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a b s t r a c t 

The paper presents and compares approaches for controlling forest companies’ risk associated with ad- 

vance planning under variable future timber prices and demand. Decisions to be made in advance are 

which stands to cut and which new access roads to build in each period, while maximizing profit under 

manageable risk. We first developed a tighter, improved formulation of our earlier deterministic mixed 

0–1 model (see Andalaft et al. (2003) ), and its stochastic counterpart for a set of representative scenar- 

ios, an extension of our simplified risk-neutral version (see Alonso-Ayuso, Escudero, Guignard, Quinteros, 

and Weintraub (2011)). Using the expected value of the stochastic parameters might produce poor or 

even infeasible solutions if some extreme scenarios are realized. A stochastic model, however, enables 

the planner to make more robust decisions. In particular, being able to control risk in early periods is 

important, as firms tend to emphasize short term financial results. We tested two risk measures that 

extend the classical Conditional Value-at-Risk (CVaR) by controlling the risk at a subset of intermediate 

periods (time-inconsistent TCVaR) or at a subset of scenario groups (time-consistent ECVaR), with time 

consistency as given in Homem-de Mello and Pagnoncelli (2016) and others. We also combined TCVaR 

and ECVaR into what we call MCVaR. We analyzed the planned and implementable policies of all above 

risk measures in a broad computational experiment, on a large size realistic instance. The results show 

that ECVaR, TCVaR and MCVaR outperform the classical CVaR approach. MCVAR usually provides better 

solutions for the first periods with overall profit distribution similar to the other measures for the planned 

policy, TCVaR gives the highest profit results for the implementable policy, while ECVaR gives the highest 

profit at the end of the time horizon in both policies. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Forest companies must plan the sustainable harvest of their re-

ources over a given time horizon. Cut timber is then sold in spe-

ific local and international markets. They have to meet demand,

rimarily from pulp plants and sawmills. The main aim of the

ompanies is to maximize profit while complying with environ-

ental regulations. In previous studies we formulated and solved
� This research was partially funded by the Complex Engineering Systems Insti- 

ute, ISCI (ICM-FIC: P05-004-F, CONICYT : FB0816 ), the projects MTM2012-36163- 
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 specific problem addressing various issues that arise in forestry

lanning, namely, planning the harvest of forest land designated

or timber production and the construction of access roads needed

o transport the timber. Good surveys of forest-based supply chain

lanning cover such aspects as planting, cutting, construction of

ccess roads for transportation. See Bredstrom, Lundgren, Rön-

qvist, Carlsson, and Mason (2004) , Marques, Borges, Sousa, and

inho (2011) , Pinho, Moreira, Veiga, and Boaventura-Cunha (2015) ,

nd Rönnqvist (2003) , among others. Starting in the 70s, environ-

ental and wildlife issues were increasingly considered in forest

anagement models at different planning levels. 

In the last 30 years the twin problems of planning harvesting

nd access road construction have been addressed jointly using

athematical optimization models and computational tools. The

dvantage of integrating the two processes in a single mixed 0–

 model was demonstrated in Jones, Hyde, and Meachan (1986) ,

hose solutions are from 15 to 45% better than with models that

ptimized the processes separately. 

https://doi.org/10.1016/j.ejor.2017.12.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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https://doi.org/10.13039/501100002850
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1 For time-consistency and -inconsistency, see Section 2.3 . 
2 Informally, CVaR at a given level β ∈ [0, 1] is the expected profit of the β pro- 

portion of the worst scenarios, and then, risk-averse models propose a solution with 

the maximum CVaR. 
There exist relevant studies on the different phases of forestry

planning, especially regarding access road construction and har-

vesting. The problem we deal with may be formulated in terms of

a partition of the forest into harvesting units, called stands. For a

chosen time horizon one must determine which stands will be cut

in each period, which roads need to be constructed to access those

stands and when, and what quantity of wood will be transported

from one point to another. These decisions are made in Andalaft

et al. (2003) and references therein, among others. Our approach

did benefit from these earlier reports. Some ion to an optimiza-

tion criterion, typically profit maximization. A model for solving

the harvesting problem considering road building and adjacency is

provided in Candia (2010) , which constrains the possibility of har-

vesting adjacent stands for observing the maximum clearfell areas

regulations. 

Selling prices of forest products are a key element in forestry

planning. Price fluctuations have a direct impact on profits from

sales and figure prominently in the planners’ decision-making. The

role played by randomness in forestry planning is closely related to

the length of the chosen time horizon. Planners who must make

tactical decisions are therefore concerned about price variations

during a time horizon of two to five years. Although the most rel-

evant source of uncertainty is prices, uncertainty in tree growth,

timber demand and losses due to fires is also significant. The ap-

proach developed in this paper analyzes decision-making under

uncertainty in wood selling prices and demand. We assume that

they can be modeled over time by means of a set of scenarios with

different associated probabilities. 

In mathematical terms, the deterministic version of the prob-

lem, which assumes that all parameters are known, may be for-

mulated as a mixed 0–1 linear optimization model. Even this case

is difficult to solve, due to its size and the presence of thousands

of binary variables. Approaches for solving this problem have been

described in Andalaft et al. (2003) , Constantino and Martins (2017) ,

Guignard, Ryu, and Spielberg (1998) , Henningsson, Karlsson, and

Rönnqvist (2007) , and Weintraub and Navon (1976) of them use

strengthening of the formulation and decomposition techniques

such as Lagrangean relaxation to obtain very good solutions in

reasonable computation times with low residual gaps. We should

point out that the forest planning problems studied in Andalaft

et al. (2003) , Guignard et al. (1998) , and Weintraub and Navon

(1976) consider either the expected scenario or a single scenario. 

A stochastic optimization model enables the planner to make

more robust decisions by taking into account the stochastic behav-

ior of the selling price and demand of timber. It considers a rep-

resentative range of timber price scenarios over time, maximizing

the expected value instead of merely analyzing a single (e.g., av-

erage) scenario as performed in the deterministic version of the

problem. It is assumed that the realization of the scenarios at a

given period is probabilistically conditioned by the realization of

these scenarios in the earlier periods. So, the values of the deci-

sion variables at a given node in a multi-period scenario tree also

depend on the realization of the uncertain parameters in the an-

cestors of the node. That is, the values of the variables depend on

the values of the parameters and the value of the variables in the

scenario groups with one-to-one correspondence with the nodes

up to the period that the node belongs to, being a unique solution

for those scenarios. So, the non-anticipativity principle introduced

in Wets (1974) is satisfied. See e.g., Birge and Louveaux (2011) , and

Pflug and Pichler (2014) for the main concepts on stochastic opti-

mization via scenario tree analysis. 

There is a variety of papers incorporating risk and uncertainty

into forest models, comparing it with a deterministic approach.

A good survey and analysis is presented in Pasalodos-Tato et al.

(2013) , where different sources of risk and uncertainty are con-

sidered, namely, forest inventory, timber growth prediction, mate-
ial hazards as fires, markets (timber prices), climate change, etc.

lso different methodologies are shown for problems going from

tand to regional levels. These include stochastic dynamic pro-

rams, fuzzy set theory, Monte Carlo techniques, scenario simula-

ion, stochastic optimization with recourse, chance constrained op-

imization and Markov Chains, among others. Our work considers

 multistage forest planning problem, when uncertainty is in tim-

er prices and demand. Uncertainty is defined through a scenario

epresentation, where each scenario is a realization of values of

rices and demand for each period along the time horizon. We did

resent elsewhere ( Alonso-Ayuso, Escudero, Guignard, Quinteros, &

eintraub, 2011 ) a risk neutral (RN) multi-period stochastic mixed

–1 model based on a finite set of representative scenarios for the

rice uncertainty. The model is a stochastic counterpart of a tighter

ersion of the deterministic model introduced in Andalaft et al.

2003) . For problem solving we developed a matheuristic version

f the decomposition algorithm called Branch-and-Fix Coordination

BFC) presented in Alonso-Ayuso, Escudero, and Ortuño (2003) . The

omputational results outperformed those obtained by consider-

ng the expected value approach. The latter approach is a popular

easure for solving stochastic optimization problems. It consists

f replacing the scenario realizations of the uncertainty in the pa-

ameters with the average (i.e., expected) value. In problems with

arameters with high variability, the results of the model using av-

rage values could be misleading; notice that a solution could be

orse than that from the stochastic optimization, or even be in-

easible if more-extreme scenarios are realized, for which the so-

utions based on expected values are not well covered. A progres-

ive hedging decomposition approach is presented in Veliz, Wat-

on, Weintraub, Wets, and Woodruff (2015) for solving the forest

arvesting planning problem, where the model is based on the de-

erministic one given in Andalaft et al. (2003) . 

On the other hand, to our knowledge, Pagnoncelli and Piazza

2012) is the first study where forest harvesting planning with

ncertain timber price is addressed by considering risk manage-

ent, as opposed to a risk-neutral (RN) approach, in stochastic

ptimization. A stochastic dynamic programming approach as well

s the popular (time-inconsistent 1 ) classical Conditional Value-at-

isk (CVaR) 2 risk averse measure, see Pflug and Pichler (2016) ,

nd Rockafellar and Uryasev (20 0 0) , are used for determining the

est harvesting policy; however, the logistic aspects of the prob-

em (road construction, transportation, etc.) are not considered.

It is worth to point put that the work by the same authors in

iazza and Pagnoncelli (2014) is the risk neutral counterpart of

he CVaR application presented in Pagnoncelli and Piazza (2012) .

he CVaR measure thus reduces the negative impact on the solu-

ion in low-probability high-loss scenarios in the forestry planning

roblem. Since the profit is for the whole time horizon, the risk

eduction is performed up to the last period of the time horizon

nd, then, any scenario influences the VaR value and, as a conse-

uence, it does the solution of any other scenario (so, CVaR does

ot have the time-consistency property as in defined in Homem-

e Mello and Pagnoncelli (2016) and others). Recently, Eyvindson,

etty, and Kangas (2017) presented a two-stage stochastic program

ith recourse for the timing of the next forest inventory and the

ccompanying adjustments to the forest management plans includ-

ng CVaR-based risk management. 

A state-of-the-art review on robust optimization for forest har-

esting planning is presented in Bajgiran, Zanjani, and Noureifath

2017) , where it is assumed that there is not enough information

bout the probability distribution, nor a set of available scenar-
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Fig. 1. Chilean forest exports index of wood quantity and prices. (base: Avr. year 20 0 0 = 10 0). 
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os to represent the stochasticity of the uncertain parameters. Spe-

ially, the uncertainty in distribution and inventory planning in the

ulp production is handled in Carlsson, Flinsberg, and Rönnqvist

2014) by considering a rolling horizon in a robust optimization

pproach where the uncertainties are described as an arbitrary

olytope and formulated as explicit constraints. However, a for-

st harvesting planning model is proposed in Bajgiran et al. (2017) ,

here the robust-based cardinality constrained method Bertsimas

nd Sim (2004) is considered. Roughly, the known bounds of the

ntervals of the uncertain parameters in the functions (either the

bjective one or the constraints) are explicitly considered in the

odel, but only restricted to a modeler-defined fraction of the un-

ertain parameters, where iteratively only a fraction of a reference

alue inside the intervals is also considered in the model. 

In this paper, we consider a real problem of harvesting and road

uilding which was developed for Forestal Millalemu and reported

n Andalaft et al. (2003) . It handled 17 forest areas. In Alonso-

yuso et al. (2011) , uncert ainty in prices and demands was incor-

orated in a scenario structure, considering risk neutral decision

akers. It was solved for only one forest area, in a much simpli-

ed version of the original problem, considering 18 scenarios. In

his work, the original problem is solved, not the simplified one,

 and 3 forest areas are considered in the instances to experiment

ith and, in particular, it is assumed that a decision maker would

ant to minimize risk in earlier periods, which requires a signifi-

antly higher number of scenarios. 

The case study under consideration is representative of the for-

st industry and it presents a realistic planning problem of timber

arvesting and road building under uncertainty in Chile. Forestry

s Chile’s second largest source of exports, surpassed only by cop-

er mining. According to data from INFOR (Instituto de Investi-

ación Forestal de Chile – the Chilean Institute of Forest Research),

he forest industry exports in 2014 exceeded for the first time the

arrier of US$6 billions, registering a sum of US$ 6094.3 millions,

hich represents an increase of 6.7% over 2013. Such a figure con-

rms the magnitude of the industry and underlines the importance

f providing its planners with efficient decision-making tools. See

n Fig. 1 the evolution of the wood demand and price from 20 0 0

o 2014. 

The main contributions of this work over what was previously

ublished in the literature are as follows: 

1. The real original model in Andalaft et al. (2003) is introduced

instead of the simplified version in Alonso-Ayuso et al. (2011) .
The 18 scenario approach developed in Alonso-Ayuso et al.

(2011) is extended to 144 scenarios in order to handle in a

proper way considerations of risk at intermediate periods. This

led to a much more difficult problem to solve, which forced us

to strengthen the formulation. 

2. We introduce methodology to handle risk at earlier periods.

This is an important contribution, especially from a managerial

point of view. Having negative results in earlier periods is more

troublesome than just the consideration of a discount rate. In

most firms short term financial results are vital when evaluat-

ing the performance of management, making longer term suc-

cess secondary. Thus, reducing risk in early periods is impor-

tant. Time-inconsistent and time-consistent versions of CVaR

are dealt with in the forest harvesting planning problem, let

us name them TCVaR (for Time-inconsistent CVaR) and ECVaR

(for Expected CVaR). The former considers profit risk reduction

at modeler-defined intermediate periods, instead of considering

only profit up to the last period of the time horizon for the

whole set of scenarios, and the latter considers the profit up

to the last time period but individualized for given scenario

groups. These measures provide better solutions for the first

periods than the classical CVaR, while, as the results of the case

study show, at least, the overall profit distribution remains sim-

ilar to that obtained by the old measure. 

3. An extensive computational experiment comparing the differ-

ent approaches with different parameter settings has been per-

formed on the stochastic version of the real problem presented

in Andalaft et al. (2003) . In particular, the measures EV (Ex-

pected Value), RN, ECVaR, TCVaR and MCVaR (a mixture of the

last two) are tested. Both types of policies, namely the planned

and implementable ones are considered for the risk averse mea-

sures. 

TCVaR and MCVaR could be very interesting, particularly for

ong time horizons, since the risk reduction is forced at interme-

iate periods, although it may deteriorate the profit at the end of

he time horizon and, then, they are suboptimal to ECVaR in that

ense. The latter one (that is time-consistent) is very beneficial, see

omem-de Mello and Pagnoncelli (2016) , Pflug and Pichler (2016) ,

udloff, Street, and Valladao (2014) , and Shapiro (2009) , among

thers, since by construction it performs risk reduction in individ-

al groups of scenarios (instead of considering its whole set). The

ationale behind a time-consistent risk averse measure is that the

olution value to be obtained in a given node, say n , of the mul-
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Fig. 2. A multi-period scenario tree. 
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tistage scenario tree, should not be influenced by the realizations

of the uncertain parameters related to the nodes that are not in

the ancestor path from the root to node n of the scenario tree.

Notice that the group of scenarios in one-to-one correspondence

with those other nodes cannot occur at node n and successors.

See in Rudloff et al. (2014) an economic interpretation and prac-

tical consequences of a time-consistent risk averse measure, con-

sidering ECVaR as a pilot measure. In any case. it is up to the

decision-maker to choose the measure to consider, so that if the

aim is controlling the profit at intermediate periods at the price of

a moderate reduction in profit up to the end of the time horizon,

then MCVAR could be the measure of choice for the planned pol-

icy and TCVaR is the choice for the implementable policy. On the

other hand, if the aim is to optimize the profit up to and including

the last period then TCVaR and MCVaR could be suboptimal and

ECVaR is the measure of choice. 

The goal of the tactical forestry planning addressed in this work

is to determine a policy for forest harvesting and access road con-

struction that will maximize the expected profit in the scenarios.

Given the uncertainty in wood price and demand along the time

horizon, the constraints should be satisfied at each node of the sce-

nario tree. Additionally, one will consider the time-consistent and

-inconsistent versions of the risk-averse CVaR measure. The timber

land under consideration is subdivided using geographic informa-

tion systems (GIS) into units or stands for harvesting purposes. 

The remainder of the paper is organized as follows. In Section 2 ,

the multi-period mixed 0–1 stochastic problem is considered, with

the risk neutral model presented in Section 2.1 . Section 2.2 intro-

duces our scheme for scenario tree generation to represent the un-

certainty. Section 2.3 studies the ECVaR, TCVaR and MCVaR vari-

ants of the CVaR risk-averse measure. Section 3 describes the forest

harvest planning problem as a case study to test the behaviour of

the risk-averse measures examined in this work. Section 4 presents

the main computational results comparing the risk averse ap-

proaches and their impact on the final solution. Finally, we discuss

the main conclusions of the work and outline future research plans

in Section 5 . Appendix A presents the new mathematical formula-

tion for the deterministic version of the problem to be dealt with

in this work, and Appendix B describes some additional computa-

tional results. 

2. Model building in stochastic optimization 

2.1. Expected value and risk neutral models 

For representing the uncertainty in wood demand and prices, a

scenario analysis approach is used, where the scenario set can be

visualized as a tree. Let T denote the set of periods in the time

horizon, where T = |T | is the number of periods and let � be the

finite set of representative scenarios. A scenario ω ∈ � is a particu-

lar realization of the uncertain parameters along the time horizon,

represented in the tree as a root-to-leaf path. A node of the tree

represents the event where a realization of uncertain parameters

and decision variables for a given period takes place. Notice that

the group of scenarios that have the same realization of the un-

certain parameters up to any given period have the same value

for the decision variables up to the period and thus satisfy the

well-known nonanticipativity principle. Notice that there is a one-

to-one correspondence between nodes and scenario groups for the

same period. Let n and N denote a node and the lexicographically

numbered set of nodes { 1 , . . . , |N |} in the tree, respectively, and

let N 

t denote the subset of nodes that belong to period t , such

that N = ∪ t∈T N 

t , N 

t ∩ N 

t+1 = ∅ for t ∈ T \ { T } . To facilitate the

presentation of the scheme for the scenario tree generation given

in Section 2.2 , let N 

0 = { 0 } , N 

1 = { 1 } and N 

T +1 = {| N 

T | + 1 } . Let

also �n ⊆� denote the subset of scenarios in one-to-one corre-
pondence with node n in the tree. For scenario ω ∈ � the weight

 

ω represents the probability of its occurrence. Let ˜ A 

n and 

˜ S n de-

ote the sets of ancestor and successor nodes to node n (including

tself in both of them), respectively, for n ∈ N . Let S n ⊆ ˜ S n denote

he set of immediate successors of node n ∈ N . Note: N 

1 is sin-

leton, ˜ A 

1 = { 1 } and 

˜ S n = ∅ for n ∈ N 

T . Finally, let σ ( n ) denote the

mmediate ancestor node of node n , for n ∈ N \ { 1 } , where n = 1

s the root node of the scenario tree. 

As an example, let us consider the decision tree in Fig. 2 . Each

ode, say n , represents a point in time where a decision can be

ade. Once a decision is made, some contingencies may occur (in

his example the number of contingencies varies from two to three

or periods 1 to 3), and information related to those contingencies

s available at the beginning of the next period. 

Without loss of generality, let us consider the following syn-

hesized mixed 0–1 model that gives a compact view of the de-

erministic multi-period mixed 0–1 model (7) –(A.13) shown in

ppendix A for this forestry planning problem, 

 EV = max 
∑ 

t∈T 
(a t 1 x 

t + b t 1 y 
t ) 

subject to 

∑ 

t ′ ∈T : t ′ ≤t 

(A 

t ′ 
t x 

t ′ + B 

t ′ 
t y 

t ′ ) = h 

t , ∀ t ∈ T , (1)

x t ∈ { 0 , 1 } n x (t) , y t ∈ R 

n y (t) , ∀ t ∈ T , 

here EV stands for Expected Value, x t and y t are the n x ( t ) and

 y ( t ) dimensional vectors of the 0–1 and continuous variables, re-

pectively, a t 
1 

and b t 
1 

are the vectors of the coefficients of the ob-

ective function, A 

t ′ 
t and B t 

′ 
t are the constraint matrices of period

 for the 0–1 and continuous variables in its ancestor period t ′ 
including itself), respectively, and h t is the right-hand-side vector

rhs) for period t . Note: a t 
1 

and b t 
1 

can be considered as the unit

rofit related to the variables in vectors x t and y t , respectively. 

Without loss of generality, let us consider the synthesized com-

act representation of the multi-period mixed 0–1 model for max-

mizing the expected value of the objective function in the set of

cenarios � in the scenario tree, such that the so-called Risk Neu-

ral (RN) model can be expressed as 

 RN = max 
∑ 

n ∈N 
w 

n (a n 1 x 
n + b n 1 y 

n ) 

s.t. 
∑ 

q ∈A n 
(A 

q 
n x 

q + B 

q 
n y 

q ) = h 

n , ∀ n ∈ N , 

x n ∈ { 0 , 1 } n x (n ) , y g ∈ R 

n y (n ) , ∀ n ∈ N , 

(2)
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here w 

n is the weight or probability of node n in the scenario

ree and is computed as 
∑ 

ω∈ �n w 

ω ; A 

n ⊆ ˜ A 

n is the set of ancestor

odes to node n with nonzero elements in the constraints matri-

es of node n ; x n and y n are the vectors of the 0–1 and continu-

us variables for node n , respectively; a n 
1 

and b n 
1 

are the vectors of

he objective function coefficients for the 0–1 and continuous vari-

bles, respectively; A 

q 
n and B 

q 
n are the constraint matrices of node

 for the variables in x q and y q in ancestor node q of node n , re-

pectively; h n is the rhs for node n ; and n x ( n ) and n y ( n ) are the

umbers of 0–1 and continuous variables, for n ∈ N , respectively. 

As an additional notation to be used throughout the rest of the

ork, let t ( n ) denote the period from set T to which node n be-

ongs. Notice that ˜ A 

n for n ∈ N 

T is the set of nodes for scenario

 ∈ �, so, for convenience, let n = ω for n ∈ N 

T . 

.2. Representing the uncertainty. Multi-period scenario tree 

eneration scheme 

It is beyond the scope of this work to present a methodol-

gy for multi-period scenario tree generation and reduction; see

.g., Heitsch and Römisch (2009) , Leövey and Römisch (2015) , and

flug and Pichler (2015) for alternative ways of performing it. A

igorous development of scenario trees for future wood prices is

xtremely complex. We follow a proposal in Ríos, Weintraub, and

ets (2016) to generate the scenario tree for our case. 

Let us consider that the tree structure represented in set

 

t , ∀ t ∈ T and that the wood prices are mean-reverting as other

ommodities. Their stochastic behaviour can then be modeled

hrough the stochastic differential equation, 

p(t) = μ(ν − p(t)) d t + σ p(t ) dw (t ) , p(0) = p 0 , t ≥ 0 , 

here p ( t ) is the price at period t , p (0) is the present price (or an

stimate) at time 0, μ is the speed of price convergence towards

ts long-term value ν , σ is the standard deviation and w (t) is a

iener process. The solution of the equation can be expressed as

ollows (see Ríos et al. (2016) for more details), 

p(0) = ν(1 − e −μt ) + p(0) exp 

[ 
−
(
μ + 

σ 2 

2 

t + σw (t) 
)] 

, 

hich corresponds to a displaced log-Gaussian process with mean

nd variance 

E[ p(t)] = ν(1 − e −μt ) + p 0 e 
−μt , 

 [ p(t)] = (p(0) e −μt ) 2 (e σ
2 t − 1) . 

sing data from 1988 to 2009, Ríos et al. (2016) proposes the fol-

owing estimation for the coefficients of the process associated to

awtimber: 

p 0 = 1 . 0749 , ν = 1 . 1998 , μ = 0 . 0462 , σ 2 = 0 . 0319 . 

or pulp-wood, again on the 1988–2009 database, the coefficients

re as follows: 

p 0 = 0 . 5501 , ν = 0 . 5623 , μ = 0 . 0979 , σ = 0 . 0086 . 

odeling export quality timber is not presented in Ríos et al.

2016) ; thus we considered, based on historical data, that export

uality is 20% more expensive than sawtimber. Additionally, in or-

er to consider some variability in the prices, a random perturba-

ion of 10%, at most, has been introduced in the timber price for

ach market. 

By following the ideas in Ríos et al. (2016) for building robust

cenario trees, available information about price is used to conduct

n analysis of the cumulative distribution functions (CDF) associ-

ted to the densities. The main step of the methodology applied to

he case study from period t = 1 to period t = |T | consists of ob-

aining a finite set of points that summarize the CDF, giving flex-

bility for considering specific segments of the domain, e.g., tail
vents. For that purpose, the CDF is split in a finite number of

egments with a one-to-one correspondence with the nodes in set

 

t , ∀ t ∈ T ; then, the information of each segment is assigned to

 representative point. Formally, let ξ t be a random variable with

upport �t , with probability density function f ξ ( t ) and cumulative

istribution function F ξ ( t ). In addition, for the nodes i ≡ |N 

t−1 + 1 |
nd j ≡ |N 

t | (i.e., the lexicographically ordered first and last nodes

f period t , respectively), let C t = { c i , . . . , c j+1 } be a partition of the

nterval [0, 1], 

 i = 0 , c j+1 = 1 , c n < c n +1 , ∀ n ∈ { i, . . . , j} , and 

j ⋃ 

n = i 
[ c n , c n +1 ] = [0 , 1] . 

onsidering the value of F −1 
ξ

evaluated in C t , the c n -quantiles of ξ t ,

ay Q c n are obtained, for c n ∈ C t , ∀ n ∈ N t , which define the parti-

ion of the support of ξ t . Note: Depending on the set C t , the ap-

roach allows the number of scenarios to be changed, as well as

he segments of the support of ξ t . Once the segments are defined,

he expected value of the random variable for each one can be ex-

ressed as 

n = E 
(
ξt | Q c n ≤ ξt ≤ Q c n +1 

)
, ∀ n ∈ { i, . . . , j} . 

o generate the scenarios for the product demands, a similar

cheme is considered by assuming that they are normally dis-

ributed. As in Andalaft et al. (2003) , the model considers lower

nd upper bounds on the demand of each wood product to be

ffered in different markets. These bounds are different for each

roduct q and market m at any node of the scenario tree. There-

ore, for a given product q and market m , let us consider a node

 ∈ N with its set S n of the immediate successors in the tree, and

 s is the order in the set related to node s ∈ S n from 1 to k ≡ |S n | ,
 being the last node in that set. The demand, say ζ s in node s ∈ S n 
an be approximated by a normally distributed random variable

ith mean μn and standard deviation σ n , lower and upper bounds,

ay Q o s −1 
k 

and Q o s 
k 

, Q o s 
k 

being the o s 
k 

-quantile of the normal distri-

ution N ( μn , σ n ). Note: Instead of the 0- and 1-quantiles of the

ormal distribution (which, in fact, are −∞ and + ∞ , respectively),

e consider the 0.001- and 0.999-quantiles. 

For computing the demand bounds of any node, say s ∈ S n , the

arameters of the normal distribution to be used N ( μs , σ s ) are

omputed as follows: The mean μs is the conditional expectation

f the random variable ζ n in the interval defined by the bounds

Q o s −1 
k 

, Q o s 
k 

)
, i.e., 

s = E 
(
ζ n | Q o s −1 

k 

≤ ζ n ≤ Q 

o s 
k 

)
, 

nd, for the computational experience reported in Section 4 , the

tandard deviation σ s is set to 0.3 μs . Note: The parameters for

he distribution function of the demand at the root node are a

odeler-defined data. 

As an example, let us consider the three-period scenario tree

epicted in Fig. 3 where T = { 1 , 2 , 3 } , the root node is n = 1 and

ts immediate successor set S 1 is { s = 2 , . . . , 5 } . For a decision

aker-driven data with μ = 20 0 0 and σ = 60 0 , the lower and up-

er bounds for the demand at the nodes in period t = 2 are as

ollows: 

Node 2: Q 0 . 001 = 146 and Q 1 
4 

= 1505 . Node 3: Q 1 
4 

= 1505 and Q 2 
4 

= 20 0 0 . 

Node 4: Q 2 
4 

= 20 0 0 and Q 3 
4 

= 2495 . Node 5: Q 2 
4 

= 2495 and Q 0 . 999 = 3854 . 

The normal distribution associated with the random variable ξ 3 

sed for computing the bounds on the demand for the immedi-

te successor node set S 3 has a mean equal to: μ3 = E 
(
ζ 1 | 1505 ≤

1 ≤ 20 0 0 
)

= 1811 . 
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Fig. 3. Demand scenario tree generation. 
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2.3. CVaR-based risk averse management 

The aim of the RN model (2) is simply to maximize the ex-

pected value of the objective function without any hedging against

the uncertainty in the parameters. For that reason, the main crit-

icism that can be made to this very popular mean measure is

that it ignores the variability of the objective function value in

the set of scenarios and, in particular, the left tail of the un-

desirable scenarios. There are, however, other approaches that,

additionally, deal with risk management; see in Alonso-Ayuso

et al. (2014) a comprehensive computational comparison of the

most popular time-inconsistent risk-averse measures. Well-known

theoretical research suggests that the measures based on quan-

tiles are good functions for risk management. Among them, the

Value-at-Risk (VaR) and Conditional VaR (CVaR), see Guigues and

Sagastizbal (2013) , Homem-de Mello and Pagnoncelli (2016) , Pflug

(20 0 0) , Pflug and Pichler (2016) , Rockafellar and Uryasev (20 0 0) ,

and Shapiro, Dencheva, and Ruszczynski (2009) . have become a

benchmark for many applications in the financial, supply chain, en-

ergy, transportation and productions planning sectors, among oth-

ers. 

Definition 1. VaR β (X, �, P) of a solution X for a given set of sce-

narios �, each one with a probability of occurrence in P, is the

highest value, say α, such that the probability of occurrence of any

of those scenarios with a profit smaller than α is lower than β ,

where β ∈ (0, 1) is a modeler-defined parameter. 

Notice that the advantage of the VaR measure over the tradi-

tional maxmin measure is obvious, since it specifies the bound β
on the probability of the occurrence of a scenario whose profit

is below α. It does not however consider how bad the scenar-

ios with a profit below α can be. As an alternative, the classi-

cal CVaR β (X, �, P) measure for linear models was introduced in

Rockafellar and Uryasev (20 0 0) , being expressed as 

z = max 
α,x,y 

α − 1 

β

∑ 

w ∈ �
w 

ω 

{ 

α −
∑ 

q ∈ ̃  A ω 
(a q 

1 
x q + b q 

1 
y q ) 

} 

+ 

. (3)

In this section, we present two modifications of model RN (2) that

allow risk management by taking into account the profit for those

non-desirable scenarios, i.e., those with profit below α, by consid-
ring extensions of the classical CVaR. As many other risk averse

pproaches in the literature, CVaR reduces the probability of a neg-

tive impact of the model’s solution in the unwanted scenarios.

owever, it does not consider scenarios with higher profit than α.

n the contrary, decision makers usually look for a trade-off be-

ween risk minimization and profit maximization. For this reason,

he risk measures are usually combined with the optimization of

he expected value of the objective function, leading to the follow-

ng mean-risk model, see Schultz and Tiedemann (2006) , 

 CVaR = max 

[ 
γ

∑ 

n ∈N 
w 

n (a n 1 x 
n + b n 1 y 

n ) + ρ
(
α − 1 

β

∑ 

w ∈ �
w 

ω v ω 
)] 

(4a)

.t. 
∑ 

q ∈A n 
(A 

q 
n x 

q + B 

q 
n y 

q ) = h 

n ∀ n ∈ N (4b)

α −
∑ 

q ∈ ̃  A ω 
(a q 

1 
x q + b q 

1 
y q ) ≤ v ω ∀ ω ∈ � (4c)

x n ∈ { 0 , 1 } n x (n ) , y n ∈ R 

n y (n ) ∀ n ∈ N (4d)

v ω ∈ R + ∀ ω ∈ � (4e)

α ∈ R , (4f)

here α is a continuous variable that computes the

 aR β
(
(x, y ) , �, P 

)
associated with each solution, v ω is a non-

egative variable that collects the difference (if it is positive)

etween α and the profit for scenario ω. Note that v ω is strictly

ositive only for scenario ω with profit below α, γ is a non-

egative parameter for the expect function value and ρ > 0 is also

 weight factor. 

Function (4a) is the composite function of the RN expected

unction (i.e., profit), the weighted VaR and the weighted nega-

ive expected shortfall on reaching the VaR profit. The constraint

ystem (4b) is the RN scenario node-based system. Constraints

4c) define VaR and the shortfall of each scenario profit on reach-

ng it. The bounds (4d) –(4f) give the variables’ domain. 
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Fig. 4. The multi-period scenario tree and the related subtree for t = 3 . 
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Observe that the CVaR model (4) maximizes the expected profit

nd the highest profit (i.e., VaR) at the end of the time horizon for

hich the weighted expected scenario shortfall on reaching that

aR is minimized. That very popular risk reduction measure may

ave two big drawbacks depending on the modeler-defined aim to

onsider. First, observe that the VaR profit and the related scenario

xpected shortfall are evaluated for the whole set of periods (i.e.,

t the end) of the time horizon. And, second, all scenarios in the

ree are considered in the same set for obtaining the VaR profit

ithout differentiating between categories (i.e., groups). 

It could therefore be interesting to consider a modeler-defined

ntermediate subset of periods for avoiding low-probability high-

oss scenarios up to those periods in the time horizon. In that case,

he classical CVaR is not the most appropriate risk averse measure.

s an alternative, we propose the TCVaR measure, see Section 2.3.1 ,

n which the objective function considers the profit VaR and re-

ated expected shortfall up to each of the chosen periods in the

cenarios. 

Another alternative is the ECVaR measure, see Section 2.3.2 ,

here a set of scenario groups from the whole set is considered

n one-to-one correspondence with the nodes that belong to a

odeler-defined subset of periods. The profit risk reduction for

ach of those groups is considered for obtaining the profit VaR

nd the related expected shortfall up to the last period in the time

orizon. The measure complies with the time-consistency defini-

ion given in Homem-de Mello and Pagnoncelli (2016) , Kozmik and

orton (2015) , Rudloff et al. (2014) , and Shapiro (2009) , among

thers, whose rough statement in Kozmik and Morton (2015) says:

At each state of the system, optimality of a decision policy should

ot involve states which cannot happen in the future’. It is the def-

nition to be used throughout this work. 

A computational comparison of the measures TCVaR, ECVaR and

CVaR is reported in Section 4 . Among other results (such as the

rofit distribution) it shows the following results for each mea-

ure (say, m ) and up to the chosen periods in the time horizon

or both policies, planed and implementable : Number of scenarios

ut of set � where the measure has the highest profit among the

hree measures (let us name such set �m 

), and the expected dif-

erence between the highest profit among those measures and the

rofit given by the measure in the scenario subset ���m 

. That in-

ormation may support the decision making when focusing on the

rofit performance for the periods of interest. 

.3.1. Time-inconsistent multi-period TCVaR measure 

The CVaR model (4) only performs risk management for the

rofit but, in many contexts, the decision maker wants to manage

he risk for other functions such as the one that measures the en-

ironmental impact. Let F denote the set of functions where risk

anagement could be performed in the value 
∑ 

n ∈ ̃  A ω (a n 
f 
x n + b n 

f 
y n ) ,

 f ∈ F for the set of scenarios ω ∈ �. The model also measures

nd controls the risk at the end of the time horizon. However,

ince the value of the function f under risk-control for each sce-

ario is calculated as the sum of the values of the function at the

odes ˜ A 

ω , this approach does not prevent very bad results at any

f the stages. Notwithstanding, it could eventually be compensated

y good results in the others stages. 

It may thus happen that bad results at intermediate nodes in

he solution of model (4) drive the decision maker to a situation of

o-return. To avoid such situations, risk management can be per-

ormed, as stated above, at some intermediate time periods; let us

enote ˜ T f ⊆ T the subset of periods where function f is under risk

ontrol (note that for singleton set ˜ T f = { T } , the classical CVaR is

btained). So, model (4) can be extended to consider multi-period,

ulti-function risk management, resulting in the following model
elated to the TCVaR measure, 

 T CVaR = max 

[ 
γ

∑ 

n ∈N 
w 

n (a n 1 x 
n + b n 1 y 

n ) 

+ 

∑ 

f∈F 

∑ 

t∈ ̃ T f 
ρt 

f 

(
αt 

f −
1 

βt 
f 

∑ 

n ∈N t 
w 

n v n f 
)] 

(5a) 

s.t. 
∑ 

q ∈A n 
(A 

q 
n x 

q + B 

q 
n y 

q ) = h 

n ∀ n ∈ N (5b) 

αt 
f −

∑ 

q ∈ ̃  A n 
(a q 

f 
x q + b q 

f 
y q ) ≤ v n f ∀ n ∈ N 

t , t ∈ 

˜ T f , f ∈ F (5c) 

x n ∈ { 0 , 1 } n x (n ) , y n ∈ R 

n y (n ) ∀ n ∈ N (5d) 

v n 
f 
∈ R + ∀ n ∈ N 

t , t ∈ 

˜ T f , f ∈ F (5e) 

αt 
f 
∈ R ∀ t ∈ 

˜ T f , f ∈ F, (5f) 

here αt 
f 

is V aR βt 
f 

for function f ∈ F up to period t ∈ 

˜ T f in the

ime horizon for the whole set of scenarios, i.e., set N 

t , v n 
f 

is a

on-negative variable that gives the shortfall of the scenario group

n one-to-one correspondence with node n for reaching VaR αt(n ) 
f 

p to period t ( n ), and ρt 
f 

and βt 
f 

for t ∈ 

˜ T f are modeler-defined

arameters, such that ρt 
f 

weighs the risk reduction importance for

he pair ( t , f ) and βt 
f 

is related to the importance given to the ex-

ected shortfall on reaching αt 
f 

in the scenarios. 

Function (5a) is like (4a) but now the risk reduction-based part

akes the weighted VaR and the related expected shortfall of the

alue of each function up to the chosen periods where the risk

eduction is to be performed. Constraints (5c) define the function-

ased VaR in those periods. They also define the related shortfall

f the function-value of the scenario group in one-to-one corre-

pondence with a node that belongs to the chosen periods. 

As an illustration, consider the four-period scenario tree in

ig. 4 and consider that ˜ T f = { 3 , 4 } , then TCVaR model (5) performs

isk management by minimizing the CVaR associated to the two

ypes of depicted scenario subtrees. 

Among other remarks on the VaR and CVaR measures, Pflug

20 0 0) is the first work, as far as we know, that observes that CVaR

s a coherent measure according to the standards setup in Artzner,
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Fig. 5. Multi-period scenario tree and the related subtree for t = 2 . 
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Delbaen, Eber, and Health (1999) , see also Artzner, Delbaen, Eber,

Health, and Ku (2007) , since it satisfies the properties of transla-

tion invariance, positive homogeneity, monotonicity and convexity.

2.3.2. Time-consistent multi-period ECVaR measure 

One desirable constrained qualified property for a solution of a

multi-period model is time-consistency in the sense that the solu-

tion to be obtained for any node, say n , of the scenario tree and

its successor node set ˜ S n in the related submodel ‘solved’ at pe-

riod t ( n ) should have the same value as the solution obtained for

that node and its successors in the original model ‘solved’ at pe-

riod t = 1. It is worth pointing out that the above mentioned con-

strained qualification consists of requiring that the value of the

variables in the ancestor nodes to be considered in the model ‘to

solve’ at period t ( n ) for the subtree rooted with node n is precisely

the one obtained in the original model ‘solved’ at period t = 1 . In

the words of Rudloff et al. (2014) , an optimal policy is time consis-

tent if and only if the future planned decisions are actually going to

be implemented . 

It is well known that the RN model (2) is time-consistent,

while the risk measures CVaR and TCVaR are not. It was shown in

Homem-de Mello and Pagnoncelli (2016) that the time-consistency

property of CVaR depends on parameter βt 
f 
: the smaller it is, the

higher the probability of consistency of CVaR, in the sense that

the difference between the solution obtained for the original prob-

lem and the solution for the problem ’solved’ at any other period

decreases. 

As a time-consistent alternative to the TCVaR model (5) , the

risk management can be performed at any node n ∈ N : t(n ) < T ,

considering the scenarios in the associated subtree with root in

node n of the original scenario tree. Let ˜ T f ⊂ T denote the sub-

set of periods where the risk reduction in the value of the func-

tion indexed with f is to be performed, for f ∈ F . Observe that any

group of scenarios, say �n , is in one-to-one correspondence with

the related node n in the tree. The ECVaR model for performing the

required risk reduction in the forest harvest planing problem is a

straightforward extension of the synthesized model considered in

Homem-de Mello and Pagnoncelli (2016) for a general case. It can

be expressed as 

z ECVaR = max 

[ 
γ

∑ 

n ∈N 
w 

n (a n 1 x 
n + b n 1 y 

n ) 

+ 

∑ 

f∈F 

∑ 

t∈ ̃ T f 
ρt 

f 

∑ 

n ∈N t 

(
w 

n αn 
f −

1 

βt 
f 

∑ 

ω∈ �n 

w 

ω v ω f 

)] 
(6a)

s.t. 
∑ 

q ∈A n 
(A 

q 
n x 

q + B 

q 
n y 

q ) = h 

n ∀ n ∈ N (6b)

αn 
f −

∑ 

q ∈ ̃  A ω 
(a q 

f 
x q + b q 

f 
y q ) ≤ v ω f ∀ ω ∈ �n , n ∈ N 

t , t ∈ 

˜ T f , f ∈ F 

(6c)

x n ∈ { 0 , 1 } n x (n ) , y n ∈ R 

n y (n ) ∀ n ∈ N (6d)

v ω f ∈ R + ∀ ω ∈ �n , n ∈ N 

t , t ∈ 

˜ T f , f ∈ F 

αn 
f ∈ R ∀ n ∈ N 

t , t ∈ 

˜ T f , f ∈ F, (6f)

where αn 
f 

is V aR βt 
f 

for function f ∈ F at the end of the time hori-

zon for the set of scenarios in �n , and v ω 
f 

is a non-negative vari-

able that gives the shortfall of scenario ω for reaching αn 
f 
, for

ω ∈ �n . 
Function (6a) is like (5a) but now the risk reduction-based part

akes the weighted VaR and the related expected shortfall of the

alue of each function up to the last period in the time horizon in

he chosen scenario groups. Constraints (6c) define the function-

ased VaR in those scenario groups in one-to-one correspondence

ith a node that belongs to any of the chosen periods. They also

efine the related shortfall of the function-value of each scenario

hat belongs to the VaR-related group. It is worth pointing out

hat model (6) is close to the average VaR proposals introduced

n Gaivoronski and Plug (2005) , Pflug and Pichler (2016) , and Pflug

nd Ruszczynski (2005) . 

As an illustration, for the scenario tree in Fig. 5 , consider that
˜ 
 f = { 1 , 2 } , then the ECVaR model (6) performs the risk manage-

ent by minimizing the CVaR associated to the whole set of sce-

arios for t = 1 , and the set of scenarios �n in the |N 

t | = 3 de-

icted subtrees, each rooted with node n , for n ∈ N 

t , for t = 2 . 

The ECVaR measure as presented in model (6) belongs to the

amily of Expected Conditional Risk averse Measures (ECRMs) consid-

red in Homem-de Mello and Pagnoncelli (2016) , where the time-

onsistency property of those measures is proved, according to the

efinition introduced there. Notice that the proof only requires

he measure to have the properties of translation-invariance and

onotonicity. See some variants in Bion-Nadal (2008) , Carpentier,

hancelier, Cohen, De Lara, and Girardeau (2012) , Collado, Papp,

nd Ruszczynski (2012) , De Lara and Leclere (2016) , Pflug and Pich-

er (2016) , Pflug and Pichler (2015) , Rudloff et al. (2014) , Ruszczyski

2010) , and Shapiro (2009) . The particularization of the definition

n our context is as follows: 

Let 
(

ˆ x q , ̂  y q ∀ q ∈ N , ˆ v ω 
f 

∀ ω ∈ � and ˆ αn 
f 

∀ n ∈ N 

t , t ∈ 

˜ T f , f ∈ F 

)
enote any of the optimal solutions of the original ECVaR model

6) , and z n 
ECVaR 

is the solution value in that model where only the

erms related to the subtree ˜ A 

n ∪ 

˜ S n are considered. It can be ex-

ressed as 

 

n 
ECVaR = γ

∑ 

q ∈⊂ ˜ A n ∪ ̃ S n 
w 

q (a q 
1 ̂

 x q + b q 
1 ̂

 y q ) 

+ 

∑ 

f∈F 

∑ 

q ∈ ̃ S n : t(q ) ∈ ̃ T f 
ρt(q ) 

f 

(
w 

q ˆ αq 

f 
− 1 

βt(q ) 
f 

∑ 

ω∈ �q 

w 

ω ˆ v ω f 

)

For any node n ∈ N , let us define the ECVaR 

n submodel from

6) as follows: 

• The scenario subtree that supports the ECVaR 

n submodel in-

cludes the nodes in set ˜ A 

n (from the original scenario tree) plus

the subtree rooted with node n whose nodes are in set ˜ S n . 
• The input data of the submodel are the same as in model

(6) for any scenario tree of any scenario set �. 
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Fig. 6. Areas and (potential and existing) logistic structure. 
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• Finally, in the submodel the variables in vectors x q and y q ∀ q ∈
˜ A 

n \ { n } are fixed to the values in ˆ x q and ˆ y q , respectively 

Let z ECVaR n denote the value of an optimal solution of the

CVaR 

n submodel. Therefore, the ECVaR measure is a time-consistent

ne, since the following assertion is true: 

 

n 
ECVaR = z ECVaR n . 

Another consistent CVaR-based measure that may ben consid-

red as an alterative to model ECVaR (6) is the nested risk measure

ntroduced in Kozmik and Morton (2015) , Philpott, de Matos, and

inardi (2013) , and Shapiro (2009) . The nested mechanism of the

VaR submodels for each period in set ˜ T f , f ∈ F , however, makes

ts decomposition more difficult. 

Note: ECVaR, as well as any other ECRM, is usually very suitable

or using decomposition algorithms (such as Escudero, Monge, and

omero-Morales (2015) , and Zou, Ahmed, and Sun (2016) , among

thers) for solving large-scale instances. 

An interesting question is: What version, either the time-

onsistent one or the time-inconsistent version of a risk averse

easure, performs better for risk management? The computational

xperiments whose main results are reported in the next section

ay help to answer that question. 

. The case study 

The above risk averse measures have been tested in the real

orestry problem presented in Andalaft et al. (2003) . For that pur-

ose, its deterministic mixed 0–1 model has been tightened and

xtended to the stochastic version in order to be able to include

he uncertainty in timber prices and demand (see the determinis-

ic version in Appendix A ). The known data used in the experiment

re based on Andalaft et al. (2003) while the multi-period scenario

ree for representing the uncertainty due to the variability of the

imber price and demand along the time horizon is generated ac-

ording to the scheme presented in Section 2.2 . In Section 3.1 , a

etailed description of the forestry planning problem is shown, and

hen, in Section 3.2 the main characteristics of the three instances

sed for testing are presented. 

.1. The forestry problem 

Consider the following management planning problem in the

imber industry. The firm under consideration owns plantation

ands that are divided into areas. Within each area there are dif-

erent stands, considered homogeneous as defined by age of trees,

oil quality (site index), and volume available per hectare (see

ig. 6 ). All areas are planted with pine trees, which mature at age
2–28. The stands that can be harvested during the time horizon

re therefore known. Growth-simulator models developed by the

orest firms are used to estimate timber yields in future periods.

n this kind of problems, the time horizon considered is usually

wo to five years (in the computational experience three years are

onsidered). 

On the demand side, timber production goes to export, to

awmills, and to pulp plants, as logs. While in reality there are

any different products, defined mainly by log length and diame-

er, at this level of planning we define only a few basic aggregate

roducts, referred to as export, sawmill, and pulp. Usually a higher-

evel quality can be used for lower-level purposes, at a loss in sale

evenue. For example, the pulp mill takes any type of timber, while

nly export quality can be exported. The main goal of the planning

rocess is to match the supply of standing timber with demand

or timber product of specific grades, lengths, and diameters, and,

hus, reducing losses in revenues due to down-grading and non-

rofitable additional cutting. 

The problem also considers the logistics of producing and de-

ivering those timber products. Most timber areas are near paved

ublic roads, but in order to get access to the different stands in

ach area, inside the areas private roads are needed. At the begin-

ing of the time horizon there are potential roads, i.e., roads that

an be built, as well as existing roads. In any later period there

re roads already built and projected ones. In addition to taking

nto account the existence or nonexistence of roads, one also has

o consider their surface quality. First, private roads can be built of

ither dirt or gravel, and this has an impact on operations. Gravel

oads are more expensive to build, but lead to lower transportation

osts and can be used year-round, while dirt roads are only useful

n the dry summer. Next, road building and upgrading should be

arried out in proper sequence so as to be consistent, timed with

tand harvesting, as well as to avoid excessive road building. In ad-

ition, road building can only be carried out in summer. 

Harvested timber can be stocked from summer to winter in

tocking yards; it makes sense to keep in the stocking yards from

ummer to winter some of the timber harvested in stands accessed

ia dirt roads, which can only be harvested in summer. The stock-

ng yards are located where there exist gravel road connections to

he area exit, so that timber harvested in summer can also be sent

o destinations in winter. 

Finally, consider the production and delivery of timber demand.

ggregate demands are projected to future periods, often as lower

nd upper bounds and so are the expected prices. Cable logging (or

owers) carry out harvesting for steep areas, while skidders harvest

at terrain. Timber hauling is carried out by truck to such destina-

ions as ports, pulp plants, sawmills, or stocking yards. Harvesting
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Fig. 7. Logistic network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Instance description. 

Ins. na S C I L P L Ed L Eg Ha Q M 

i1 2 11 0 15 7 7 0 627.4 3 7 

i2 3 14 0 20 7 10 0 694.0 3 7 

i3 2 21 0 33 8 16 9 216.1 3 7 
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machinery and crews are usually subcontracted with yearly con-

tracts. There is no clear way to evaluate the fixed costs needed

to install the harvesting machinery process, so firms replace this

cost by a policy of harvesting at least 10 or 15 hectares for larger

stands, and harvest the whole stand for smaller areas. 

To summarize, the basic decisions to be considered in each pe-

riod are as follows: 

• stands to be harvested; 
• roads to be built (in gravel or dirt) and roads to be upgraded

from dirt to gravel; 
• amount of timber production, by aggregate product for harvest-

ing to satisfy demand; 
• amount of timber transported to destinations or stocked from

summer to winter, if applicable. 

As an example, a logistic infrastructure for the problem is de-

picted in Fig. 6 . Observe that there are public roads for transport-

ing the material from the two harvesting areas and two stocking

yards. Each harvesting area is accessible through an existing gravel

road, but there are other possible access roads. Not all stands

are accessible through the existing roads and additional roads are

needed to be able to access them. 

The logistic structure can be modeled as a network where the

nodes can be defined as follows: 

• Stands: stands can be represented by nodes in the network as-

sociated to an access point. 
• Origins: Each access point to a stand is linked to an origin node,

such that one or more stands are accessible from each origin

point, but the stands are only accessible from one origin. 
• Stocking yards. 
• Final destinations. 
• Intermediate points: road junctions (linking different pieces of

roads, public or private). 

Notice that products are sent to the markets from the final des-

tination nodes or directly from the stocking yards. 

The set of links in the network includes all roads in the model

(public and private, existing or potential for the latter) and the

connections between origins and stands. Fig. 7 shows the network

associated with the logistic structure depicted in Fig. 6 . 

See Appendix A for the detailed mathematical formulation of

the deterministic version of the problem. Note that this model

incorporates all the features of the real problem presented in

Andalaft et al. (2003) that were deleted in the simplified version

of Alonso-Ayuso et al. (2011) . These include : (a) The three basic
imber products, rather than one; (b) The two types of road cate-

ories, dirt and gravel, with the possibility of upgrading from dirt

o gravel; and (c) The possibility of transferring Summer produc-

ion to Winter deliveries via use of stocking yards. In order to solve

his more complex model, given the high number of scenarios con-

idered, as shown next, its need to be tightened. 

In this deterministic model, all parameters are assumed to be

nown at the beginning of the time horizon, including timber

rices and demand along the time horizon. Wood demand and

rices can, however, vary along the time horizon, see Fig. 1 . No-

ice the volatility of the uncertain parameters which are, therefore,

ery difficult to predict. In order to be able to solve the far more

omplex resulting stochastic model, the deterministic model pre-

ented in the Appendix A is a tightened version of that in Andalaft

t al. (2003) (see constraints (7g) and (7h) and (12b) –(12i) ). This

llows carrying out the broad experiments reported in Section 4 . 

The instances in Section 4 used for testing the risk averse re-

uction measures are based on Andalaft et al. (2003) , in which a

eterministic version of the problem was solved using real data

rom the forest company Forestal Millalemu . It consisted of 17

orests, geographically separated, each connected through public

oads to demand nodes. It produced three wood qualities (for ex-

ort, sawmills and pulp plants) that were sent to different des-

inations, either final markets or processing plants. In this work,

ifferent instances have been created by selecting subsets of the

reas in order to obtain small but yet realistic examples where the

tochastic version could be solved in a reasonable computing time.

he time horizon considered is three years and each year is divided

nto two seasons (summer and winter). T , therefore, includes six

ime periods (also called stages). The first time period is consid-

red to be summer. 

.2. Description of the instances 

The main characteristics of the instances considered in this

ork are shown in Table 1 . The headings are as follows: na , num-

er of areas; S, number of stands; C, number of stocking yards;

, number of nodes; L 

P , number of potential roads; L 

Ed and L 

Eg ,
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Period: 1 2 3 4 5 6

12 sons

12 sons

12 sons

12 branches

12 branches

144 scenarios

Fig. 8. Forestry scenario tree. 

Table 2 

Model dimensions. 

Deterministic model (1) RN model (2) 

Ins. m nc n 01 m nc n 01 | �| |N | 
i1 1531 2399 220 158,919 234,070 22,880 144 589 

i2 1916 3311 268 198,288 323,598 27,592 144 589 

i3 2365 4063 350 245,806 397,136 35,825 144 589 
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umber of existing roads in dirt and in gravel, respectively; Ha , to-

al forest surface; Q , number of harvest products; and M , number

f markets. 

The scenario tree structure corresponds to a

 × 12 × 12 × 1 × 1 × 1 model, where the second stage has 12

odes, each of the second-stage nodes has 12 sons, and the

odes in the rest of the stages have only one son, resulting in

2 × 12 = 144 scenarios, see Fig. 8 . To build the data for the sons

f a node, 4 price scenarios and 3 demand scenarios have been

ombined in order to obtain 12 combinations. 

The size of the mathematical formulation of the determinis-

ic model (only one scenario) and the compact formulation of the

isk neutral (RN) approach of the stochastic model are shown in

able 2 . The headings are as follows: m , number of constraints, nc ,

umber of continuous variables, n 01, number of binary variables,

 �|, number of scenarios in the scenario tree, and |N | , number of

odes in the scenario tree. Note: Risk management is considered

or only the objective function (the net present value of the prof-

ts), i.e., set F is a singleton. 

The dimensions of the mathematical formulations for the risk

anagement models TCVaR (5) and ECVaR (6) are very similar to

he dimensions of the RN model (2) . Model (5) adds one α-variable

or each stage for which the risk management is performed (i.e.,

 ̃

 T | variables), one v -variable for each node in the stages in 

˜ T 

i.e., k = 

∑ 

i ∈ ̃ T |N 

t | ), and the related k constraints. Model (6) adds

 α-variables, | �| v -variables, and the related | �| constraints. In

he instances of the experiment, there are fewer than 300 new

onstraints and continuous variables. Taking into account the di-

ensions of model (2) (see Table 2 ), there are less than 0.2% and

.1% increments in the number of constraints and variables, respec-

ively. 

. Results 

The analysis of the computational performance of the CVaR

ersions and its comparison with RN is organized as follows:

ection 4.1 presents the comparison of the results for the deter-

inistic (i.e., Expected value, EV) model (1) of the forest harvest-

ng planning and the related RN model (2) . Section 4.2 performs

 comparison between the planned policy of TCVaR and ECVaR

odels (5) and (6) , and MCVaR, a mixture of both, versus the RN

odel. The objective is to analyze the impact of those measures on
he solution. The comparison is performed on the expected profit,

aR and CVaR (for specific values of the parameters in the last

wo) as well as on the profit distribution along the scenarios at

eriods t = 1 , 2 , 6 related to the measures RN, CVaR, ECVaR, TC-

aR and MCVaR. The comparison between these results takes as

 reference (with value 100) the expected profit of the WS (Wait-

nd-See) model, since it is an upper bound on the expected profit

n any of the measures under consideration. It is obtained from

he optimal profit of the scenarios considered individually (i.e., it is

he RN profit where the non-anticipativity constraints are relaxed).

ection 4.3 performs a similar analysis of the risk measures dealt

ith in this work, but the implementable policy is considered (ex-

laining the rolling horizon scheme that is used), instead of the

lanned one. The differences between both types of policies are

mphasized at the end of the section and also in Section 5 . Ad-

itionally, Appendix A discusses the impact of the changes for dif-

erent parameters in the risk averse measures. 

The computational experiments were conducted in the HW/SW

latform given by a workstation under the Linux operating sys-

em (version Ubuntu GNU/linus 14.04.1) with 64 bits, 2 proces-

ors Intel(R) Xeon(R) CPU E5-2630 @ 2.3 gigahertz, 64 gigabyte of

AM DDR3 1600 megahertz ECC and 24 virtual cores. The model

as been implemented with GAMS 24.3.2. The optimization uses

ne of the state-of-the-art commercial optimization engines, CPLEX

2.6.1; the optimality gap has been set to 2%. 

Note: The reporting of the results of the experiment is made by

aken benefit of the use of boxplots. It is a standardized way that,

n our case, allows to display the summary of the distribution of

he scenario profit quantified in the following five statistical mea-

ures: minimum, first quartile, median, third quartile, and maxi-

um. The central box spans from the first quartile to the third one.

he segment inside the rectangle shows the median. The whiskers

bove and below the box show the locations of the minimum and

aximum. Additionally, the mean (expected profit), and the com-

uted VaR (c-VaR) and CVaR (c-CVaR) are shown in each boxplot.

ote: In all experiments, it has been set up γ = 1 . 

.1. Computational comparison between the deterministic EV and RN 

odels 

Let us start with a comparison between the traditional deter-

inistic EV model (1) , where the uncertain parameters have been

eplaced with their expected values, and the RN model (2) . Let the

ell-known Expected profit of the Expected Value (EEV) be ob-

ained by applying the EV solution to the scenarios. Let also WS

Wait-and-See) denote the expected profit obtained by solving the

ndependent scenario models, which is an upper bound on the ex-

ected profit of the original RN model. Notice that the WS solution

oes not usually satisfy the non-anticipativity constraints (NAC).

he methodology for obtaining the EEV is very well established for

he two-stage setting, see Birge and Louveaux (2011) , but it is not

or the multistage one, see Escudero, Garín, and Pérez (2007) . Al-

ernatively, we propose the following methodology for obtaining

EV in a rolling horizon type of calculation (see Agustín, Alonso-

yuso, Escudero, and Pizarro (2012) for more details): (1) The so-

ution for the first stage is taken from the EV solution, (2) Once

he solution up to stage t − 1 is fixed, |N 

t | independent scenario

ubtrees remain, (3) The EV solution is independently obtained for

he scenario subtrees, whose root nodes are the nodes in set N 

t ,

o that the solution for each root node is fixed to its EV solution,

4) The models where only the stages T − 1 and T are involved are

ixed 0–1 two-stage problems, where the first stage nodes be-

ongs to set N 

T −1 , and finally they are solved. At the end of the

rocess there is a solution for each scenario, such that EEV is the

eighting of the solution values of the scenarios as calculated by

he procedure. 
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Table 3 

EV model (1) and RN model (2) : Results and profit distribution for instance i2. 
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The main results related to the RN, WS and EEV solutions for

instance i2 are shown in Table 3 . No results are reported for in-

stances i1 and i3, since the EV solution becomes infeasible at some

stage of the procedure. For the EEV, RN and WS solutions, c-VaR

is the 0.10-quantile of the profit vector for the set of scenarios

(that is, 10% of the scenarios have a profit lower than c-VaR, and

c-CVaR gives the expected profit for those scenarios whose profit

is lower than c-VaR). We can observe that the EEV solution value

(in this case, the expected profit) is 5.5% smaller than the RN profit

but only 2.2% smaller than the computed VaR profit. However, the

computed CVaR and the smallest scenario-related profit obtained

in the EEV approach are very poor, comparing with the ones ob-

tained by the RN model (2) . Therefore, the RN maximization of the

expected profit in the scenarios along the time horizon also pro-

vides better results in terms of risk than the EEV results for the

traditional EV approach. 

The boxplots associated with the distribution of profits along

the different scenarios for the EEV, RN and WS solutions are also

shown in Table 3 . (Notice that the latter is taken as the reference).

From those boxplots, it can be concluded that the solution pro-

vided by the EEV approach is worse than the one provided by the

RN model (2) , given the worse values of the statistical measures.

It highlights the CVaR and the lower tail of the profit distribution,

with very poor values for the worst-case scenarios. 

4.2. Computational comparison between the RN, TCVaR, ECVaR and 

MCVaR models. A planned policy 

The main input for the comparison to be performed between

the models RN (2) , TCVaR (5) , ECVaR (6) and MCVaR is as follows:

• TCVaR performs the risk management in two points, namely, an

intermediate period and the end of the time horizon, so, say,
˜ T 1 = { 3 , 6 } . The parameters βt 

1 
for those periods have been set

up to 0.10. 
• ECVaR performs the risk management in each of the given sub-

trees in the scenarios tree. Considering the tree structure de-

picted in Fig. 8 , period t = 2 is the only intermediate one where

the risk can be controlled by ECVaR, besides of course t = 1 ,

then, ˜ T 1 = { 1 , 2 } . The parameters β1 
1 

and β2 
1 

have been set up

to 0.10 and 0.18, respectively. Observe that the | N 

t | = 12 nodes

in t = 2 have 12 sons each, thus each weight is 0.0833. On

the other hand, it has been decided to perform the experiment

with a greater value for the β-parameters in order to penalize

not just one scenario per subtree, but two at least. 
• MCVaR combines the TCVaR and ECVaR models such that the

risk management is carried out by using ECVaR for the scenario

groups in one-to-one correspondence with the nodes in period

2 and TCVaR for the nodes in periods 3 and 6. That is, MCVaR
performs the risk management at period 6 but individualized

for each group of scenarios in period 2 and, simultaneously, it

performs a risk management for the whole set of scenarios up

to periods 3 and 6. 

Notice that the traditional CVaR (4) is a particular case of TC-

aR for ˜ T 1 = { 6 } and ECVaR for ˜ T 1 = { 1 } . These risk management

pproaches are biobjective mean-risk models. All of them include

n the objective function different weights for each time period in
˜ 
 1 , where the risk is controlled. It is well known in multiobjective

ptimization that each combination of these weights gives a effi-

ient solution; see in Appendix B the results of our testing with

ifferent combinations. 

The results of the best tested combination in our experiment

re shown in Table 4 , where the expected profit, computed VaR

nd computed CVaR up to the end of periods t = 1 , 2 , 6 , are pre-

ented. Notice that most of the studies in the literature focus the

nalysis in the comparison of the profit distribution at the end of

he time horizon ( t = 6 in the forest harvesting problem). How-

ver, taking into account that, usually, (1) the available informa-

ion changes along the time and, therefore, the model will be

e-optimized once new information is available, and (2) decision-

akers may want to obtain good decisions at the beginning of the

ime horizon (and, in this case, periods t = 1 , 2 correspond to the

rst year), it seems convenient to improve profits at these first pe-

iods as well as the profit at the end of the time horizon. 

As can be observed in Table 4 , all stochastic models practically

rovide the same expected profit at the end of the time horizon

 t = 6 ), while c-CVaR and c-VaR are slightly higher for the risk

verse approaches. However, the risk averse models provide an ex-

ected profit for t = 1 , 2 (especially, for the former) much higher

han RN as well as a significant improvement in c-VaR and c-CVaR.

n short, it can be observed that the risk averse measures move the

rofits to the early periods. On the other hand, the expected profit

s only slightly deteriorated at the end of the time horizon ( t = 6 )

ompared with the RN profit. Finally, it is not a surprise that the

lassical CVaR measure provides higher expected profit (at the end

f the time horizon) than the other risk averse measures, due to

he fact of the weaker risk reduction that is considered. 

Besides these statistics, it is also important to consider the

rofit distribution in the set of scenarios, instead of just the ex-

ected one. For that purpose, next to each table, the boxplots are

hown for the profit distribution at the end of the three periods

hat are considered for risk reduction in the instances. The set of

oxplots on the right figure of each table shows the profit distri-

ution at the end of the time horizon ( t = 6 ), the lower figure in

he left part shows the profit at the end of t = 2 (corresponding

o the end of the first year of harvesting) and the upper left fig-

re corresponds to the profit at the end of t = 1 (corresponding to
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Table 4 

Results and profit distribution for the different approaches. Planned policy. 

t  

t  
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h  

i  

w  

i  

s  
he first semester in the time horizon). Note that in the latter case,

he solution proposed by all the stochastic optimization models is

he same for all scenarios (the boxplot is just a dot), since the non-

nticipativity principle is satisfied, while the WS approach provides

by construction) a different profit for each scenario. It can also be

bserved that at the end of t = 2 , ECVaR, TCVaR and MCVaR lead

o a better solution than RN, since not only the expected profits

re higher (as shown in the tables), but also the improvement is

ue to the profit distribution in the set of scenarios. 
Let us consider the results for instance i2. It can be observed

hat all the stochastic measures practically provide the same ex-

ected profit and profit distribution at the end of the time hori-

on ( t = 6 ). However, ECVaR, MCVaR and TCVaR are advancing

igh profit to period t = 1 , where the ECVaR and TCVaR prof-

ts are higher than in MCVaR. Additionally, the expected profit as

ell as the other statistics (median, quartiles, minimum and max-

mum) for t = 2 in MCVaR are higher than in the other three mea-

ures. It should be noted that the boxplot in TCVaR shows that this
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Table 5 

Comparison of the three measures: ECVaR, MCVaR and TCVaR. 

Planned policy. 

Instance i1 

ECVaR MCVaR TCVaR 

t # best de v .best # best de v .best # best de v .best

1 0 1.88 144 0.00 144 0.00 

2 24 10.12 108 1.35 24 13.09 

3 11 4.29 98 1.80 42 5.86 

6 22 0.64 71 1.71 54 0.75 

Instance i2 

ECVaR MCVaR TCVaR 

t # best de v .best # best de v .best # best de v .best

1 144 0.00 0 1.52 144 0.00 

2 60 3.74 72 1.70 36 3.54 

3 47 1.84 54 1.18 51 1.90 

6 64 1.98 34 1.18 50 1.67 

Instance i3 

ECVaR MCVaR TCVaR 

t # best de v .best # best de v .best # best de v .best

1 0 0.34 0 5.01 144 0.00 

2 84 8.87 60 4.46 0 8.57 

3 70 4.70 57 2.28 17 4.62 

6 79 2.64 40 3.28 25 2.48 
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approach provides a more concentrated profit distribution than the

other two risk averse measures, and notice that less variability in

future profits is also a desirable property. 

In summary, the main conclusions that can be drawn from the

experiment reported in Table 4 are as follows: 

• All the stochastic models provide similar expected profit at the

end of the time horizon ( t = 6 ). The profit distribution is also

very similar for the four models, although the risk averse mea-

sures have better (i.e., smaller) lower profit tails. 
• The risk averse measures usually provide a better profit than

the risk neutral measure for periods t = 1 , 2 . 

Table 5 shows some other results for periods t = 1 , 2 , 3 , 6 on

the same experiment shown in Fig. 4 . They are closely related

to the comparison of the three risk averse measures, namely

m = ECVaR, MCVaR, TCVaR. Remember that ˜ T = { 1 , 2 } for ECVaR,
˜ T = { 1 , 2 , 3 } for MCVaR and 

˜ T = { 3 , 6 } for TCVaR. We use the fol-

lowing notation: prof it ω m,t , profit obtained in scenario ω by mea-

sure m up to period t , for ω ∈ �; best ω t = max { m } { prof it ω m,t } , highest

profit among the three measures in scenario ω up to period t , for

ω ∈ �; and �m 

⊆�, subset of scenarios where the profit prof it ω m,t 

obtained by measure m was not the highest best ω t up to period t .

The headings are as follows for each measure m and up to each

period t : # best, number of scenarios where measure m has the

highest profit up to period t out of the | �| = 144 scenarios in the

experiment; de v .best, expected difference (in percentage) between

the highest profit best ω t and the profit prof it ω m,t obtained by mea-

sure m up to period t , among the subset of scenarios �m 

(i.e., the

set of scenarios where measure m does not provide the best profit).

It can be expressed as de v .best = 100 

∑ 

ω∈ �m 
w 

ω (best ω t −prof it ω m,t ) ∑ 

ω∈ �m 
w 

ω best ω t 
. No-

tice that the highest the number # best and the smaller the differ-

ence de v .best, the higher the quality of measure m up to period

t . 

The conclusion that can be drawn from the experiment is that

MCVaR advances the profit to the first periods and ECVaR is usu-

ally the most profitable (at the end of the time horizon). 

4.3. Computational comparison between the RN, TCVaR, ECVaR and 

MCVaR models. An implementable policy 

In this section the comparison that is performed in Section 4.2 ,

in particular, for the risk averse models (2), (5) and (6) is expanded
o consider the suggestion made in Rudloff et al. (2014) . It consists

f presenting a rolling horizon scheme for an implementable policy

n the RN, TCVaR, ECVaR and MCVaR risk measures. 

mplementable RN solution 

The RN solution for period t = 1 is the one obtained from the

riginal RN model (2) . By fixing that value, the model is decom-

osed into |N 

2 | = 12 independent submodels with 12 scenarios

ach. After that, solving each submodel results in the rest of the

N solution. 

mplementable TCVaR solution 

The first step considers the original model (5) supported by the

ull scenario tree. The subset of risk averse periods is ˜ T = { 3 , 6 } as

or the planned policy, and ρ6 
1 

= 0 . 25 and ρ3 
1 

= 5 . The risk reduc-

ion on the profit is performed in the whole scenario set �. The

rofit is taken into account up to the end of the time horizon for

 = 6 and only up to the nodes in subset N 

t for t = 3 . So, there are

wo places for risk reduction. 

After fixing the solution for period t = 1 to the value obtained

rom solving the original model (5) in the first step, the second one

onsiders |N 

2 | = 12 independent submodels (5) . Each submodel is

upported by a scenario subtree rooted with node n , for n ∈ N 

2 

s for RN, but now 

˜ T = { 4 , 6 } (note that the scheme has advanced

ne period in the implementation), ρ6 = 5 and ρ4 = 0 . 25 . The risk

eduction is performed in each scenario subset �n , for n ∈ N 

6 ,

here the profit is taken into account up to the end of the time

orizon, and only up to the nodes in subset N 

4 . Thus, by construc-

ion, there are 24 places for risk reduction. 

mplementable ECVaR solution 

The first step considers the original model (6) also supported

y the whole scenario tree. The subset of risk averse periods is
˜ 
 = { 1 , 2 } as for the planned policy, and ρ1 

1 
= 5 and ρ2 

1 
= 0 . 25 . The

isk reduction on the profit is performed in the whole scenario set

for t = 1 as well for each scenario subset �n for n ∈ N 

t for t = 2 .

he profit in both risk reduction steps is taken into account up to

he end of the time horizon. So, there are 13 places for risk reduc-

ion. 

After fixing the solution for period t = 1 to the value obtained

rom solving the original model (6) in the first step, the second one

onsiders |N 

2 | = 12 independent submodels (6) . Each submodel is

upported by a scenario subtree rooted with node n , for n ∈ N 

2 

s for RN and TCVAR, but now 

˜ T = { 2 } . (Note that the pilot case

nly allows singleton scenario groups for t > 2). The risk reduction

s performed in each scenario subset �n , for n ∈ N 

2 as in the first

tep, where the profit is taken into account up to the end of the

ime horizon, but, for being coherent, ρ2 
1 

= 5 instead of 0.25. Thus,

here are 12 places for risk reduction. 

mplementable MCVaR solution 

The first step considers the mixture of the original models

6) and (5) , so-called MCVaR, supported by the whole scenario

ree. The subset of risk averse periods is T = { 1 , 2 , 3 } as for the

lanned policy, and ρ1 
1 = 5 and ρ2 

1 = ρ3 = 0 . 25 . The risk reduction

n the profit is performed in the whole scenario set � for t = 1 in

he ECVaR-part of the joint MCVaR model, for each scenario sub-

et �n for n ∈ N 

t in period t = 2 in the ECVaR-part of the joint

odel, and for the whole set � for t = 3 in the TCVaR-part of the

oint model. The profit is taken into account up to the end of the

ime horizon for periods t = 1 , 2 and only up to the nodes in sub-

et N 

t for t = 3 . So, by construction, there are also 14 places for

isk reduction. 

After fixing the solution for period t = 1 to the value obtained

rom solving the joint original model solved in the first step, the
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econd one considers |N 

2 | = 12 independent submodels as a mix-

ure of the related models (6) and (5) . Each submodel is sup-

orted by a scenario subtree rooted with node n , for n ∈ N 

2 as for

N, TCVaR and EVCaR, but now T = { 2 , 4 } (note that the scheme

as advanced one period in the implementation), and ρ2 
1 = 5 and

4 
1 

= 0 . 25 . The risk reduction is performed in each scenario subset
n for n ∈ N 

t in period t = 2 , where the profit is taken into ac-

ount up to the end of the time horizon, and only up to the nodes

n subset N 

t for t = 4 . Thus, there are also 24 places for risk re-

uction. 

emark. The second steps of the time horizon-based schemes for

btaining the implementable TCVaR and MCVaR solutions in the pi-

ot case are identical. However, the solutions could be different,

ince both schemes start with different solutions for period t = 1 ,

hey have been obtained in their first steps. 

Observe from the results shown in Table 6 that MCVaR is usu-

lly the best measure for all periods, but the last one ( t = 6 ) where

CVaR is generally the most profitable one. 

From the analysis of the results shown in Table 7 for the im-

lementable policy, we can observe that ECVaR is clearly the cham-

ion in the periods t = 2 , 3 , 6 for instance i3, TCVaR is clearly the

hampion in period t = 1 for the three instances, and MCVaR is

he champion in periods t = 2 , 3 for instances i1 and i2 and close

o the other measures in the rest of the experiments. 

Comparing the expected profit results and profit distribution

hown in Table 4 ( planned policy) and Table 6 ( implementable pol-

cy), for the three risk averse CVaR measures, it can be observed

hat MCVaR is not the champion measure in the latter as it was in

he former. See in the next section a discussion about the oppor-

unity of considering the implementable policy versus the planned

ne and the meaning of the latter. 

. Discussion and outline of future research plans 

In this work, we have formulated and solved a multi-period

tochastic mixed 0–1 model for planning forest harvesting and

oad building. We consider uncertainties in timber prices and de-

and along the time horizon, by analyzing a finite set of discrete

cenarios, as already shown, contrary to the traditional approach

hat uses average (i.e., expected) values for the uncertain parame-

ers. Contrary also to the most frequent approaches in the stochas-

ic optimization literature, the model proposed in this work con-

iders that the parameters’ uncertainty is not independent period-

ise, but it is based on the probability distribution of the param-

ters’ realizations, which depend on the realization of the same or

ther uncertain parameters in the previous periods. 

The main contribution of the work has been to extend the risk

anagement on the solution of the risk neutral (RN) model for the

orest harvesting problem, by considering two versions of the very

opular CVaR risk averse measure in a stochastic model. It can be

bserved that the main advantage of the risk averse measures is

hat they advance the profit to early periods at the price of a very

mall deterioration (in the experiment, at least) in the expected

rofit at the end of the time horizon. That is, risk averse measures

rovide higher profits at early periods than EV and RN, in addition

o reducing the variability of the profits for unwanted scenarios

i.e., low-probability scenarios with a profit in unwanted quantiles).

One version of the risk averse measure is the time-consistent

CVAR. It allows risk reduction on the values of the given function

in this case, the harvesting profit) for the whole time horizon in

he scenario groups in one-to-one correspondence with the nodes

n the scenario tree that belong to a modeler-defined subset of pe-

iods. The other version is the time-inconsistent TCVaR. It allows

isk reduction to be performed on the values of the objective func-

ion in the whole set of scenarios up to a modeler-defined subset
f periods of the time horizon. Risk management can thus be per-

ormed at intermediate periods, a very useful additional tool for

 decision-maker who needs to plan for a long time horizon. The

erformance of both risk averse measures has been analyzed and

ompared with the traditional EV and RN measures, by considering

he solutions obtained for a set of large instances of the forestry

lanning problem. We have also experimented with the so-called

CVAR measure, a mixture of the other two CVaR versions dealt

ith in the work. An interesting advantage of TCVaR and MCVaR

ver ECVAR is that they can be used in all periods. On the contrary,

y construction, the periods of the time horizon whose nodes do

ot have successor subtrees cannot not be used for building the

roups of scenarios in ECVaR. Observe that in the instances we

ave experimented with, risk reduction can be performed for the

eriods t = 2,3,4,5,6 by using TCVaR, while it can only be performed

or periods 1 and 2 when using ECVaR. Notice that, by construc-

ion, TCVaR for t = 6 is the same as ECVaR for t = 1 . At any rate,

ur provisional conclusion is that the mixture MCVaR takes advan-

age of both risk averse measures in the planned policy. Its obvious

rawback is the computing time. See below our future plan to ad-

ress this issue. 

On the other hand, as expected given the tightness of the RN

odel (2) , the computing time that is required by plain use of

he state-of-the-art MIP solver CPLEX is very reasonable (up to 4

ours, approx) for the HW/SW platform that we have used for such

arge-sized instances (up to 250,0 0 0 constraints, 40 0,0 0 0 continu-

us variables and 36,0 0 0 0–1 variables). Notice that the WS and EV

easures required up to 123 and 11 seconds, respectively. Models

CVaR (5) , ECVaR (6) and the mixture MCVaR, however, require a

uch higher computing effort (very frequently reaching the time

imit of 24 hours, even though the optimality gap allowed for the

IP solver was 2%), see Appendix B . 

Another important issue that was dealt with in this work is

he computational analysis of the implementable policy versus the

lanned one when deciding about the accuracy of the assess-

ent on the quality of the risk measures under consideration. The

lanned policy is a more frequent approach in the literature than

he implementable one for assessing the goodness of models, risk

easures and even decomposition algorithm for problem solving.

robably, it is due to the difficulty to handle risk averse measures

or multistage problems in the latter policy. Notice that the anal-

sis based on the planned policy could only be correct if it is as-

umed that the planned decisions (solution of future nodes along

he time horizon) are to be implemented. Since, by construction,

 time inconsistent model does not guarantee that, then, perform-

ng post-optimization analysis on the planned policy is misleading.

e have reported the main results from the solution of the risk

easures RN, TCVaR, ECVaR and MCVaR by considering the imple-

entable policy versus the planned one. In the former policy we

ave used a rolling horizon scheme that is very similar to the one

resented in Agustín et al. (2012) , albeit only for the RN measure

n that work. 

The overall conclusion from the results of our experiment is:

n the planned policy, MCVaR could be the measure of choice if

he main goal of the decision maker is the profit advancement to

arly periods, and ECVaR is usually the most profitable one (at the

nd of the time horizon) and, then, it is the measure of choice if

he main goal of the decision maker is to obtain the highest profit.

nd, in the implementable policy: TCVaR is the measure that most

dvances the profit to the first period, and ECVaR continuous being

he most profitable measure (at the end of the time horizon). 

In our future research plan, we will develop a decomposi-

ion methodology for reducing the computational effort needed

or solving the instances while dealing with the risk averse mea-

ures. Notice that the model requires groups of cross scenario con-

traints (as many groups as the number of nodes in the subset
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Table 6 

Results and profit distribution for the different approaches. Implementable policy. 
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of periods considered), such that the nice structure of the sce-

nario tree based constraints is destroyed. And, so, typical decom-

position algorithms cannot be used with an affordable compu-

tational effort for solving large-sized problems. Hence, given the

large dimensions of the instances and the problems’ complex-
ty, it is unrealistic to seek for an optimal solution. Our research

ffort on developing suitable decomposition algorithms will be

wofold: On the one hand, our effort will be concentrated on spe-

ific versions of Lagrangean Decomposition ( Guignard, 2003; Guig-

ard & Kim, 1987 ), the so-called scenario Cluster Dualization and
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Table 7 

Comparison of the three measures: ECVaR, MCVaR and TCVaR. Imple- 

mentable policy. 

Instance i1 

ECVaR MCVaR TCVaR 

t # best dev . best # best dev . best # best dev . best 

1 0 2.77 0 2.77 144 0.00 

2 12 7.07 48 3.14 84 3.62 

3 40 2.55 69 2.83 35 3.55 

6 72 0.50 43 0.86 29 1.67 

Instance i2 

ECVaR MCVaR TCVaR 

t # best dev . best # best dev . best # best dev . best 

1 144 0.00 0 1.52 144 0.00 

2 48 3.03 72 1.87 24 2.71 

3 44 1.66 49 1.18 51 1.66 

6 56 1.85 34 1.12 54 1.73 

Instance i3 

ECVaR MCVaR TCVaR 

t # best dev . best # best dev . best # best dev . best 

1 0 0.34 0 5.01 144 0.00 

2 72 3.95 60 2.79 12 2.40 

3 54 1.65 39 1.76 51 1.54 

6 58 3.37 33 1.85 53 0.85 
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agrangean Relaxation (CDLR) algorithms ( Escudero, Garín, & Un-

ueta, 2017b ) for providing strong upper bounds on the solution

alue of the problem, and on a type of Lagrangean heuristic for ob-

aining (hopefully, good) feasible solutions with guaranteed good-

ess gap for the TCVaR measure. On the other hand, given the

tructure of the scenario tree, and considering that the scenario

roups belong to a modeler-defined subset of periods, the ECVaR

easure has a suitable structure to be exploited. Then, the algo-

ithm could be chosen from a computational comparison between

ifferent decomposition methodologies, such as an scenario CDLR,

 version of the Progressive Hedging methodology ( Rockafellar &

ets, 1991; Veliz et al., 2015 ) called Regularized Cluster Progres-

ive ( Escudero, Garín, Monge, & Unzueta, 2017 ) , and an step-

ise dependent non-Markovian-based Stochastic Nested Decompo-

ition ( Aldasoro, Escudero, Merino, Monge, & Pérez, 2015; Escud-

ro, Monge, & Romero-Morales, 2017c; 2015; Zou et al., 2016 ). The

enchmark testbed will include problems in forestry planning from

his work, supply chain management from Aldasoro et al. (2015) ,

nd Escudero et al. (2017c) , preparedness resource allocation plan-

ing in humanitarian logistics from Escudero et al. (2017a) , rapid

ransit network design planning from Cadarso, Escudero, and Marín

2016) , and electricity generation and transmission capacity ex-

ansion planning from Alonso-Ayuso, Escudero, and Martín-Campo

2016) . 
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ppendix A. Deterministic forestry model 

In this appendix, a tighter formulation of the deterministic

ixed 0–1 model in Andalaft et al. (2003) is presented. It allows

o solve the related stochastic version for the large-sized instances

n the experiment whose computational experience is presented in

ection 4 . This new version of the model includes a redefinition of

he variables associated to road building and upgrading and, on the
ther hand, the step variables-based model is used instead of the

mpulse variables-based one). Additionally, some constraints are

eformulated in order to tighten the model, specifically the con-

traint systems (6g) and (6h) and (11b)–(11i). 

otation 

The parameters and variables are denoted with capital and

mall letters, respectively. 

ets 
• T = { 1 , . . . , T } , set of time periods (summer and winter sea-

sons). 
• T S , T W , set of summer and winter time periods, respectively,

such that T = T S ∪ T W , T S ∩ T W = ∅ . 
• Q = { q 1 , q 2 , . . . , q K } , harvest product. It can be considered an

ordered set, such that product q has higher quality than prod-

uct q ′ provided that q < q ′ . A higher-level quality can be used

for lower level purposes, at a loss in sale price. 
• S, set of stands. 
• G = (I , L ) , where I is the set of nodes in the network and L is

the set of links. 
• I, set of nodes in the road network, I = I O ∪ I I ∪ I F ∪ C, where

C is the set of stocking yards, I O is the set of origin nodes (it

has some stands associated), I I is the set of intermediate nodes

(a junction in the roads network), and I F is the set of final des-

tination nodes (it is directly connected to the markets). 
• S i , set of stands associated with origin node i , S i ⊂ S, ∀ i ∈ I O . 
• L , set of links (potential or existing) in the road network. A link

is an edge linking two consecutive nodes in the road network. 
• R = { d, g} , road standards, d being for dirt and g for gravel. 
• L 

E , L 

P , set of existing and potential links, respectively. 
• L 

Ed , L 

Eg , set of existing links in dirt and gravel, respectively.

Note 1: All public roads exist from the beginning of the time

horizon and they are in gravel. Note 2: Existing roads in dirt

(i.e., private roads) can be upgraded to gravel. Note 3: Existing

or potential dirt links cannot be used in winter, so, they should

be upgraded to gravel in case they are to be used. 
• M , set of markets. 
• M i , set of markets served from node i (where i is a final desti-

nation or stocking yard), ∀ i ∈ I F ∪ C. Note: M i ⊆ M . 
• ( i ), adjacency set of node i , for i ∈ I . Note: j ∈ (i ) ⇐⇒

{ i, j} ∈ I ⇐⇒ i ∈ ( j) . 

onstraint-related parameters 
• B 

qt 
s , amount of timber (m 

3 ) of quality q produced per ha in

stand s if harvested in period t , (this parameter is determined

through a growth simulator), ∀ s ∈ S, q ∈ Q , t ∈ T . 
• A s , upper bound in the area (ha) of stand s that can be har-

vested, ∀ s ∈ S . 
• A s , lower bound in the area (ha) of stand s to be harvested in

any time period, if any, ∀ s ∈ S . 
• N s , maximum number of periods that stand s can be harvested.

Note 1: It depends on A s , such that combined with A s it tries to

concentrate the harvesting of a stand in a reasonable number

of time periods with a minimum area to be harvested, at least.

Note 2: A possible value for N s could be 

⌈ 

A s 
A s 

⌉
, ∀ s ∈ S . 

• U 

t 
i jr 

, flow capacity (cubic meters) on link { i , j } built in standard

r available in period t , ∀{ i, j} ∈ L , r ∈ R , t ∈ T . Note: The flow in

a link can be in both directions. 
• Z 

qt 
m 

, Z 
qt 

m 

, lower and upper bound on demand (cubic meters) of

product k at destination m in period t , ∀ q ∈ Q , m ∈ M , t ∈ T . 
• C c , capacity (cubic meters) of stocking yard c , ∀ c ∈ C. 
• τ d and τ g , latency (i.e., number of periods) required for mak-

ing available a potential link in dirt and in gravel, respectively,

since the time period that is decided to build it. Note: If a link
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s ∈S i 
 

is available in any of the first τd − 1 ( τg − 1 ) periods, then it is

assumed that the decision to build it is made before the begin-

ning of the time horizon. 

Objective function parameters at their et present value (NPV) 
• R 

qt 
m 

and S 
qt 
m 

, unit selling price and unit penalization cost for un-

met demand of timber of quality q , respectively, in market m in

period t , ∀ q ∈ Q , m ∈ M , t ∈ T . Note: S 
qt 
m 

>> R 
qt 
m 

. 
• P t s , unit harvesting cost per ha in stand s in period t , ∀ s ∈ S, m ∈

M , t ∈ T . 
• P 

qt 

i , unit production cost per cubic meters of timber of quality

q in node i in period t , ∀ i ∈ I O , q ∈ Q , t ∈ T . 
• D 

qt 
i jr 

, unit transportation cost of timber of quality q through link

{ i , j } in standard r in period t , ∀{ i, j} ∈ L , r ∈ R , q ∈ Q , t ∈ T . 
• D 

qt 

im 

, unit transportation cost of timber of quality q from node i

to market m in period t , ∀ i ∈ I F ∪ C, m ∈ M i , q ∈ Q , t ∈ T . 
• H 

t 
i jr 

, cost of building link { i , j } in standard r , ∀{ i, j} ∈ L 

P , r ∈ R . 

• H 

t 

i j , cost of upgrading link { i , j } from standard dirt to gravel in

period t , ∀{ i, j} ∈ L 

P ∪ L 

Ed , t ∈ T . 
• ˆ H 

t 
c , unit stocking cost in yard c in period t , ∀ c ∈ C, t ∈ T . 

Binary variables 
• w 

t 
i jr 

= 1 if link { i , j } is built in standard r by time period t (it

is available τ r time periods later), and otherwise, 0, ∀{ i, j} ∈
L 

P , t ∈ T , r ∈ R . Notice that w 

t 
i jr 

is called a step variable, it

makes the model stronger than when using the counterpart

impulse variable, see e.g., Guignard et al. (1998) for forest

harvesting. 
• v t 

i j 
= 1 if link { i , j } is upgraded from dirt to gravel by time pe-

riod t , and otherwise, 0, ∀{ i, j} ∈ L 

P , t ∈ T . Note: The upgrade is

available τ g time periods later, and the link cannot be upgraded

in the same time period it is built. 
• e t s = 1 , if stand s is harvested in period t , and otherwise, 0, ∀ s ∈

S, t ∈ T . Notice that, by construction, it is a so-called impulse

variable. 

Continuous variables 
• x t s , area (hectare) of stand s harvested in period t , ∀ s ∈ S, t ∈ T .
• y 

qt 
i 

, volume (cubic meters) of timber of quality q harvested in

all stands associated with origin i during period t , ∀ i ∈ I O , q ∈
Q , t ∈ T . 

• f 
qt 
i jr 

, flow (cubic meters) of timber of quality q transported on

link { i , j } built in standard r in period t , ∀{ i, j} ∈ L , r ∈ R , q ∈
Q , t ∈ T . Note: f 

qt 
i jr 

= 0 for all existing links in dirt ( { i, j} ∈ L 

E 

and r = d) and for all potential links in dirt in winter ( { i, j} ∈
L 

P , r = d and t ∈ T W ). 
• f 

qt 
icr 

, flow (cubic meters) of timber of quality q transported from

node i on link { i , c } in standard r to its adjacent c in period t ,

∀ i ∈ (c) , c ∈ C, r ∈ R , q ∈ Q , t ∈ T . 
• f 

qt 
im 

, flow (cubic meters) of timber of quality q transported from

node i (i.e., a final destination or a stoking yard) to market m

at period t , ∀ i ∈ I F ∪ C, q ∈ Q , m ∈ M i , t ∈ T . 
• z 

qt 
m 

, amount (cubic meters) of timber delivered as quality q to

destination m in period t , ∀ q ∈ Q , m ∈ M , t ∈ T . Note: The tim-

ber delivered to the market at the price of quality q can actually

be (in part or totally) of a higher quality. 
• z 

−qt 
m 

, unmet timber demand (cubic meters) of quality q re-

quested at destination m in period t , ∀ q ∈ Q , m ∈ M , t ∈ T . 

Constraints 

1. Road network design. Decisions about new links or upgrades to

gravel can only be taken in summer (since is the only period

where the work can be done): 

w 

t−1 
i jr 

≤ w 

t 
i jr , ∀{ i, j} ∈ L 

P , t ∈ T S , (7a)
w 

t−1 
i jr 

= w 

t 
i jr , ∀{ i, j} ∈ L 

P , t ∈ T W , (7b)

v t−1 
i j 

≤ v t i j , ∀{ i, j} ∈ L 

P ∪ L 

Ed , t ∈ T S , (7c)

v t−1 
i j 

= v t i j , ∀{ i, j} ∈ L 

P , t ∪ L 

Ed ∈ T W . (7d)

A link cannot be upgraded from dirt to gravel if it has not been

built two periods earlier (i.e., one year), at least: 

v t i j ≤ w 

t−2 
i jd 

, ∀{ i, j} ∈ L 

P , t ∈ T . (7e)

Road incompatibility: A link cannot simultaneously be built in

dirt and in gravel: ∑ 

r∈R 

w 

t 
i jr ≤ 1 , ∀{ i, j} ∈ L 

P , t ∈ T W . (7f)

Note: A link built in dirt can be upgraded to gravel, but cannot

be built in gravel. 

Origins-to-roads triggers: If a stand is not connected to a ex-

isting link at the beginning of the time horizon and it is har-

vested, then one potential link has to be built, at least. Fur-

thermore, if a stand is not connected to a existing link and

it is harvested in winter, then one potential link has to be

built in gravel, at least, by this time period, see Andalaft et al.

(2003) for more details. For ∀ i ∈ I O such that 
{{ i, j} ∈ L 

E : j ∈
(i ) 

}
= ∅ : ∑ 

t ′ ∈T : t ′ ≤t 

e t 
′ 

s ≤ min { t, N s } 
∑ 

{ i, j}∈L P 

∑ 

r∈R 

w 

t−τr 

i jr 
, ∀ s ∈ S i , t ∈ T , (7g)

∑ 

t ′ ∈T W : t ′ ≤t 

e t 
′ 

s ≤ min { N 

W 

t , N s } 
∑ 

{ i, j}∈L P 

(
w 

t−τr 

i j,g 
+ v t−τg 

i j 

)
, ∀ s ∈ S i ∪ S j , t ∈ T W , (7h)

where N 

W 

t = |{ t ′ ∈ T W : t ′ ≤ t}| . 
Road-to-road triggers ( Andalaft et al., 2003; Guignard et al.,

1998 ): If a potential link { i , j } that is not connected to a ex-

isting one is built, then, one of the links connecting { i , j } must

be built, at least: ∑ 

r∈R 

w 

t 
i jr ≤

∑ 

{ i ′ , j ′ }∈L { i, j} 

∑ 

r∈R 

w 

t 
i ′ j ′ r , ∀{ i, j} ∈ L 

P : L 

{ i, j} ∩ L 

E = ∅ , t ∈ T ,

(7i)

where L 

{ i, j} is the set of links adjacent to { i , j }. 

2. Harvesting decisions: 

A s e 
t 
s ≤ x t s ≤ A s e 

t 
s , ∀ s ∈ S, t ∈ T , (8a)

∑ 

t∈T 
x t s ≤ A s , ∀ s ∈ S, (8b)

∑ 

t∈T 
e t s ≤ N s , ∀ s ∈ S, (8c)

where constraints (8a) bound the harvested area per stand and

time period, constraints (8b) bound area harvested per stand,

and constraints (8c) bound the number of periods that a stand

can be harvested. Notice that (8c) is redundant for the 0–1

model but it is tightening its LP relaxation. 

3. Production by origin ∑ 

B 

qt 
s x t s = y qt 

i 
, ∀ i ∈ I O , q ∈ Q , t ∈ T . (9)
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Table 8 

TCVaR: Results for model (5) . 

Inst. ρ3 
1 ρ6 

1 Z MIP Z MIP GAP t 0 (seconds) 

i1 1 
4 

1 
4 

2716.35 2663.12 1.96 18664.18 

i1 1 
4 

5 9594.78 9388.87 2.16 > 24 hour a 

i1 5 1 
4 

8966.35 8798.92 1.87 2945.52 

i1 5 5 14994.94 14723.37 1.81 15856.19 

i2 1 
4 

1 
4 

3428.40 3362.39 1.92 45987.24 

i2 1 
4 

5 12627.90 12432.10 1.98 13841.28 

i2 5 1 
4 

11347.15 11129.96 1.91 7012.70 

i2 5 5 20308.53 19999.71 1.52 2536.65 

i3 1 
4 

1 
4 

2813.85 2743.07 2.52 > 24 hour a 

i3 1 
4 

5 9993.54 9679.57 3.14 > 24 hour a 

i3 5 1 
4 

8634.14 8464.95 1.96 20850.28 

i3 5 5 1552.34 1521.90 1.96 72990.54 

a Elapsed time limit reached (24 hour). 
4. Flow constraints for origin nodes (10a) , intermediate nodes

(10b) , and final destination nodes (10c) : 

y qt 
i 

+ 

∑ 

r∈R 

∑ 

j∈ (i ) 

f qt 
jir 

= 

∑ 

r∈R 

∑ 

j∈ (i ) 

f qt 
i jr 

, ∀ i ∈ I O , q ∈ Q , t ∈ T , 

(10a) 

∑ 

r∈R 

∑ 

j∈ (i ) 

f qt 
jir 

= 

∑ 

r∈R 

∑ 

j∈ (i ) 

f qt 
i jr 

, ∀ i ∈ I I , q ∈ Q , t ∈ T , (10b) 

∑ 

r∈R 

∑ 

j∈ (i ) 

f qt 
jir 

= 

∑ 

r∈R 

∑ 

j∈ (i ) 

f qt 
i jr 

+ 

∑ 

m ∈M i 

f qt 
im 

, ∀ i ∈ I F , q ∈ Q , t ∈ T . 

(10c) 

For stocking yards, arrivals in summer must be equal to dis-

patches in winter, (10d) . On the other hand there are neither

arrivals in winter nor dispatches in summer, (10e) and (10f) : ∑ 

r∈R ,i ∈ (c) 

f qt 
icr 

= 

∑ 

m ∈M c 

f qt+1 
cm 

, ∀ c ∈ C, q ∈ Q , t ∈ T S , (10d) 

f qt 
icr 

= 0 , ∀ r ∈ R , c ∈ C, i ∈ (c) , q ∈ Q , t ∈ T W , (10e) 

f qt 
cm 

= 0 , ∀ q ∈ Q , c ∈ C, m ∈ M c , t ∈ T S . (10f) 

5. Demand constraints. The amount of timber delivered to a mar-

ket as quality q is bounded by the flow arriving to the nodes

that can serve that market. Notice that the timber’s quality can

be higher than requested at a lost, as state above: ∑ 

q ′ ∈Q : q ′ ≤q 

z q 
′ t 

m 

≤
∑ 

q ′ ∈Q : q ′ ≤q 

∑ 

i ∈I F ∪C 
f q 

′ t 
im 

, ∀ q ∈ Q , m ∈ M , t ∈ T , 

(11a) 

Z qt 
m 

≤ z −qt 
m 

+ z qt 
m 

≤ Z 
qt 

m 

, ∀ q ∈ Q , m ∈ M , t ∈ T . (11b) 

6. Capacity constraints 

Capacity at stocking yards (in summer): ∑ 

q ∈Q 

∑ 

r∈R 

∑ 

i ∈ (c) 

f qt 
icr 

≤ C c , ∀ c ∈ C, t ∈ T S . (12a)

Flow through a potential link in dirt (i.e., r = d) is only allowed

in any period if the link has been previously built in dirt and

not upgraded to gravel: ∑ 

q ∈Q 

(
f qt ′ 
i jd 

+ f qt ′ 
i jd 

)
≤ U 

t 
i jd 

(
w 

t−τd 

i jd 
− v t−τg 

i j 

)
, ∀{ i, j} ∈ L 

P , t ∈ T S . 

(12b) 

If there is any flow on dirt through a potential link in dirt be-

tween the beginning of the time horizon and period t , the link

must have been built by time period t : ∑ 

t ′ ∈T : t ′ ≤t 

∑ 

q ∈Q 

(
f qt ′ 
i jd 

+ f qt ′ 
i jd 

)
≤ U 

t 
i jd w 

t−τd 

i jd 
, ∀{ i, j} ∈ L 

P , t ∈ T S , 

r = d (dirt) . (12c) 

Even more, if there is some flow on dirt through a potential

link in dirt during or after time period t , the link cannot have

been upgraded by time period t : ∑ 

t ′ ∈T : t ≤t ′ 

∑ 

q ∈Q 

(
f qt ′ 
i jd 

+ f qt ′ 
i jd 

)
≤ U 

t 
i jd 

(
1 − v t−τg 

i j 

)
, ∀{ i, j} ∈ L 

P , t ∈ T S . 

(12d) 

The dirt links are only available in summer, so, no flow is al-

lowed through them in winter: 

f qt 

i jd 
+ f qt 

jid 
= 0 , ∀ q ∈ Q , { i, j} ∈ L 

P , t ∈ T W . (12e)
Flow through a potential link in gravel is only allowed at any

time period if the link has been built in gravel or upgraded

from dirt to gravel by that period: ∑ 

t ′ ∈T : t ′ ≤t 

∑ 

q ∈Q 

(
f qt ′ 
i jg 

+ f qt ′ 
jig 

)
≤ U 

t 
i jg 

(
w 

t−τg 

i jg 
+ v t−τg 

i j 

)
, ∀{ i, j} ∈ L 

P , t ∈ T .

(12f) 

For an existing link in dirt, flow is only allowed provided they

have not been upgraded to gravel: ∑ 

t ′ ∈T : t ≤t ′ 

∑ 

q ∈Q 

(
f qt ′ 
i jd 

+ f qt ′ 
jid 

)
≤ U 

t 
i jd (1 − v t−τg 

i j 
) , ∀{ i, j} ∈ L 

Ed , t ∈ T S .

(12g) 

For such links, flow on gravel is allowed only if it has been up-

graded: ∑ 

t ′ ∈T : t ′ ≤t 

∑ 

q ∈Q 

(
f qt 
i jg 

+ f qt 
jig 

)
≤ U 

t 
i jg v 

t−τg 

i j 
, ∀{ i, j} ∈ L 

Ed , t ∈ T S . (12h)

For existing links in gravel, flow is upper bounded: ∑ 

q ∈Q 

(
f qt 
i jg 

+ f qt 
jig 

)
≤ U 

t 
i jg , ∀{ i, j} ∈ L 

Eg , t ∈ T . (12i)

7. Variables’ domain definition: 

w 

t 
i jr ∈ { 0 , 1 } ∀{ i, j} ∈ L 

P , t ∈ T , r ∈ R , 

e t s ∈ { 0 , 1 } ∀ s ∈ S, t ∈ T , 
v t i j ∈ { 0 , 1 } ∀{ i, j} ∈ L 

P , t ∈ T , 
x t s ≥ 0 ∀ s ∈ S, t ∈ T , 

f qt 
im 

≥ 0 ∀ q ∈ Q , i ∈ I F ∪ C, m ∈ M i , t ∈ T , 
f qt 
i jr 

≥ 0 ∀{ i, j} ∈ L , r ∈ R , q ∈ Q , t ∈ T , 

y qt 
i 

≥ 0 ∀ i ∈ I O , q ∈ Q , t ∈ T , 
z qt 

m 

, z −qt 
m 

≥ 0 ∀ q ∈ Q , m ∈ M , t ∈ T . 

bjective function 

The objective function under consideration consists of maximiz-

ng the profit NPV, i.e., income minus cost. It can be expressed as

ollows: 

max 
∑ 

t∈T 

{ ∑ 

m ∈M 

∑ 

q ∈Q 
R 

qt 
m 

z qt 
m 

−
[ ∑ 

m ∈M 

∑ 

q ∈Q 
S qt 

m 

z −qt 
m 

+ 

∑ 

s ∈S 
P t s x 

t 
s −

∑ 

i ∈I O 

∑ 

q ∈Q 
P 

qt 

i y qt 
i 
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A

B

 

n  

s  
+ 

∑ 

{ i, j}∈L P 

∑ 

r∈R 

H 

t 
i jr w 

t 
i jr + 

∑ 

{ i, j}∈L P ∪L Ed 

H 

t 

i j v t i j 

+ 

∑ 

{ i, j}∈L 

∑ 

r∈R 

∑ 

q ∈Q 
D 

qt 
i jr 

f qt 
i jr 

+ 

∑ 

c∈C 
ˆ H 

t 
c 

∑ 

i ∈ (c) 

∑ 

r∈R 

∑ 

q ∈Q 
f qt 
icr 

+ 

∑ ∑ ∑ 

D 

qt 

im 

f qt 
im 

] } 

. (A.13)
i ∈I F ∪C m ∈M i q ∈Q t  

t

Table 9 

TCVaR: Results and profit distribution. 
ppendix B. Additional computational results 

1. Computational comparison between the TCVaR and RN models 

We have tested the impact of managing the risk in two points,

amely, an intermediate period and the end of the time horizon,

o, say, ˜ T 1 = { 3 , 6 } , and, in order to ascertain better the impact of

he risk-averse term on the objective function, different combina-

ions of the weight parameter ρt 
1 

have been tested, for t ∈ 

˜ T 1 . 
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Table 10 

ECVaR: Results for model (6) . 

Inst. ρ1 
1 ρ2 

1 Z MIP Z MIP GAP t 0 (seconds) 

i1 1 
4 

0 24 4 4.42 2396.36 1.96 35033.26 

i1 1 
4 

1 
4 

2875.61 2819.26 1.96 1111.53 

i1 1 
4 

5 1114.98 10934.02 1.93 14771.75 

i1 5 0 9321.70 9139.42 1.95 80076.30 

i1 5 1 
4 

9754.30 9579.14 1.96 54083.62 

i1 5 5 180 0 0.40 17651.02 1.99 1179.69 

i2 1 
4 

0 1419.94 1383.30 1.96 11392.24 

i2 1 
4 

1 
4 

3025.71 2966.38 1.96 18374.89 

i2 1 
4 

5 3576.17 3506.06 1.96 17933.73 

i2 5 0 12259.96 12025.93 1.91 16544.01 

i2 5 1 
4 

12814.18 1256.99 1.94 37515.63 

i2 5 5 23263.51 22859.61 1.73 2654.12 

i3 1 
4 

0 2501.44 2452.40 1.96 66026.98 

i3 1 
4 

1 
4 

2967.05 2882.59 2.85 > 24 hour a 

i3 1 
4 

5 11367.54 11185.94 1.60 38454.60 

i3 5 0 9655.31 9471.58 1.90 19253.64 

i3 5 1 
4 

10141.07 9932.20 2.06 > 24 hour a 

i3 5 5 18462.22 18113.08 1.89 43353.94 

a Elapsed time limit reached (24 hour). 
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The solution obtained by the TCVaR model (5) is shown in

able 8 . The headings are as follows: ρ3 
1 

and ρ6 
1 
, weight factors

n the objective function for the risk management in t = 3 and 6,

espectively; Z MIP , best upper bound for the optimal solution pro-

ided by the MIP solver at the time at which the solver’s execution

s stopped; Z MIP , solution value of the incumbent solution; GAP , re-

ated optimality gap defined as 100 
Z MIP −Z MIP 

Z MIP 
; and nn , number of

odes in the B&C tree that have been explored up to the stopping

ime, say t 0 (seconds), of the solver’s execution. 

Table 9 shows the expected profit, computed VaR and com-

uted CVaR obtained from the profit up to the end of periods
Table 11 

ECVaR: Results for the three instances. 

Instance i1 

ECVaR 

t Stat. RN 

ρ1 
1 ρ2 

1 
1 
4 

0 

ρ1 
1 ρ2 

1 
1 
4 

1 
4 

ρ1 
1 

1 
4 

1 Expected 17.3 16.4 16.4 11.4 

2 Expected 37.9 38.0 38.1 43.3 

c-VaR 33.9 33.0 33.0 34.7 

c-CVaR 32.4 32.8 32.8 32.7 

6 Expected 92.9 93.0 93.0 92.0 

c-VaR 69.3 69.8 69.8 68.8 

c-CVaR 64.0 64.4 64.4 63.9 

Instance i2 

ECVaR 

t Stat. RN 

ρ1 
1 ρ2 

1 
1 
4 

0 

ρ1 
1 ρ2 

1 
1 
4 

1 
4 

ρ1 
1 

1 
4 

1 Expected 33.9 41.7 41.7 34.8 

2 Expected 51.4 56.6 56.7 56.9 

c-VaR 47.3 53.5 53.5 51.6 

c-CVaR 47.2 53.0 53.0 51.4 

3 Expected 96.6 96.0 96.0 95.7 

c-VaR 75.5 76.8 76.9 75.9 

c-CVaR 71.3 73.1 73.2 72.5 

Instance i3 

ECVaR 

t Stat. RN 

ρ1 
1 ρ2 

1 
1 
4 

0 

ρ1 
1 ρ2 

1 
1 
4 

1 
4 

ρ1 
1 

1 
4 

1 Expected 27.2 29.4 28.3 29.8 

2 Expected 42.9 46.2 46.8 48.9 

c-VaR 36.6 41.7 42.0 43.6 

c-CVaR 36.5 41.5 41.8 42.5 

3 Expected 94.5 96.1 95.9 96.1 

c-VaR 69.5 70.8 71.4 71.6 

c-CVaR 62.1 66.4 66.5 66.9 
 = 1 , 2, 6 for the instances i1, i2, and i3. As a reference, the last

olumn shows the results for the WS approach. Different results

re presented for TCVaR, depending on the pairs (ρ3 
1 
, ρ6 

1 
) of the

eight parameters that have been used for t = 3 , 6 . 

As can be observed, all stochastic models practically provide the

ame expected profit at the end of the planning horizon ( t = 6 ),

hile c-CVaR and c-VaR are slightly higher. However, TCVaR pro-

ides an expected profit for t = 1 , 2 (especially, for the former)

uch higher than RN as well as a significant improvement in

-VaR and c-CVaR. 

It is worth analyzing the results related to the combination

 ρ3 
1 

= 5 , ρ6 
1 

= 0 . 25 ) as shown in Table 9 . Notice that period t = 6 is

he last one in the time horizon considered in the experiment. It is

 simulation where the decision-maker is assumed to give a higher

eight to CVaR for t = 3 than to CVaR for t = 6 . As a result, it can

e observed that the expected profit and the profit distribution up

o t = 6 (i.e., the profit that considers the whole time horizon) in

he whole set of scenarios are very poor with respect to the same

esults up to t = 3 ; in fact, they are very good for t = 1 and 2, as

hown in the tables. Notice also that the profit results are very dif-

erent for a simulation with opposite priorities. It is worth paying

ttention to this point, since the profit results could be very poor

p to t = 6 in the irreversible situation where the decision-maker

dopts a shortsighted strategy. Note that this strategy is based on

 shorter time horizon (say, up to t = 3 ), whose results in the sim-

lation are very good. 

2. Computational comparison between the ECVaR and RN models 

ECVaR performs the risk management for the instances we have

xperimented with in each of the given subtrees in the scenar-

os tree, that is, for scenario groups in N 

t , t = 1 , 2 . For a bet-

er assessment of the impact of the risk averse term in the ob-
ρ2 
1 

5 

ρ1 
1 ρ2 

1 

5 0 

ρ1 
1 ρ2 

1 

5 1 
4 

ρ1 
1 ρ2 

1 

5 5 
WS 

16.6 16.9 16.6 28.7 

40.4 40.9 42.0 49.9 

35.2 35.8 37.3 32.1 

33.6 34.8 35.5 28.3 

92.5 92.8 92.3 100.0 

69.9 70.3 70.0 79.8 

64.9 64.9 64.9 74.5 

ρ2 
1 

5 

ρ1 
1 ρ2 

1 

5 0 

ρ1 
1 ρ2 

1 

5 1 
4 

ρ1 
1 ρ2 

1 

5 5 
WS 

41.8 41.1 41.4 38.5 

58.5 58.5 59.2 56.3 

55.7 55.9 55.5 44.3 

55.7 55.5 55.3 33.1 

95.6 95.5 95.9 100.0 

77.4 77.5 76.9 80.5 

73.9 73.7 73.6 77.3 

ρ2 
1 

5 

ρ1 
1 ρ2 

1 

5 0 

ρ1 
1 ρ2 

1 

5 1 
4 

ρ1 
1 ρ2 

1 

5 5 
WS 

34.4 33.2 32.2 35.2 

46.9 48.7 47.5 51.2 

45.2 45.0 43.8 40.2 

43.5 44.8 43.0 35.4 

94.4 95.0 94.2 100.0 

72.6 73.2 72.9 76.8 

68.3 68.7 68.1 73.4 
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Instance i1

200

400

600

800

1000

1200

1400

Profit until period 1

RN ECVaR
(1/4,0)

ECVaR
(1/4,1/4)

ECVaR
(1/4,5)

ECVaR
(5,0)

ECVaR
(5,1/4)

ECVaR
(5,5)

WS

Expected profit
c VaR
c CVaR

400

600

800

1000

1200

1400

1600

1800
Profit until period 2

RN ECVaR
(1/4,0)

ECVaR
(1/4,1/4)

ECVaR
(1/4,5)

ECVaR
(5,0)

ECVaR
(5,1/4)

ECVaR
(5,5)

WS

1500

2000

2500

3000

3500

Profit until period 6

RN ECVaR
(1/4,0)

ECVaR
(1/4,1/4)

ECVaR
(1/4,5)

ECVaR
(5,0)

ECVaR
(5,1/4)

ECVaR
(5,5)

WS

Instance i2

200

400

600

800

1000

1200

1400
Profit until period 1

RN ECVaR
(1/4,0)

ECVaR
(1/4,1/4)

ECVaR
(1/4,5)

ECVaR
(5,0)

ECVaR
(5,1/4)

ECVaR
(5,5)

WS

500

1000

1500

2000

Profit until period 2

RN ECVaR
(1/4,0)

ECVaR
(1/4,1/4)

ECVaR
(1/4,5)

ECVaR
(5,0)

ECVaR
(5,1/4)

ECVaR
(5,5)

WS

Expected profit
c VaR
c CVaR

1500

2000

2500

3000

3500

4000

4500

Profit until period 6

RN ECVaR
(1/4,0)

ECVaR
(1/4,1/4)

ECVaR
(1/4,5)

ECVaR
(5,0)

ECVaR
(5,1/4)

ECVaR
(5,5)

WS

Instance i3

200

400

600

800

1000

1200

Profit until period 1

RN ECVaR
(1/4,0)

ECVaR
(1/4,1/4)

ECVaR
(1/4,5)

ECVaR
(5,0)

ECVaR
(5,1/4)

ECVaR
(5,5)

WS

Expected profit
c VaR
c CVaR

600

800

1000

1200

1400

Profit until period 2

RN ECVaR
(1/4,0)

ECVaR
(1/4,1/4)

ECVaR
(1/4,5)

ECVaR
(5,0)

ECVaR
(5,1/4)

ECVaR
(5,5)

WS

1000

1500

2000

2500

3000

3500

4000

Profit until period 6

RN ECVaR
(1/4,0)

ECVaR
(1/4,1/4)

ECVaR
(1/4,5)

ECVaR
(5,0)

ECVaR
(5,1/4)

ECVaR
(5,5)

WS

Fig. B1. ECVAR: Profit distribution. 
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ective function of the ECVaR model (6) , several combinations of

he weight parameters ρt 
1 

for t = 1 , 2 have been considered; in

articular, the following ones have been tested: ρ1 
1 

∈ { 0 . 25 , 5 } and
2 
1 

∈ { 0 , 0 . 25 , 5 } . Notice that ρ2 
1 

= 0 represents the traditional CVaR

easure, then the risk management is only performed for the to-

al profit along the whole time horizon and, so, no control is per-

ormed at intermediate periods. 

The main results are shown in Table 10 . The headings are as

n Table 8 . It can be observed that the elapsed time required for

olving instance i1 is very high compared with the time required

y the TCVaR model (5) . So, it is unacceptable; see in Section 5 an

utline of our future research plans on the issue. 

The expected profit, computed VaR and computed CVaR up to

he periods t = 1 , 2 , 6 obtained by the ECVaR model (6) are shown

n Table 11 . As in the previous tables, the last column shows the

esults for the WS approach, the values being normalized. Different

esults are presented, depending on the values of the pair (ρ1 
1 
, ρ2 

1 
)

f the weight parameters that have been used. Again, it can be ob-

erved that all the stochastic models practically provide the same

xpected profit at the end of the time horizon ( t = 6 ), but CVaR

nd VaR are slightly higher in ECVaR than in RN. However, EC-

aR tends to provide an expected profit higher than the RN ex-

ected profit at the end of periods t = 1 , 2 (10% at t = 1 and 20%

t t = 2 , for instance i2 and 4–8% at t = 1 and 10–15% at t = 2 for

nstance i3). 

Fig. B.9 shows the profit distribution at the end of time periods

 = 1 , 2 , 6 for the different combinations tested. 

Also in this case, it can be concluded that ECVaR moves the

rofits to the early periods. Observe in the boxplot shown for in-

tance i2 in Fig. B.9 that the conclusion is even stronger, since the

rofit distributions in ECVaR for periods t = 1 , 2 are much better

han in RN, being almost equal at the end of the time horizon. 
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