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Abstract

Understanding the patterns of collective behavior in online social network (OSNs) is crit-
ical to expanding the knowledge of human behavior and tie relationship. In this paper, we
investigate a specific pattern called social signature in Facebook and Wiki users’ online
communication behaviors, capturing the distribution of frequency of interactions between
different alters over time in the ego network. The empirical results show that there are
robust social signatures of interactions no matter how friends change over time, which in-
dicates that a stable commutation pattern exists in online communication. By comparing a
random null model, we find the that commutation patter is heterogeneous between ego and
alters. Furthermore, in order to regenerate the pattern of the social signature, we present
a preferential interaction model, which assumes that new users intend to look for the old
users with strong ties while old users have tendency to interact with new friends. The ex-
perimental results show that the presented model can reproduce the heterogeneity of social
signature by adjusting 2 parameters, the number of communicating targets m and the max
number of interactions n, for Facebook users, m = n = 5, for Wiki users, m = 2 and
n = 8. This work helps in deeply understanding the regularity of social signature.
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1 Introduction

Collective behaviors of online users have been extensively investigated, which is of
great significance for identifying the human communication patterns [1–3]. Oliveira
et al. [4] found the scaling-law in Darwin’s and Einstein’s correspondence pat-
terns. Brockman et al. [5] argued that the distribution of human travelling dis-
tances decayed as a power law. Saramäki [6] analyzed the mobile phone call pat-
tern and found that human had persistence communication pattern. To explain
the behavior patterns, the task- and interest- based models have been proposed.
Task-based models[7–10] believed that human behaviors could be described as
a decision-based process and tasks were executed according to their priorities.
Interest-driven models [11–14] argued that the interest played an important role.
Besides, circadian-driven models [15,16] found that the day-night or weekly pat-
tern existed in communication behaviors.

Among these collective behaviors, online social networks (OSNs) [17] got more
and more attention. Hundreds millions users to communicate and interact with each
other over the past years, which is broaden the knowledge about the human relation
patterns [18–21]. Although it is convenient for users to build connection with more
friends by OSNs, due to the cognitive ability [22,23] and memory capacity[24,25]
constraints, the communication pattern of OSNs are found similar to the offline
face-to-face networks[26]. Dunbar argued that, limited to human cognitive ability,
average speaking, each individual could only maintain 150 friends, who has only 5
closest friends[27], which has been verified by face-to-face networks[28,29], mo-
bile communication relationships[6,30], and online social networks[31–34].

Even in the limited scale of meaningful relations, by investigating the collective
behaviors, there still are plenty measurements to find the statistical patterns of hu-
man interactions. From the respective of online social behavior, rating or comment
behavior are commonly used to identify the human relations [35,36]. The network
measurements are also widely used, such as tie strength which refers to the ’close-
ness’ of a friendship in social ties; it captures a spectrum that ranges from strong
ties with close friends to weak ties with more distant acquaintances [37–39], em-
beddedness which capture the number of mutual friends shared by its endpoints
[40,39]. Moreover, the mechanisms of human interactions can be characterized by
the weighted networks. Several models like the mutual selection model [41], gener-
alized local-world models [42] provide the insights of the structure of interactions.
Notably, different with the traditional statistical properties, social signature found
in mobile phone [6] could be a general pattern which may be suitable for OSNs,
but the statistical patterns and generation mechanism are still little known.

In this paper, we empirically investigate the pattern of social signature of the online
Facebook and Wiki user. Social signature is constructed as illustrated in Fig. 1.
By averaging the all participants who have the characteristic of social signature,
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we investigate the persistence of collective egos’ social signatures and compare
with a random null model. The empirical results show the heterogeneity of social
signature. Then we present a model to reproduce the social signature and find that
the number of communicating targets and the number of interactions could be two
key factors of social signature.

Fig. 1. Illustration of a typical users social signature. There are two consecutive time inter-
vals 1 and 2, where the ego’s alter naming A1-A15 and B1-B13 respectively. Meanwhile, in
the interval 2, three alters A4,A5,A6 are the same alters occurred in the interval 1. Top-15
frequently contacted friends of the user are used to construct ego network base on the num-
ber of interactions. The turnover is defined by the Jaccard measurement, which is defined
as the ratio of common alters over total alters in two intervals, in this case, 3 / 27 = 0.1111.
The two distractions represent two social signatures of the ego in each interval, where the
social signature is defined as the fraction of interactions to the alter of each rank, which
approximately follows the form of exponential distribution. Persistence of two social sig-
natures is defined as the similarity between two probability distributions.

2 Empirical analysis

2.1 Materials

The Facebook-wall [43,44] (short for FW) and wiki talk temporal [45,46] (short
for WT) datasets are investigated in this paper (see Table 1). In FW, a user can post
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Table 1
Basic statistical properties of the Facebook-Wall (short for FW) and Wiki-Talk (short for
WT) dataset, including the time span of each interval i and the number of nodes N , edges
E, common egos c which is those who have social signatures in all 4 intervals.

Interval
Facebook-Wall

Time span N E c

i = 1 2006-09-05˜2007-04-05 10,836 106,624 77

i = 2 2007-04-05˜2007-11-03 16,844 196,035 77

i = 3 2007-11-03˜2008-06-02 21,960 185,803 77

i = 4 2008-06-02˜2008-12-31 39,199 308,412 77

Interval
Wiki-Talk

Time span N E c

i = 1 2005-09-09˜2006-04-09 165,922 944,086 913

i = 2 2006-04-09˜2006-11-07 279,182 1,586,629 913

i = 3 2006-11-07˜2007-06-07 455,810 2,317,985 913

i = 4 2007-06-07˜2008-01-05 451,309 2,336,921 913

comments on his(her) friends’ walls, and these comments can be seen by visitors,
while in the WT, interaction represents that a user edited another user’s talk page.
In order to make the time interval comparable, the FW spans from September 5,
2006 to December 31, 2008 and the WT spans from September 9, 2005 to January
5, 2008. Datasets are separated into I intervals evenly, here I = 4, and each interval
includes 212 days. Here, we treat interactions as undirect links since we only need
to know the connection of ego and alters when calculating the social signature.
The information of each interaction consists three parts: The wall / talk page owner
(ego), the user who posted / edited (alter) and the corresponding posted / edited
time. Then, in each interval, ego networks are constructed as the list of egos who
has at least k alters and take top-R closest alters by counting interactions, here
k = 15.

In each interval, we construct ego networks, where egos and alters are tied to each
other by online social relations. Tie strength is the number of interactions of each
ego j to alters in each interval i and the alters are ranked on descending order by
the number of interactions. Then, we calculate the social signature Pi,j of ego j in
the interval i, defined by the fraction of interactions to the alter of each rank (Eq.
1 and 2). Here, only those who have at least 15 alters are taken into account to
calculate social signatures. Meanwhile, we target the group of egos who appeared
in all 4 intervals as collective egos. To quantify the similarity of social signatures,
we use the Jensen-Shannon Divergence (short for JSD) to measure the distance of
the social signatures between two egos. JSD = 0 stands for the fact that two social
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signatures are identical. The smaller the JSD value is, the more similar two social
signatures are, which means fraction of interactions has persistence over time. We
use Jaccard (short for J) to quantify the turnovers of two different sets of alters.
J = 0 represents that there are no common alters, while J = 1 represents the exact
same alters staying in consecutive intervals. As illustrated in Fig. 1, the number of
common alters equals 30 · J/(1 + J), in this case, J = 0.1111, showing that there
are 3 common alters between two consecutive intervals.

2.2 Measurements

Social signature P . The social signature of ego j in the interval i, saying Pi,j ,
is defined as fraction of interactions of each alters after ranking and taking top R
alters (here R = 15), which can be read as,

Pi,j(X = r) =
ni,j(r)∑R
r=1 ni,j(r)

, r = 1, 2, ..., R (1)

where X is discrete random variable representing the rank of alter, and ni,j(r) is
the number of interactions given by an ego j to the alter r in the interval i. The
rank r ranges from 1 to R. Using Fig.1 as a example, in intervals 1, the number of
interactions ni,j(r) are {17, 12, 9, 8, 7, 6, 6, 5, 4, 4, 3, 2, 2, 2, 1}, which is sorted by
alters. Then, individual social signature P1,1 is the frequency distribution, which is
{0.1932, 0.1364, 0.1023, 0.0909, 0.0795, 0.0682, 0.0682, 0.0568, 0.0455, 0.0455,
0.0341, 0.0227, 0.0227, 0.0227, 0.0114}.

Meanwhile, to measure collective social signature in each interval i, we define the
average social signature 〈Pi〉 as:

〈Pi〉 =
1

c

c∑

j=1

Pi,j(X = r), r = 1, 2, ..., R, (2)

where 〈Pi〉 is the average fraction of interactions to the alter of rank r in the interval
i, i = 1, 2, ..., 4. The social signature are averaged by the common egos appearing
in 4 intervals, for FB users c = 77, and for WT users c = 913.

Jensen-Shannon Divergence JSD. Jensen-Shannon Divergence (short for JSD)[6]
is introduced to measure the similarity between two different social signatures P1

and P2, defined as:

JSD(P1, P2) = H [
1

2
P1 +

1

2
P2]−

1

2
[H(P1) +H(P2)], (3)
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H(P ) = −
R∑

r=1

p(r) log p(r), (4)

where P1 and P2 are two social signatures to be compared, which are the form of
the distributions. If comparing collective egos’ signatures between two consecutive
time intervals, P1 = 〈Pi〉 and P2 = 〈Pi+1〉. If comparing collective egos’ social
signatures between empirical results and simulation result (saying Q) in the same
interval, P1 = 〈Pi〉 and P2 = 〈Q〉. Additionally, H(P ) represents the Shannon
entropy, where p(r) refers to Eq. 2 if calculating JSD value of individual ego j,
and refers to Eq. 4 if calculating JSD value of collective egos. From the definition
of JSD, the lower bound is JSD = 0 only when two distributions are identical.
The smaller JSD value is, the more persistence of two social signatures are.

Jaccard J . We define Xi,j as the set of alters, which contains 10 alters here, for
ego j in the interval i. The difference between two sets Xi,j and Xi+1,j of alters in
two consecutive intervals i and i+ 1, namely turnover, is measured by the Jaccard
coefficient J ,

J(Xi,j, Xi+1,j) =
|Xi,j ∩Xi+1,j|
|Xi,j ∪Xi+1,j|

. (5)

The value of turnover J lies in [0, 1]. J = 1 means that all alters of target ego are the
same over time, and J = 0 stands for no common alters. The low Jaccard value
means that two sets of alters have little common alters, in another word, turnover
of alters is high.

Then, we calculate the Jaccard averaged over collective egos in two consecutive
intervals i and i+ 1:

〈J(Xi,·, Xi+1,·)〉 =
1

c

c∑

j=1

Jj(Xi,j, Xi+1,j). (6)

where the number of common egos c = 77 for FB dataset and c = 913 for WT
dataset.

Slope λ. The average social signature 〈Pi〉 is approximately the form of exponential
distribution, as is shown in Fig. 2, we fit the distribution by the following probability
density function:

f(x) = λ · e−λx+a, (7)
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where the parameter λ is the slope of social signature and variable x is the rank
1, 2, ..., R. The larger the parameter λ is, the steeper the distribution is.

Null model. In order to examine that social signature deviates from randomness, a
null model is introduced to compare with the empirical results, which is constructed
as follows: (i) Randomly reshuffle alters, reconnecting the reshuffled alter to ego
and remain timestamp, (ii) Construct the ego network based on reshuffled data, and
then calculate the average social signature 〈Pi〉 according to Eq. 3.

2.3 The Empirical Results

The persistence of social signature

For the egos who have more than 15 alters in all 4 intervals, first, we calculate the
average social signature 〈Pi〉 by averaging over the set of all egos’ fraction of in-
teractions in each internal i (Eq. 2). As shown in Fig. 2 (a) and (c), the shape of
average social signature 〈Pi〉 of collective egos in each interval exhibits the form
of exponential distribution in both datasets (Fig. 2 (a) and (c)). Then, we calcu-
late the similarity of two average social signatures between two consecutive time
intervals JSD(〈Pi〉, 〈Pi+1〉)(i = 1, 2, 3, 4) by Eq. 3. For the entire networks of
participants, JSD(〈P1〉, 〈P2〉) = 0.00024300, JSD(〈P2〉, 〈P3〉) = 0.00009842,
JSD(〈P3〉, 〈P4〉) = 0.0008564 for FW users and JSD(〈P1〉, 〈P2〉) = 0.00107555,
JSD(〈P2〉, 〈P3〉) = 0.00006892, JSD(〈P3〉, 〈P4〉) = 0.00002275, which suggest
that the interactive frequency of ego to alters remain stable between two consec-
utive time intervals. Second, to measure the turnover of alters through time, we
calculate the Jaccard of each long-term ego between two consecutive intervals
J(Xi,j, Xi+1,j) (Eq. 5), where Xi,j and Xi+1,j are the two sets of the alters inter-
acted with the ego j in time interval i and i+1 separately. The distributions of col-
lective Jaccard in each interval are shown as violin plot in Fig. 2 (b) and (d), with
the mean value calculated by Eq. 6. For the FW users, J(X1,·, X2,·) = 0.29± 0.12,
J(X2,·, X3,·) = 0.27 ± 0.13, J(X3,·, X4,·) = 0.23 ± 0.21,which means that there
are average 3 ∼ 9 common alters over time. For the WT users, J(X1,·, X2,·) =
J(X2,·, X3,·) = J(X3,·, X4,·) = 0.09 ± 0.07, which means there are average 1 ∼ 4
common alters over time. To sum up, whether turnovers of alters changing or sta-
ble, bigger or smaller, the average social signatures of long-term egos over time
have highly persistence.

The heterogeneity of social signature

We introduce a null model to regenerate the data for comparing the frequency of
interactions. The null model reshuffles all alters into random order and reallocate
alters to each ego, so that the egos interactive patterns no longer exist. As shown in
Fig. 2, collective signatures approximately follow exponential distributions. Then,
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Fig. 2. The average social signature 〈Pi〉 and turnover J(Xi,j ,Xi+1,j) of collective egos
for the FW and WT datasets. The shapes of average social signatures are invariant (seen
in subplot (a) and (c) for the distributions in interval I1, I2, I3, I4), although alters dis-
play different turnovers as indicated by the Jaccard between two consecutive intervals
([Ii, Ii+1](i = 1, 2, ..., 4)) for two datasets (seen in subplot (b) and (d) as violin plots).
For the FW users, the average Jaccard in consecutive intervals are 0.29,0.28, and 0.25 re-
spectively. For the WT users, average Jaccard equals 0.10, 0.09 and 0.09 thoughout time
intervals.
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(a) Facebook-Wall

Interval λ〈Pi〉 λnull

i = 1 0.26 0.00

i = 2 0.26 0.01

i = 3 0.26 0.00

i = 4 0.21 0.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rank

10−1

(b) Wiki-Talk

Interval λ〈Pi〉 λnull

i = 1 0.63 0.03

i = 2 0.90 0.03

i = 3 0.94 0.03

i = 4 0.93 0.02

empirical 〈Pi〉 null model 〈Pi〉 i = 1, 2, 3, 4, 5, 6

Fig. 3. Slope λ is the paremeter of exponential distribution used to depict the shape of aver-
age social signature of collective egos 〈Pi〉 denoted by λ〈Pi〉 in each interval i, i = 1, 2, 3, 4,
compared between empirical results and the null model. Each marker stands for 4 average
social signatures (4 distributions) of each group of results. The comparisons show that av-
erage social signatures of empirical results are steeper than that of the null model, which
indicate that social signature has heterogeneous characteristic.

we use the parameter λ of exponential distribution to depict the shape of signa-
ture (Eq. 7). For each distribution in Fig.4, we use non-linear least squares to fit a
function. Figure 3 shows the value of slope λ for empirical results and null model
results for average social signatures of collective egos in each interval. There are 4
distributions, which represent 4 average social signatures in 4 time intervals (cal-
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culated according to Eq. 2). One can find that the values of empirical λ in the FW
dataset are around 0.26, and the values of λ in the WT dataset are round 0.90, while
the λ values of each null model are all close to 0, which shows that empirical social
signatures have steeper slope. The results indicates that ego’s tie strength with al-
ters decreases with the frequency of interactions, much faster than the null model,
namely, the social signature has heterogeneous characteristic.

3 The Model Analysis

3.1 The Model Construction

To regenerate collective behaviors of online social signature, we present a preferen-
tial interaction model in terms of weighted networks. Weighted networks are often
described by a weighted adjacency matrix wij which represents the weight on the
edge connecting vertices i and j, with i, j = 1, ..., N , where N is the size of the
network. In this model, we assume that there are two mechanisms for communica-
tions, topological growth and preferential interaction. We initiate a network with m
nodes and no edges.

(i) Topological Growth.

At each time step, add a new node with m edges to m previously existing nodes,
choosing preferentially nodes with large strength; i.e. a node i is chosen according
to the strength preferential probability:

Πnew→i =
si∑
j sj

, (8)

where node strength si =
∑

j∈Γi
wij , and the sum runs over the set Γi of neighbors

of node i, while the sum of strength sj runs over all nodes in the time step. The
weight of each new edge is fixed to w0 = 1. Notably, each new coming node is
coded by the sequential order.

(ii) Preferential Interaction.

Each existing node i selects m other pre-existing nodes as target nodes for possible
connection according to the probability:

Πi→j =
j

∑
j j

. (9)

9



Since the nodes are added in order, a node j represents the the order j in existing
nodes, indicating the recency of the node. Accordingly, the old node tends to select
relatively new nodes for interactions. Usually, interactions do not happen only once
time. Node i will interact with each target nodes serval times. Let’s say, the max
number of interactions is n. The number of interactions is generated by uniformly
distributed random numbers in the region U [0, n]. If two unconnected nodes are
selected, the edge weight is assigned with w0 = 1. If two connected nodes are
selected, then their connection is strengthened; i.e. their edge weight is increased
by w0 = 1.

In this model, there are three parameters, the size of network N , the number of
communication targets m and the max number of interactions n. By setting values
of these parameters, one can generate a weighted network. Then, one can infer a
set of ego networks based on the weighted network. For distinguishing from the
empirical results, we call ego network based on tie strength as empirical ego net-
work, and ego network based on the preferential interaction model as artificial ego
network. Correspondingly, social signatures are divided into two classes: the em-
pirical signature Pi,j in the interval i and the artificial signature Qj of ego j. The
artificial signature Qj is calculated by Eq. 1 and we still use the average social sig-
nature 〈Q〉 (calculated by Eq. 2) for comparison. Notably, time interval i has not
been considered in the artificial signature. So, the artificial signature Qj and the
average social signature 〈Q〉 is the special case when calculating Qi,j and 〈Qi〉 if
we set the interval i = 1.
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(a) Facebook-Wall

Interval JSD(〈Pi〉, 〈Q〉) λ〈Pi〉 λ〈Q〉
i = 1 0.00273781 0.26 0.18

i = 2 0.00228750 0.26 0.18

i = 3 0.00238706 0.26 0.18

i = 4 0.00051628 0.21 0.18

I1 I2 I3 I4 Model
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(b) Wiki-Talk

Interval JSD(〈Pi〉, 〈Q〉) λ〈Pi〉 λ〈Q〉
i = 1 0.00072780 0.63 0.52

i = 2 0.00254473 0.90 0.52

i = 3 0.00304326 0.94 0.52

i = 4 0.00280005 0.93 0.52

I1 I2 I3 I4 Model

Fig. 4. Artificial signature 〈Q〉 comparing with empirical signatures 〈Pi〉 in 4 intervals.
The two kinds of social signature show high consistence with JSD value all smaller than
0.005 for both datasets, while the slope λ of artificial signature is smaller than empirical
signatures.
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3.2 The Results Analysis

To get the best fitness between the artificial signature and the empirical signatures,
we set a fixed network size N = 100, and adjust the number of communication
targets m and the max number of interactions n, where m = n = 5, for Wiki user,
m = 2 and n = 8. Figure 4 shows the comparisons of two kinds of signatures. In
both datasets, JSD values between artificial signature and the empirical signatures
are all less than 0.005 in each interval, which indicate that the generated social
signature is well consistent with the empirical results. However, the slope λ〈Q〉 of
artificial signature is smaller than the empirical slope λ〈Pi〉 in each dataset. The fact
is that the value of slope λ is related to the value of JSD. As is shown in subplot
(a), in the interval i = 4, the empiraical slope λ〈P4〉 = 0.21, which is the closest
value to the slope λ〈Q〉 = 0.18 of artificial signature, while the JSD(〈P4〉, 〈Q〉) =
0.00051628, much smaller than other intervals. In the interval i = 1 of subplot (b),
one can still find the closest λ related with the smallest JSD. This results imply
that the slope λ is very sensitive to the shape of social signature.

Based on the results of the comparison according to the mechanisms of preferential
interaction model, one can infer that: (1) the new user intend to connect the old user
who has strong social tie; (2) the old user intend to communicate with new users.
In FW dataset, the old user reaches to m = 5 existing users each time, and each
interaction happens randomly from 1 to n = 5 times. In WT dataset, the old user
reaches to m = 2 existing users each time, and each interactions happens randomly
from 1 to n = 8 times.

4 Conclusion and discussions

In this paper, we empirically investigate collective behavior of online users’ social
signature by means of analyzing ego network and regenerate the heterogeneity of
social signature. FBWall and Wikitalks are divided into 4 equal length time inter-
vals. In each interval, we construct ego network in which each ego is tied at least
15 alters. Collective egos are those who appear in all 4 intervals with social sig-
nature. The statistical properties of frequency of interactions of ego network are
measured by social signature P , persistence JSD, turnover J and slope λ. Em-
pirical results show that: 1) persistence of social signatures exists over time no
matter what turnover of alters; 2) social signatures are heterogeneity by comparing
the null model. Furthermore, we present a preferential interaction model in term
of weighted network, which include two mechanisms: 1) New node follow topo-
logical growth according to the probability of nodes strength; 2) Old nodes follow
preferential interaction according to the order of nodes, while in each time step, an
old node reaches m existing nodes and interact randomly from 1 to n times. The
simulation results show the high similarity of social signature regenerated by pref-
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erential interaction model with empirical results. One can find that 1) The strength
of nodes causes the new coming user tend to choose the old user who has strong
social tie; 2) The recency of nodes causes the old user tend to communicate with
the new users. Furthermore, the heterogeneity of social signature can be adjusted
by 2 parameters, the number of communicating targets m and the max number of
interactions n, for Facebook users, m = n = 5, for Wiki user, m = 2 and n = 8.

Although social signatures have been found in online user’s collective behaviors,
there are still several issues unsolved. We only consider one possible preferential in-
teraction, not comparing with the models such as random-walk-based model[47,48]
and structural-based network model[41,42], and the properties of statistical physics
still need to be deeply discussed. Besides, it also should be examined the effect of
dunbar number to social signature. Since human layers of social closeness approx-
imately contain 5, 15, 50 and 150 individuals[27], the size of friendship may affect
predictive results, while we only set the size of network as 100. Recent, unfolding
large-scale online collaborative human dynamics have been found to explain the a
universal double-power-law distribution [49], which may break through the limi-
tation of our network size. Moreover, individual social attributes[50,51] may have
significant influence to the way of people’s communication patterns. It separates
and distinguishes individuals from others and the difference of individuals have
not been investigated. Finding the answers of these questions could help in deeply
understanding the pattern of human social relations and behaviors.

This work is supported by the National Natural Science Foundation of China (Grant
Nos. 61773248, 61374177, 71371125), Research supported by The Program for
Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of
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