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Modeling students’ problem solving performance in the computer-based mathematics learning 

environment 

Purpose: The purpose of the research reported in this paper is to develop a quantitative model of 

problem solving performance of students in the computer-based mathematics learning 

environment. 

Design/methodology/approach: Regularized logistic regression was used to create a 

quantitative model of problem solving performance of students that predicts whether students 

can solve a mathematics problem correctly based on how well they solved other problems in the 

past. The usefulness of the model was evaluated by comparing the predicted probability of 

correct problem solving to the actual problem solving performance on the data set that was not 

used in the model building process.   

Findings: The regularized logistic regression model showed a better predictive power than the 

standard Bayesian Knowledge Tracing (BKT) model, the most frequently used quantitative 

model of student learning in Educational Data Mining (EDM) research.   

Originality/value: Providing instructional scaffolding is critical in order to facilitate student 

learning. However, most computer-based learning environments use heuristics or rely on the 

discretion of students when they determine whether instructional scaffolding needs be provided. 

The predictive model of problem solving performance of students can be used as a quantitative 

guideline that can help make a better decision on when to provide instructional supports and 

guidance in the computer-based learning environment, which can potentially maximize the 

learning outcome of students.  

Keywords: Educational Data Mining (EDM), Log file analysis, Problem solving, User modeling 

Paper type: Research paper 
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Introduction 

Recently, computer-based learning environments such as Massive Open Online Course (MOOC) 

and Intelligent Tutoring System (ITS) become more prevalent. One important characteristic of 

these computer-based learning environments is that they can capture in their log files what 

students are doing while trying to learn new knowledge without interrupting their learning 

processes. Since log files allow for re-constructing how students used computer-based learning 

contents, analyzing the log files can enable us to quantitatively study the learning behaviors of 

students and the usefulness of computer-based learning contents. As a result, Learning Analytics 

(LA) and Educational Data Mining (EDM) are emerging as new exciting research fields. 

One active research topic in EDM is predicting whether students can correctly solve a problem 

because many computer-based learning environments, especially for mathematics and science, 

use problem solving as a primary means for assessing student learning. As Koedinger and 

Aleven (2007) pointed out, in order to maximize student learning outcomes, it is critical to 

balance giving and withholding instructional supports and guidance in the computer-based 

learning environment. Students may not exert enough cognitive efforts and fail to acquire a 

schema from learning tasks if they receive instructional supports prematurely (Kapur, 2008; 

Schmidt and Bjork 1992). Academically weaker students, on the other hand, will fail to learn 

unless they are provided with appropriate instructional supports and guidance in time. This issue 

would become more important in the computer-based learning environment where students learn 

primarily on their own and there is no teacher who can regulate the learning process of students. 

Most computer-based learning environments rely on either simple heuristics (e.g., giving hints or 

feedback after students fail to solve a problem a certain number of times) or discretion of 

students in determining when instructional supports and guidance are going to be provided. 
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Obviously, simple heuristics would not be able to maximize the learning outcome of students 

because it does not take into account the difficulty of learning tasks and the ability of students. 

Similarly, providing instructional supports on the demand of students may not improve their 

learning outcome because novice students do not possess metacognitive abilities and prior 

knowledge required for determining the right moment to ask for help (Clark and Mayer, 2003; 

Lawless and Brown, 1997). To maximize the learning outcome of students, computer-based 

learning environments should be able to make a more intelligent decision based on the difficulty 

of learning tasks and the ability of students, which requires a quantitative model of student 

performance.  

This study investigates whether a predictive model of problem solving performance of students 

can be built from the log files of a computer-based mathematics learning environment. In 

particular, this study uses regularized logistic regression in estimating how likely middle school 

students are to correctly solve a problem solving step of mathematics problems, given their 

performance on the problems they tried to solve in the past. This study compares the 

performance of the regularized logistic regression model to Bayesian Knowledge Tracing (BKT), 

the most frequently used quantitative model of student learning in EDM (Beck and Chang, 2007; 

Corbett and Anderson, 1995; Pardos and Heffernan, 2011; Pardos et al., 2012; Pardos et al., 

2013).   

 

Data 

Original data  

This study analyzed the log files obtained from the Pittsburgh Science of Learning Center (PSLC) 

(http://learnlab.org) whose DataShop Web service (https://pslcdatashop.web.cmu.edu) provides 
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log files of various computer-based learning environments capturing the learning processes of 

students trying to learn different subject matters, from foreign language to mathematics and 

physics (Koedinger et al., 2010). This study used the ‘Assistments Math 2004-2005’ data set that 

captured how 895 middle school students used a computer-based mathematics learning 

environment called ASSISTments for over 3,400 student hours. The original data set obtained 

from PSLC includes 580,786 database transactions where each transaction record contains 

information about students and their problem solving activities such as anonymized student ID, 

problem name, step name, problem solving time, and whether or not students were able to solve 

each problem solving step correctly (see Figure 1 and Table 1). KC in the transaction record can 

be considered a concept or principle required to resolve the corresponding problem solving step 

(e.g., Pythagorean theorem), and is used by PSLC researchers in categorizing problem solving 

steps. For further exploration of problems students tried to solve in the computer-based learning 

environment, visit https://www.assistments.org.  

[INSERT FIGURE 1 HERE] 

[INSERT TABLE 1 HERE] 

 

Pre-processed data 

Using these data, we wanted to build a predictive model that mimics how expert human teachers 

would do when they estimate whether their students can solve a problem correctly. When a 

student is about to solve a problem on a certain mathematics concept (e.g., Pythagorean theorem), 

expert human teachers would examine how well this student did on the problems requiring an 

understanding of the same mathematics concept (e.g., Pythagorean theorem) in the past. In order 

to create predictor variables that can capture this behavior, the original PSLC data set had to be 
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pre-processed because each transaction record in the PSLC data does not provide information on 

the past problem solving performance. Thus, for each transaction record in the PSLC data, its 

anonymized student ID, KC, and step time were identified first. This information is then used to 

compile all transaction records with the same anonymized student ID, KC, and earlier step time. 

From these records of past problem solving performance on the same KC by the same student, 

fraction of correct problem solving steps, fraction of incorrect problem solving steps, fraction of 

problem solving steps associated with hint request(s), and streak of correct answers were 

computed.  

The first two variables, fraction of correct problem solving steps and fraction of incorrect 

problem solving steps, try to capture the ability of students solving a problem at the moment. 

Fraction of problem solving steps associated with hind request(s) is a predictor variable that tries 

to capture the ability of students in relation to the use of hints provided by the computer-based 

learning environment; if students had to use many hints to solve problems in the past, these 

students can be considered less capable than students who needed fewer hints. Since students 

may be able to get a problem correct without fully understanding the target mathematics concept, 

streak of correct answers to the problems on the same KC is also considered. When students 

found that they failed to solve a problem at their first attempt, they could learn from the feedback 

message and hints provided by the learning environment or they could use an external source of 

information (e.g., textbook). In order to capture the effect of these activities, a binary variable 

indicating whether the transaction is a first attempt to solve a problem. Also, certain KCs and 

problem solving steps are more difficult than others. In order to account for the difficulty of KCs 

and problem solving steps, dummy variables for KCs and step names were created. In addition, 

dummy variables for outcomes from the last two problem solving attempts (Correct, Incorrect, 
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Hint or N/A) were created because the most recent problem solving performance may be able to 

represent the ability of students more accurately. These variables were then used as predictors of 

the regularized logistic regression model described below. Finally, a new outcome variable 

(Correct or Wrong) was created by combining Incorrect and Hint cases because requesting a hint 

was considered a wrong attempt in this study. Using these pre-processed predictor and outcome 

variables, predictive models of problem solving performance of students replicating the 

behaviors of expert human teachers were developed, and their predictive powers were examined.  

 

Method 

Univariate analysis 

Once data pre-processing was complete, a series of univariate analyses was conducted in order to 

examine the usefulness of the information obtained from the data pre-processing. First of all, the 

data were very sparse, which makes it difficult to build an accurate model of problem solving 

performance of students. The data set contained 895 students, 1,389 unique problem solving 

steps, and 66 KCs. But, the median of number of unique problem solving steps students tried to 

solve was mere 181. Moreover, several students tried to solve just one problem solving step, 

which resulted in what is called complete separation of data in which a predictor is associated 

with only one outcome value (Albert and Anderson, 1984). Since the standard logistic regression 

model cannot handle the data with complete separation, this study used regularized logistic 

regression as explained below. 

Of the four continuous predictors, fraction of correct problem solving steps and fraction of hint 

requests showed an interesting relationship with the outcome variable. Figure 2 shows a 

histogram of correct/wrong answers vs. fraction of correct answers students submitted in the past. 
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When the fraction of correct answers from the past problem solving steps is greater than about 

0.55, more students got the current problem solving step correct except for the cases where the 

fraction of correct answers is 1.0. Interestingly, when students got all past problem solving steps 

on the same KC correct, they appeared to have a roughly 50–50 chance to solve the current 

problem solving step correctly. Although more in-depth analyses are warranted to fully 

understand why it happened, this result appears to be related to the fact that the correct fraction 

of 1.0 occurs much more frequently when students solved a small number of problems in the past, 

which would not provide enough information about the ability of students being modeled. 

 [INSERT FIGURE 2 HERE] 

Also, more hint requests are associated with more wrong answers (see Figure 3). When students 

requested hints more than about 60% of the problem solving steps they tried to solve in the past, 

they are more likely to fail to solve the current one. Similar to the fraction of correct answers, 

extreme fraction values (0.0 and 1.0) appear to contain more noise than intermediate values. 

[INSERT FIGURE 3 HERE] 

One important characteristic of the computer-based mathematics learning environment used in 

this study is that it can provide hints in response to wrong answers or student requests. Students 

can submit an answer to the same problem solving step more than once after using hint(s) 

provided by the computer-based learning environment. This study hypothesizes that the problem 

solving performance of students can be different, depending on whether they are trying to solve a 

problem for the first time or not. The fraction of correct answers was found to be larger at the 

first attempt (correct fraction = 0.43; 91,788 correct answers out of 214,455 attempts), compared 

to the subsequent attempts (correct fraction = 0.31; 70,148 correct answers out of 226,599 

attempts), because of the selection effect.  
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When students were able to get the most recent problem solving step correct, they are more 

likely to get the current problem solving step correct (correct fraction = 0.45; 66,225 correct 

answers out of 147,848 attempts), compared to the students who either got the most recent 

problem solving step wrong or requested a hint. Interestingly, getting the most recent problem 

solving step wrong is associated with a little higher correct probability (correct fraction = 0.35; 

57,374 correct answers out of 161,720 attempts) than hint request (correct fraction = 0.29; 

38,337 correct answers out of 131,486 attempts). When students were able to get the second 

most recent problem solving step correct, they showed a similar correct fraction (correct fraction 

= 0.45; 57,847 correct answers out of 129,392 attempts). However, when students got two most 

recent problem solving steps correct in a row, the fraction of correct answers on the current 

problem solving step increased to 0.51 (32,223 correct answers out of 63,024 attempts) as shown 

in Table 2. 

[INSERT TABLE 2 HERE] 

 

Regularized logistic regression model of problem solving performance of students 

When the outcome variable is binary (�� = 0 for wrong answers, and �� = 1 for correct answers), 

the logistic regression model represents a conditional probability through a linear function of 

predictors ��: 
Pr	�� = 1	| ��) = 1

1 + ��	��������) 
 

(1) 

Equation 1 allows for estimating a probability that a student can successfully solve a current 

problem solving step (��), given his or her problem solving performance observed in the past (��), 
and regression coefficients (�� and ��). In the ordinary logistic regression model, regression 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
A

D
E

L
A

ID
E

 A
t 0

4:
08

 2
2 

Se
pt

em
be

r 
20

17
 (

PT
)



coefficients can be obtained by maximizing a binomial log likelihood function (Hastie et al., 

2013).  

However, as briefly mentioned above, due to the complete separation issue, the solution to the 

binomial log likelihood function did not exist for the data set analyzed in this study. To get 

around this problem, this study used a regularized logistic regression model which has an 

additional penalty term in the objective function to be maximized as shown in Equation 2 (Hastie 

et al.,  2013). Note that ����� selects the type, and � determines the amount of regularization. 

When � = 0, Equation 2 reduces to the objective function of the ordinary logistic regression 

model. 

max��,��	 "#$����� + ��%��� − log		1 + ���������)* −+

�,-
������. 

 

(2) 

When L1 norm is used for the penalty term, �����, the regularized logistic regression model can 

exclude some predictors in maximizing Equation 2. When L2 norm is used, on the other hand, 

the regularized logistic regression model includes all predictors, but the magnitude of regression 

coefficients, ��, is reduced instead. We can think of regularization as a penalty against 

complexity. The ordinary logistic regression model is always more complex than the regularized 

logistic regression model because it includes all regression coefficients whose magnitude is not 

controlled. Since the complex model can pick up “peculiarities” or “noise” in the current data 

being modeled, it does not generalize well to new unseen data that do not have such peculiarities 

or noise (Hastie et al., 2013). Since the regularized logistic regression model penalizes a complex 

model by way of its penalty term, the effect of peculiarities or noise in the data being modeled 

can be minimized, which can result in a better performance on the new unseen data. The 

regularized logistic regression model can address the issue of complete separation of data 
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because data points causing complete separation can be treated as peculiarities or noise in the 

data. This study used the LIBLINEAR library (Fan et al., 2008) in building four regularized 

logistic regression models using L1 and L2 penalties with (RLR-L1 and RLR-L2) and without 

KCs (RLR-L1-No-KC and RLR-L2-No-KC) as predictors.  

In order to estimate the predictive power of regularized logistic regression models without bias, 

the pre-processed data set was divided into training and test sets. When creating a test set, which 

consists of 20% of the pre-processed data, stratified random sampling was used to ensure that the 

ratio of positive (�� = 1) to negative (�� = 0) instances in both sets are similar. Five-fold cross 

validation was used to find the best value for the tuning parameter � of the regularized logistic 

regression models. For each � value in {10
−3

, 10
−2

, 10
−1

, 1, 10, 10
2
, 10

3
}, the training set was 

randomly divided into five sets of roughly equal size with similar proportions of positive and 

negative instances. Then, a regularized logistic regression model was built using all samples in 

the training set except for one subset. An unbiased predictive power of the regularized logistic 

regression model with a specific � value was estimated from the samples in the held-out training 

set that played a role of unseen future data. For the same � value, these processes were repeated 

five times with a different subset of the training set being used as a held-out set. The average of 

the five estimates of predictive power was used to represent how well a regularized logistic 

regression model with a specific value of � could predict successful problem solving 

performance of students in the future. The final prediction models were built by fitting the entire 

training set with the best � value determined from the five-fold cross validation procedure. 

Finally, these models were used to predict whether students in the test set, which was not used in 

the model building process, would be able to resolve problem solving steps successfully, and 
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their predictions were compared to the observed problem solving performance recorded in the 

test set. 

 

Results 

Figure 4 compares the two sets of Receiver Operator Characteristic (ROC) curves of the two 

regularized logistic regression and the standard BKT models plotted for the test set. While the 

first set of predictive models (RLR-L1, RLR-L2 and BKT) included KCs as predictor variables, 

the second set of predictive models (RLR-L1-No-KC, RLR-L2-No-KC, BKT-No-KC) did not, 

allowing for examining the importance of KCs as predictor variables in the model. Publicly 

available C++ codes (https://github.com/IEDMS/standard-bkt) were used in building the 

standard BKT model reported in this study. When applied to a binary classification problem like 

this study, an ROC curve is a plot of false positive (incorrectly predict that students will be able 

to solve a current problem solving step when they failed) vs. true positive (correctly predict that 

students will be able to solve a current problem solving step) rates. Area Under an ROC Curve 

(AUC), which varies from 0.5 (predictive power no better than simple guessing) to 1.0 (perfect 

prediction), represents a quality of a binary classification model because a good classification 

model has a small false positive rate and a large true positive rate. AUC computed on the test set 

represents a probability that a binary classification model can correctly predict an outcome 

variable when it is provided with a new data set in the future (Fawcett, 2006). The ROC curves 

from four regularized logistic regression models (RLR-L1, RLR-L2, RLR-L1-No-KC, and RLR-

L2-No-KC) are completely overlapping, and their AUC values (0.73) are about 20% larger than 

that of BKT with KCs (0.61), indicating that the regularized logistic regression models would be 

able to perform better than the standard BKT model in predicting future problem solving 
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performance of students. When KCs are included in the predictive model, the standard BKT 

model’s predictive power increased by approximately 9%. However, KCs seem to have no 

impact on the predictive power of the regularized logistic regression model, suggesting that 

predictor variables capturing past problem solving performance of students contain more 

information than KCs do. Since the AUC values of the four regularized logistic regression 

models are essentially same, only the regularized logistic regression model with KCs and L1 

penalty (LRL-L1) is discussed in the subsequent sections. 

[INSERT FIGURE 4 HERE] 

The confusion matrices of prediction models reveal that the regularized logistic regression model 

shows a more balanced performance (see Figure 5). Since the BKT model predicted that just 

about 14% of answers would be correct, its recall for correct responses is very small (0.20 = 

6,300 / (6,300 + 25,827)), compared to wrong responses (0.89 = 50,019 / (50,019 + 6,064)). On 

the other hand, the regularized logistic regression model predicted about 45% correct responses, 

and showed comparable recall values; 0.66 (= 21,052 / (21,052 + 11,075)) for correct responses 

and 0.67 (= 37,314 / (37,314 + 18,769)) for wrong responses. As a result, the BKT model had a 

much higher false positive rate (0.80 = 25,827 / (25,827 + 6,300)), compared to the regularized 

logistic regression model (0.34 = 11,075 / (11,075 + 21,052)). 

[INSERT FIGURE 5 HERE] 

Table 3 shows a breakdown of AUC values by the difficulty of problem solving steps. The BKT 

model showed a larger AUC value for easy problem solving steps (step difficulty < 2523 

percentile), but its AUC value decreased by about 17% as the difficulty of problem solving steps 

increases (2523 	percentile	 ≤ step difficulty < 5023 	percentile). AUC values of the BKT model 

is not much better than simple guessing when the step difficulty is greater than 2523 percentile. 
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Compared to the BKT model, AUC values of the regularized logistic regression model were less 

sensitive to step difficulty. It showed larger AUC values for both easy and difficult problem 

solving steps, and its AUC value did not decrease as much as the BKT model when the problem 

solving steps had medium difficulty (2523 percentile ≤ step difficulty < 7523 percentile). 

[INSERT TABLE 3 HERE] 

 

Discussion 

This study found that regularized logistic regression models with L1 and L2 penalties made better 

predictions on the problem solving performance of students than the standard BKT model, the 

most frequently used quantitative model of student learning in EDM. One possible explanation 

for this result is that regularized logistic regression models incorporated more information about 

how students solved relevant problems and what kinds of problems they were. While the 

standard BKT model had only one predictor, correctness of the most recent problem solving 

attempt, regularized logistic regression models developed in this study included predictor 

variables capturing various aspects of problems and problem solving performance of students. 

These additional predictors seem to have enabled regularized logistic regression models to have 

a better predictive power than the standard BKT model does. This interpretation is in line with 

what Pardos and Heffernan (2011) found in their study; they were able to improve the predictive 

power of their learning model by including problem difficulty as an additional parameter to the 

standard BKT model.  

It is not easy to develop KCs that can improve the performance of predictive models; KCs 

created by PSLC researchers increased the predictive power of standard BKT model only by 

about 9%. Moreover, once KCs are developed, they have to be tagged to all problems manually, 
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which can be time-consuming as the number of problems in the computer-based learning 

environment increases. Considering the fact that predictive power of regularized logistic 

regression models did not deteriorate when KCs were not used as predictor variables, regularized 

logistic regression model can be considered more efficient than standard BKT model.  

One thing that makes it difficult to build an accurate predictive model of learning performance of 

students in the computer-based learning environment is gaming behavior. It has been found that 

some learners do not exert enough cognitive efforts to learn from learning activities and 

instructional supports provided in the computer-based learning environment (Baker et al., 2008; 

Lee, 2015). For instance, students showing gaming behaviors would keep asking for hints, 

without reflecting on the information presented in the hint, in order to get to the last hint which 

typically provides an answer. Since these students are not going to learn from hints, using hints 

would be negatively correlated with the learning outcomes of these students, which could 

diminish the overall benefit of using hints. Thus, it would be important to include a predictor 

variable that can capture the gaming behavior of students in order to build a more accurate model 

of learning performance of students. One way to address this issue might be to incorporate 

problem solving time into the model. Examining how much time students spent before 

attempting to answer the same problem again or requesting additional hints might allow us to 

encode the existence of gaming behavior of students, which can in turn enhance the accuracy of 

the model. 

Providing instructional supports and guidance is essential to facilitate student learning especially 

in the computer-based learning environment in which students are mostly learning on their own. 

Since most computer-based learning environments rely on simple heuristics or student demand, 

they are not able to provide instructional supports and guidance when students need them the 
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most. By incorporating a predictive model of student performance into computer-based learning 

environments, we may be able to provide more personalized instructional supports and guidance 

tailored to the ability of students and the difficulty of learning tasks, which can potentially 

increase the efficiency of student learning.  

 

Limitations of study 

Learning is a complex phenomenon which can take many different forms. Since this study 

focuses on one specific form of learning, namely solving mathematics problems while using 

hints from a computer-based learning environment or other external resources, the findings from 

this study may not be generalized to other forms of learning. Also, although log files of 

computer-based learning environments provide rich information about learning behaviors of 

students, there are many things missing in the log files. For instance, the log files analyzed in this 

study do not provide information on student gender and affection, which may have an impact on 

how students used the computer-based learning environment. Similarly, these log files do not 

provide all learning activities students experienced; it is possible that students may have used an 

external source of information such as textbook or peer collaboration. It would be meaningful to 

examine whether such information can improve the predictive power when they are incorporated 

into the model.   

 

Conclusion 

The goal of this study was to develop a quantitative model that can predict whether middle 

school students can solve a mathematics problem without using any hints provided in the 

computer-based learning environment, based on how well they solved relevant problems in the 
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past. Although providing instructional scaffolding is critical in facilitating student learning 

(Koedinger and Aleven, 2007), most computer-based learning environments are using simple 

heuristics or relying on students when they determine whether or not instructional scaffolding 

needs to be provided, which is unlikely to maximize the learning outcome of students. The 

findings from this study may suggest that the regularized logistic regression can be used in 

building a quantitative model of problem solving performance of students that can help 

determine when to provide instructional supports and guidance to students with different abilities 

in the computer-based learning environment. 
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Table 1. Problem solving information available in the PSLC data set 

Column in PSLC data set Description 

Anonymized student ID Anonymized student ID generated by DataShop 

Problem name Name of the problem associated with a current transaction 

Step name Name of the problem solving step associated with a current 

transaction 

Problem time Time at which students started solving a problem 

Step time Time at which students started working on a particular problem 

solving step in the problem 

Number of problem views Number of times students tried to solve a current problem 

Number of attempts at step Number of times students submitted an answer to a current 

problem solving step 

KC Knowledge Component associated with a current transaction 

Outcome Result of a current problem solving attempt (Correct, Incorrect 

or Hint) 
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Table 2. Frequency of correct/wrong answers at the current problem solving attempt vs. last two 

problem solving performance 

  Outcome of the current 

problem solving step 

Outcomes from the last two problem solving steps Correct Wrong 

2
nd

 most recent outcomes only Correct 57,847 71,545 

Hint 32,609 77,368 

Incorrect 50,516 91,118 

Most recent outcomes only Correct 66,225 81,623 

 Hint 38,337 93,149 

 Incorrect 57,374 104,346 

Last two outcomes Correct, Correct 32,223 30,801 

 Correct, Hint 6,599 12,423 

 Correct, Incorrect 19,025 28,321 
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Table 3. AUC values of prediction models vs. difficulty of problem solving steps 

 AUC 

Step difficulty BKT RLR-L1 

< 25�� 	percentile 0.65 0.72 

25�� 	percentile – 50�� 	percentile 0.55 0.64 

50�� 	percentile – 75�� percentile 0.53 0.63 

≥ 75�� percentile 0.55 0.70 
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Figure 1. An example of ASSISTments log files obtained from PSLC  
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Figure 2. Histogram of correct/wrong answers vs. fraction of correct answers submitted in the past  
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Figure 3. Histogram of correct/wrong answers vs. fraction of hint requests made in the past  
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Figure 4. Comparison of ROC curves and AUC values of predictive models of problem solving performance of 
students  
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Figure 5. Comparison of confusion matrices with a cut-off probability of 0.5  
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