performance of the BIPCM-ID system developed
provide promising results. Nevertheless, a number of challenges
have been encountered which have risen some unanswered
questions, that if solved would not only improve the existing
system but would also help to achieve higher throughput.
Following points reflect the main points which are prospective
areas for future research:

1) BIPCM-ID system analysis for larger codewords (higher
values of N ).

2) EXIT Chart analysis of the BIPCM-ID system to de-
termine the parameter settings for optimal BER perfor-
mance.

3) Performance analysis of using a less complex Polar
Decoder (like SCAN algorithm) in the BIPCM-ID system
or using a less complex way of calculating the LLR. The
Belief Propagation (BP) Polar Decoder in the BIPCM-
ID system is the module with highest computational
complexity and it uses tanh and exp functions to
calculate the Logarithmic Likelihood Ratio (LLR) values
using boxplus operation. Using an easier calculation
method like min − sum would drastically reduce the
complexity of BP decoder, hence effectively reducing
the complexity of BIPCM-ID system.

4) Developing a way to polarize channels, to generate
optimal choice of Polar Codes if no CSI is available.

5) Analyzing the relationship between Z(W ) for channel
polarization and the coderate.

6) Analyzing the performance of a BIPCM-ID system for
N 6= 2n. With N 6= 2n, non-2mary constellations (e.g.
8PSK) can be used for modulation/demodulation.

7) Analyzing the BER performance of BIPCM-ID system
over other channel models (e.g. Fading channels).

8) Determining the number of iterations required by BIPCM-
ID for convergence of the BER performance.

VI. CONCLUSION

A novel BIPCM-ID system has been developed using a polar
encoder (at the transmitter) and a polar decoder (at the receiver)
within a BICM-ID design. This system has been analyzed over
AWGN channels with N = 128 for coderate= 1/2 over BPSK
and 16PSK modulation schemes. Implementing the system
with these parameters, it has been observed that under proper
configurations (parameter values),

1) with 5 iterations of ID, BER performance can be
improved from its contemporary BIPCM system by at
least 3.8 dB over BPSK modulation for very low BER.

2) with 5 iterations of ID, BER performance can be
improved from its contemporary BIPCM system by at
least 3 dB over 16PSK modulation for very low BER.

High code diversity is very important to be able to well
utilize the potential of a BIPCM-ID system. With a higher
number of codewords concatenated for bit interleaving, higher
code diversity and lower correlation amongst transmitted bits
of the same codeword is achieved.

The performance of BIPCM-ID can further be improved by
increasing the number of ID iterations. Using a differential
modulation scheme removes the error floor altogether.

Polar Codes as a stand-alone error correction technique are
provably capacity achieving codes for B-DMCs especially BEC.
They are not specifically designed for high performance error
correction over continuous channels. However, by developing
a BIPCM-ID system it has been proved that with the help of
some additional error correcting modules, Polar Coding can be
a high performance error correction method over continuous
channels like AWGN as well.
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