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Abstract

This report details a course on big data analytics designed for undergraduate
junior and senior computer science students. The course is heavily focused on
projects and writing code for big data processing. It is designed to help students
learn parallel and distributed computing frameworks and techniques commonly
used in industry. The curriculum includes a progression of projects requiring
increasingly sophisticated big data processing ranging from data preprocessing
with Linux tools, distributed processing with Hadoop MapReduce and Spark,
and database queries with Hive and Google’s BigQuery. We discuss hardware
infrastructure and experimentally evaluate the cost/benefit of an on-premise
server versus Amazon’s Elastic MapReduce. Finally, we showcase outcomes of
our course in terms of student engagement and anonymous student feedback.

Keywords: curriculum, undergraduate education, big data, cloud computing

1. Introduction

In 2015, Stetson University introduced a Data Analytics interdisciplinary
minor for undergraduate students. A new four credit hour course focused on
big data analytics was created to serve as an elective for this minor as well as
an upper-level elective for computer science majors. This report documents the
curriculum, infrastructure, and outcomes of our big data analytics course.

The landscape of big data tools, techniques, and application areas is vast [1].
Popular tools include the software frameworks Hadoop, Spark, and Hive, as
well as cloud-based services like Google’s BigQuery. Popular techniques in-
clude MapReduce, relational and non-relational data stores, and computations
represented as directed acyclic graphs of functions. Sometimes, these tools and
techniques include processing overhead that results in slower processing on small
data than traditional approaches such as a single-threaded application. Thus,
it is important that students understand not only how but also when and when
not to use big data technology.
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§ | Project Task PDC Topics

8.1 | Summarize Backblaze data | Performance analysis

3.2 | Merge and analyze Distributed computing; MapReduce;
StackExchange datasets Hadoop; Hive

3.3 | Visualize NYC taxi trips Cloud computing; BigQuery; Stream
processing; Storm

3.4 | Detect and count stars Spark; Threads; GPU computing
3.5 | Capstone project (Variable)

Table 1: Outline of projects in our course, with corresponding sections in this report (§) as
well as topics relating to parallel and distributed computing (PDC).

Our course is designed to give students realistic, hands-on practice with big
data. The course is project-focused and the projects are organized so that later
projects require more sophisticated data processing techniques. Our projects
and the parallel and distributed computing topics that they address are listed in
Table 1. Each project is described in more detail in the corresponding sections
of this report. Our projects may change in the future as the popularity and
appropriateness of various technologies change over time.

Students are given access to a “virtual cluster” running on a moderately-sized
server as well as cloud computing resources. Each project employs a publicly-
available dataset and challenges students to answer simply-stated queries about
the data. While the queries may be simple, the steps to extract the answers
from the data may be considerably more complex. We emphasize to students
that the data processing steps are a means to an end and the ultimate goal
of each project is to provide clear, insightful answers to the project’s queries.
Students are required to produce a short report documenting these answers with
supporting statistical analysis and plots as appropriate. They are expected to
explain their findings with language intended for non-experts and to hide all
implementation details in an appendix separate from the report.

This course is designed for juniors and seniors who have completed prior
courses in programming (Java, C++, and Python). Our students have also
used Linux in prior courses, and as such the big data course makes extensive
use of Linux on-premise and in cloud environments. We do not require that
students have a strong statistics background, thus our projects involve only a
small degree of statistics such as correlation analysis and hypothesis testing.

Teachers who wish to use some or all of the projects described below should
be very comfortable with Linux and learning new processing frameworks written
in Java, C++, and/or Python. Typically, the popular frameworks support
multiple languages equivalently, so one may use Python, for example, for all
projects. Prior experience with Hadoop, Spark, Storm, and OpenCV will help
for the projects described.

We used both a virtual cluster and Google’s cloud computing environment.
An effective big data course needs some kind of cluster environment, virtual,
physical, or cloud-based. A university or college’s IT staff may be able to
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support these needs. Our virtual cluster technology is made available as a set
of Varant and Ansible configuration scripts!. Additionally, education grants are
available from Google, Amazon, and Microsoft for cloud computing. In Rabkin
et al.’s [2] experience, such grants are able to cover the computing needs of an
entire course.

This course is the only big data analytics course available to our computer
science majors. We are not proposing at this time to integrate PDC topics
in first- or second-year programming courses, as explored by Bogaerts [3] and
Grossman et al. [4], or throughout the curriculum as done by Swarthmore Col-
lege and reported by Newhall et al. [5], among other institutions. We agree with
these other authors that an integrated curriculum has advantages for student
learning and skill development. However, we did not have the opportunity at
our university to change the curriculum of multiple courses. Instead, we in-
troduced an upper-level course. This report is targeted at educators who are
interested in introducing a single course that covers big data analytics.

This report builds off prior works by the author [6, 7], which document the
same big data analytics course at our institution. Specifically, in the present
report, the course projects are described in more detail with learning objectives,
“résumé notes” to be adopted by the students for their résumés, and project
variations including experimental comparisons of different technology choices to
solve the same project. The present report includes an updated experimental
evaluation of a virtual cluster environment versus a cloud computing environ-
ment. Finally, the present work includes more recent student feedback and
outcomes.

Our big data analytics course differs from some other courses that similarly
focus on big data processing paradigms and tools rather than low-level methods
like MPI. DePratti et al.’s course on big data programming at FEastern Con-
necticut State University [8] most closely matches our course. Their institution
is comparable in size to our own and also considers itself a liberal arts college.
The authors determined that the best way to introduce big data tools and tech-
niques to their students was to introduce a single upper-level project-focused
course covering Hadoop, MapReduce, and Spark. However, unlike our course,
they do not focus on using big data technology to provide insight to non-experts.
Their course also requires that students use their own computers to simulate a
cluster environment thus limiting the apparent usefulness of big data techniques.

Ngo et al. [9] describe a Hadoop MapReduce module in a broader parallel and
distributed computing course. The assignments related to this module focus on
developing MapReduce jobs to answer to a query such as “which job in Google
Data Center’s system log has the most resubmissions?” Their assignments do
not appear to include broader analysis or visualization components. Addition-
ally, their MapReduce module does not cover other big data technologies such
as Spark and Hive as we do in our course. Rabkin et al. [2] similarly focus
on computation without broader analysis or communicating findings. However,

Ihttps://github.com/StetsonMathCS/hadoopvirtualcluster
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unlike Ngo et al., they include projects and labs that compare the performance
characteristics of algorithms implemented in C and Hadoop and run locally and
on a cluster. Likewise, in this report we describe alternative implementations
for each of our projects and experimentally evaluate the performance of several
of these alternatives. We also describe how students may be challenged to ex-
perimentally evaluate their intuitions about which data processing techniques
are most performant.

Mullen et al. [10] describe a MOOC course that focuses on the technical
aspects of building and executing parallel and distributed processing jobs. Like
our course, they emphasize practical skill development with programming activ-
ities. However, possibly due to the limitations of evaluation in MOOC courses
or possibly by design, their course curriculum does not appear to ask students
to write reports that summarize their data processing outcomes. Instead, their
course focuses on the theory and mechanics of parallel and distributed com-
puting rather than on big data analysis for the sake of providing insight to
non-experts.

The rest of this report is organized as follows. Section 2 gives a brief overview
of the course curriculum and schedule. Section 3 details five projects that cover
a range of parallel and distributed computing tools and techniques and make
use of public datasets. We require that students provide a rationalization for
their choice of tools and techniques for their capstone project using a “decision
matrix” detailed in Section 4. The hardware and software infrastructure used to
support our course is detailed in Section 5, including benchmarks comparing on-
premise and cloud-based computing resources. Section 6 summarizes outcomes
of the course and the students’ anonymous feedback. Finally, Section 7 offers
recommendations and concluding remarks.

2. Curriculum
Our big data analytics course has three high-level learning objectives:

e Determine whether a data analysis task requires “big data” tools and tech-
niques, or can be done with traditional methods, and identify appropriate
means to perform the analysis.

e Design and build processing pipelines to efficiently extract relevant data.

e Communicate the outcomes of data analysis with convincing arguments
involving, as appropriate, text, tables, and plots.

For the purposes of distinguishing big data from small data processing tasks,
we define big data as follows, adapting a definition from Russom [11]:

A data analysis task may be described as “big data” if the data to
be processed have such high volume or velocity that more than one
commodity machine is required to store and/or process the data.
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In regards to our first learning objective, we define a “commodity” machine
as one that may be found in a typical small business data center. By today’s
standards, such a machine may contain a 2-8 core CPU, 8-16 GB memory, 1-4
TB hard disk, and gigabit ethernet. These numbers are vague approximations
but sufficient to make the point: big data is at least several TB of data volume
or millions of records per second data velocity.

Big data tools like Hadoop and Spark are designed to distribute a computa-
tion across more than one machine. They may be used on a single machine with
either a single worker thread, a virtual cluster (as we detail below in Section 5)
or, in the case of Spark, multiple worker threads on a single machine (though
Spark may also be used on a Hadoop cluster). These tools introduce overhead in
time and memory for managing the computation, even when the computation is
not necessarily distributed but only runs on a single machine. Thus, if one needs
to process small data rather than big data, i.e., data that may be processed on a
single machine, traditional techniques like multithreaded algorithms may result
in more efficient processing. Our first learning objective addresses this point so
that we ensure students choose their data processing tools appropriately and
do not approach every data processing task with big data technology unless
such technology will actually result in more efficient processing or is otherwise
absolutely necessary due to the size of the data. Students are required to fill
out a decision matrix and argue their choice of technologies for their capstone
project. This decision matrix is detailed in Section 4.

Our second learning objective addresses our intent to give students practical,
hands-on experience with big data processing. As much as possible, we use
big datasets and ask meaningful questions about the data. Depending on the
infrastructure available for a big data analytics course, the size of the datasets
may not constitute “big data” as defined above. Some degree of illusion may
be required in order to simulate distributed data processing, as we do with our
virtual cluster.

Finally, our course emphasizes that the role of data processing is to provide
insights, often to non-experts. For each project, we require that students pro-
duce a report of their findings in non-technical English and enhanced with plots
and tables as appropriate.

Students are evaluated primarily based on their projects (90% of the grade
overall). We do not have exams in our course. The last 10% of their grade
is based on two required class demonstrations of two tools or techniques not
covered in the course lecture material but still relevant to the course topics or
projects. The students’ notes from their demos are collected and added to the
course website in the form of “cookbook” examples. For example, one cookbook
example shows how to query a SQL database with R code, while another shows
how to run a MapReduce job over all files in a directory that satisfy a certain
filename pattern. These demos encourage students to explore the topics on their
own and allows them to benefit from the findings of their peers.
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Weeks | Topics Project

1-4 Data cleaning, statistical hypothesis | Summarize Backblaze
testing, performance analysis data

5-6 Hadoop architecture, HDF'S, Merge and analyze
MapReduce paradigm, Hive StackExchange

datasets

7-8 Relational databases and SQL Visualize NYC taxi
queries, Google BigQuery trips

9-10 Computations represented as DAGs, | Detect and count stars
Spark, GPU computing, OpenCV

11-13 Capstone Project

Table 2: Course schedule.

2.1. Schedule

Our course spans thirteen weeks. While there are many big data tools avail-
able, and more each year, we can only expect students to understand and prac-
tice with a small number of them. During the most recent offering of our
course, we covered Hadoop and HDFS, MapReduce, Spark, Google’s BigQuery,
and supporting tools R, ggplot, and OpenCV. In a previous offering, we covered
Hive and Mahout but did not include Spark. As the number of big data tools
grows, their relative popularity evolves as well. For example, in future offer-
ings, it is likely we will no longer include Hadoop’s version of MapReduce given
its relative unpopularity vis-a-vis Spark, and we plan to consider introducing a
stream processing technology like Storm, detailed in the NYC taxi trips project
(Section 3.3).

The course schedule from our most recent offering is shown in Table 2. In
the early weeks, we cover supporting tools R and ggplot for help summarizing,
analyzing, and visualizing small data produced by big data processing. During
this time, students are required to complete several small assignments to practice
with R and ggplot. These assignments are not detailed in this report. The
remainder of the course is concerned with five major projects, each of which are
described in turn in the next section.

3. Projects

In this section, we describe the five projects included in our most recent
offering of the course. In different offerings, the projects may change depending
on availability of new datasets and tools. Students were allowed to pair together
on each project if they wished. All but the capstone project spanned two weeks
of class time; the capstone project spanned three weeks. At the end of the course,
we provided example résumé notes for each student to adapt in their own words
and include on their résumé. We believe that these notes help students realize
that these projects are realistic and the skills they develop during the course
may be useful in their professional lives.
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For each project, we list the related parallel and distributed computing
(PDC) topics, describe the project in detail, list learning outcomes, discuss
possible variations, and provide the aforementioned résumé note.

3.1. Summarize Backblaze data

PDC Topics: Performance analysis

Backblaze, a cloud storage service, maintains data warehouses with thou-
sands of hard drives. They have released daily hard drive metrics since 2013 [12].
These metrics include drive information such as manufacturer, model, and ca-
pacity, ninety different S.M.A.R.T. metrics (Self-Monitoring, Analysis and Re-
porting Technology) for each drive, and a boolean value indicating if the drive
failed on the given day. The dataset is made available in daily CSV files, totaling
14 GB with 60 million records.

The students are asked to respond to the following prompts about the data:

e “Some manufacturer produced particularly bad drives of a certain size (in
TB). Find this manufacturer by graphing annual failure rate (AFR) for
all manufacturers and drive sizes.”

e “Drives of a certain TB size-range (e.g., 3-4 TB) have a higher proportion
of failures than other sizes.”

e “The hard disk S.M.A.R.T. metric #187, which measures read errors, is
strongly positively correlated with disk failure.”

Our learning objectives for this project are as follows.

e Apply filtering to efficiently transform big data into small data.

e Analyze (small) data in R.

As the first project in our course, this project is designed to challenge stu-
dents to answer fundamental data processing questions: (1) how are the data
formatted and how can they be read; (2) are all attributes of the data required
or can the data be filtered first to speed up processing; (3) what is the best
(most efficient) technique for preprocessing the data. Students have not yet
been exposed to paradigms such as MapReduce or dataflow graphs, so they
invariably attempt to load the entire dataset in memory. We provide the class
with access to a server that has sufficient memory for the whole dataset for a
few (but not all) students at a time. On more constrained environments like
laptops, students would be required to find an alternative approach. Even so,
preprocessing and loading the dataset may require a significant amount of time
depending on the technique used, which we explain in more detail below.

Since the only S.M.A.R.T. metric that is relevant for this project is metric
#187, the dataset may be filtered before further processing by eliminating all
other S.M.A.R.T. metric values, thus reducing the dataset to about 3 GB. Stu-
dents are not told about this optimization ahead of time. Rather, we hope they
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Data Preparation Method Time Peak Memory

Linux utilities: cut and pipes, then load into R | 3 min 3.45 GB

CSVKit: csvstack & csvcut, then load into R 105 min | 3.45 GB

Load all data into R, then filter 9 min 27.3 GB

Table 3: Time and memory required to process and load the Backblaze data by various
techniques. In all cases, the fread function from R’s data.table package was used to read the
CSV files.

will discover the optimization on their own, or at least hit a roadblock attempt-
ing to process the full dataset using the tools that have been covered so far in
the course (namely, Microsoft Excel, R, and Linux utilities). One option is to
stack the daily CSV files into a single file using csvstack and then drop unneeded
columns with csveut, both tools from the CSVKit package, which is commonly
discovered by students who search Google for CSV processing techniques. An-
other option is to use Linux utilities such as cut and pipes in a script. Finally,
one could load the entire dataset into memory and then eliminate unneeded
attributes. These options are compared experimentally in Table 3. Different
students took different approaches, and after the completion of the assignment
we reviewed these approaches and emphasized the importance of writing bench-
marks to find the best solution.

Once the dataset has been filtered, it may be loaded into R or a traditional
database like MySQL. Table 4 shows the time required to load the dataset into
R and MySQL and thereafter perform data aggregation queries. It is clear
that R has significantly less overhead since the data is kept entirely in memory.
Functions from R’s dplyr package were used for efficient operations. We do not
ask students to decide on their own whether to use R or MySQL — we instead
directed them to R for its statistical analysis features. However, we point out the
findings in Table 4 for further evidence that tools exhibit different performance
characteristics.

At this point in the course, students have not been exposed to database tools
like Hive and Google’s BigQuery. However, these distributed databases may be
used to store and query the Backblaze data. A variation of this project could
focus on performance characteristics of distributed vs. on-disk vs. in-memory
databases, e.g., comparing Hive vs. MySQL vs. R. Of course, with only 14 GB
of data, or 3 GB after filtering, such a comparison may not be representative of
larger datasets that truly require distributed processing. Ultimately, as a first
project, we elected to keep the performance analysis simple, just focusing on
various ways to preprocess the data. A later project, “Visualizing NYC taxi
trips” in Section 3.3, is better suited for distributed database technologies.

Résumé Note.

Hard Drive Failure Analysis & Visualization (Linuz, R, ggplot)

T analyzed 60 millions records of daily hard drive performance statis-
tics provided by Backblaze to discover daily and yearly total storage
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Task R MySQL
Import filtered CSV data 2 min 11 min
Select sum(capacity) group by date | < 1 sec | 4.5 min
Select avg(capacity) < 1sec | 38 sec

Table 4: Comparison of R and MySQL for loading the filtered dataset and aggregation queries.
The MySQL tables included indexes where appropriate but was not otherwise optimized
specifically for this use case.

capacity, yearly failure rate per manufacturer, and a strong positive
statistical correlation between the SMART 187 hard drive metric
and imminent drive failure. I preprocessed the data with Linux util-
ities to extract a relevant subset, then analyzed and visualized these
findings using R and ggplot.

3.2. Merge and analyze StackEzchange datasets

PDC Topics: Distributed computing; MapReduce; Hadoop; Hive

StackExchange is a collection of topic-oriented websites in which users post
questions and answers and earn “reputation” by such activities. Questions may
include tags (i.e., keywords) describing the focus of the question. Recently,
all user data and question and answer posts were archived [13]. The dataset
consists of 116 GB of XML files.

This project corresponds to lectures covering Hadoop and MapReduce. Stu-
dents are asked to build MapReduce jobs to answer the following queries:

e “What is the age distribution of users across all sites as a whole?”
e “What are the top 10 tags (by frequency of posts) for each site?”

e “How strong is the correlation between user reputation and number of
posts (questions or answers) by that user?”

e “Do high-reputation users answer questions faster?”
Our learning objective for this project is straightforward:

e Merge two big data sets (StackExchange posts & users) via multiple
MapReduce jobs.

This project is valuable as it requires students to make sense of the MapRe-
duce paradigm and apply the paradigm to extract and merge data stored across
numerous files and machines. The MapReduce paradigm makes merging large
datasets somewhat problematic. In the StackExchange archive, user data is
separate from post data. Each Map task receives one line of an XML file repre-
senting, say, a single post, so the Map task cannot connect user attributes like
reputation and age with post attributes like tags and votes. During lecture, we
explain the benefits of MapReduce and Hadoop’s design for robust distributed
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computing, but students find it difficult to implement a solution in the MapRe-
duce paradigm. Though less flexible than alternative approaches like arbitrary
dataflow processing with Spark, we believe it is valuable for students to learn
to solve problems in constrained paradigms that are specifically designed for
distributed or high performance computing.

This project is much simpler to solve in Hive or another relational database
tool. The only difficulty is importing the XML data into Hive. This can be
accomplished with Hive’s “serde” (serializer/deserializer) library and regular
expressions to extract the relevant data out of the XML syntax.

We believe Hive is best introduced after students have practice with writ-
ing their own MapReduce jobs. With the MapReduce backend, Hive generates
one or more jobs to execute a normal SQL query. It is informative to show
students this translation process, at least at a high level, so that they under-
stand that their own custom-written MapReduce jobs will (likely) have a similar
structure and therefore their mental model of MapReduce is correct. Consider
the SQL query “select site, count(*) as users, avg(age) as avgage from stackex-
change_users group by site order by avgage desc limit 10”. This query computes
the number of users and their average age for each StackExchange site and re-
turns only the top ten sites with the highest average age. For example, stack-
overflow.com has 420,009 users with an average age of 29.6 years in this dataset,
and the site with the oldest average age is genealogy.stackexchange.com. Hive
creates two MapReduce jobs, or “stages” in Hive nomenclature, to compute this
query. In the first stage, the map function returns pairs (site, row data) and
the reduce function receives all row data per site and computes the count of
rows (count of users) and average age. The stage 2 map function is the iden-
tity function and the reduce function limits the output to the top 10 records.
For students knowledgeable in SQL, this Hive query is significantly easier to
formulate than writing custom MapReduce jobs. Hive returns the answer in 77
seconds when running on our virtual cluster environment.

Although Hive makes query writing easy for students with a background in
SQL, it may hide the intrinsic complexity of merging large datasets. Students
must grapple with this complexity if they are asked to write their own MapRe-
duce jobs. Depending on the available time, one may wish to modify this project
so that students have to solve it both ways: with custom MapReduce jobs and
Hive queries.

Résumé Note.

Social QEA Site Analysis € Visualization (Java, MapReduce, R,
ggplot)

I developed a parallel and distributed data processing pipeline using
Apache Hadoop and the MapReduce architecture to study various
aspects of all StackExchange sites, including StackOverflow. The
data consisted of 6.5 million users and 27.5 million posts stored
across hundreds of XML files in an HDFS cluster. I found that
most users are between 20 and 30 years old, users with more posts

10
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have higher reputation, and the most common tag on StackOverflow
is “Java,” among other findings.

3.8. Visualize NYC taxi trips

PDC Topics: Cloud computing; BigQuery; Stream processing; Storm

The New York City Taxi & Limousine Commission released Yellow taxi
trip data that includes “fields capturing pick-up and drop-off dates/times, pick-
up and drop-off locations, trip distances, itemized fares, rate types, payment
types, and driver-reported passenger counts” [14]. The dataset includes about
1.4 billion records across 7.5 years. The dataset is formatted as CSV files and
totals 213 GB.

This project asks students to simulate building a retrospective report of taxi
trips over the last seven years. Students are shown a variety of plots that were
prepared ahead of time on the same dataset. These plots show frequency of
trips per hour of day and day of week, total passenger counts per month and
year, average distance traveled, and starting and ending points overlaid on a
map of Midtown Manhattan. Students were tasked with reproducing the plots
without being told how to process the data or how to build the plots.

Our learning objectives, listed below, emphasize that the goal of this project
is to transform big data into small data and produce sophisticated plots.

e Utilize cloud computing or stream processing to efficiently transform big
data into small data.

e Use ggplot to produce sophisticated plots.

This project may be customized along two paths. First, the project may
be treated as a batch processing job in which all the data lives on disk or in a
cluster and must be aggregated to produce summary data for plotting. Second,
the project may be treated as a simulated stream processing job in which the
plots are updated in “real-time.” Each approach is detailed in turn.

Batch processing. When treated as a batch processing job, students may use
MapReduce, Hive, or other techniques to extract summary statistics for plotting.
However, one may elect to introduce students to cloud computing services like
Google’s BigQuery, where the taxi data is already publicly available. This is
the approach we took in our recent offering of the course. We used a Google
Cloud Platform Education Grant to provide students free access to this service.

An alternative approach may include using Hive or Cassandra or Presto or
some other relational database tool designed to handle big data. We bench-
marked Hive on our virtual cluster with the taxi dataset and found that Hive
computed the average cost per number of passengers in 10 minutes. It is worth
noting that Litwintschik [15] found that Presto with Hive as a backend store
produced an order-of-magnitude speedup compared to Hive without Presto on
the NYC taxi dataset. BigQuery, on the other hand, computed the average cost
query in two seconds. Presumably, Google employs multiple layers of caching
for such queries, especially considering that the taxi data is pre-loaded into

11
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BigQuery as an example dataset and therefore likely popular among users ex-
perimenting with BigQuery.

A teacher must be cautious in providing students access to BigQuery or a
similar service. Such services enable students to complete the data process-
ing task by using SQL queries without necessarily understanding how the dis-
tributed processing works. We see two solutions to this potential problem. (1)
Require that students implement similar processing using another tool, like Hive
on a local or cloud Hadoop cluster, and compare performance with BigQuery;
or (2) require that students upload the taxi data to their own cloud storage ac-
counts before processing while ensuring they incur less than a specific maximum
of cloud computing charges. The pedagogical benefit of (1) is clear because it
helps students understand the advantages of Google’s scale, but students still
learn how to build their own similar though less performant solution. The benefit
of (2) is that students will be required to develop a budget for cloud computing
resources. This budget must include data storage as well as processing time. In
realistic distributed and high performance computing tasks, cloud computing
costs must be understood and bounded before such resources are utilized.

Stream processing. Although the NYC taxi data is available in whole, we can
simulate a stream of data and treat the project as a stream processing job. Using
Apache Storm, students may be asked to develop a topology that begins with the
CSV input (using Storm’s RawInputFromCSVSpout from the Predictive Model
Markup Language (PMML) library) and ends with inserts into a relational
database. The database may be queried periodically by a script that generates
plots based on summary statistics produced in the stream processing pipeline.

The NYC taxi data includes about 10 million rides per month, or four per
second. If the data were actually arriving in real time, one would likely wish
to use a windowing technique to summarize groups of data over a specific time
range. For example, a Storm topology may be designed that records counts
of trips per hour and day of week, starting and ending points according to a
discrete grid of city blocks, and so forth, for each window of, say, 250 records.
After each window is processed, the summary statistics may be inserted into
the database.

Résumé Note. Naturally, this résumé note should be customized according to
whether this project was approached as a batch processing or stream processing
job.

NYC Tazxi Usage and Revenue Analysis € Visualization (Google
Cloud Platform, SQL, R, ggplot)

I performed a deep analysis on more than a billion rows of NYC Yel-
low Taxi data to visualize every taxi ride for morning and evening
commutes drawn on a map of Midtown Manhattan. The most fre-
quent origin and destination points were highlighted on the map
and each trip was drawn as a line connecting the starting and end-
ing points. I also produced plots representing the frequency of trips
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for each hour of each day of the week, average distance traveled
each month of each year, and the overall revenue trend over the last
decade.

3.4. Detect and count stars

PDC Topics: Spark; Threads; GPU computing

In this project, students are asked to find the largest 100 stars in a dataset
of star images, where “largest” is defined as the greatest area in pixels in the
images. The dataset consists of about 16,000 6000x6000 pixel images of the
night sky from the Pan-STARRS]1 data archive [16] totaling 535 GB and more
than one-trillion pixels. This dataset is only a small subset of the Pan-STARRS1
archive that we downloaded to our server.

In order to detect the stars and measure their size, students must make use of
a technique like Hough circle detection or contour detection from OpenCV [17].
Each image may be processed independently and hence in parallel if sufficient
resources are available. The stars and their sizes from each image must be
aggregated and sorted before filtering to the top 100. We encouraged students
to use Spark to parallelize the task of processing each image and to aggregate
and filter the results. We also encourage students to use our server’s GPU, an
Nvidia Titan Xp, for some or all of the star detection steps. Depending on how
they combine CPU and GPU code, however, GPU usage may result in a less
efficient solution. We explain our experimental results regarding GPU usage
below.

Our learning objectives are as follows.

e Utilize Spark for parallel processing and OpenCV for image processing.

e Compare CPU vs. GPU processing time for various workloads.

To best detect stars in these images, the images should be subjected to a
sequence of convolutions (dilate, erode, invert) before applying Hough circle de-
tection or contour detection. Multiple images may be stitched together before
processing to more efficiently make use of the GPU. OpenCV may be used for
all of these steps. GPUs are typically more efficient than CPUs for convolu-
tions, and OpenCV has an optimized implementation of Hough circle detection
for GPUs (using CUDA). OpenCV does not yet have a GPU-specific imple-
mentation for contour detection. Thus, one must decide if image convolutions
should be applied by the CPU or the GPU, and if contour detection (CPU-only)
or Hough circle detection (GPU or CPU) should be performed. Students are
encouraged to use the GPU wherever they can as long as it is the more effi-
cient solution. After they have explored various approaches, we show them an
experimental study of the tradeoff.

Shown in Figure 1, we see in the left plot that performing only image convo-
lutions but no Hough circle detection on the GPU is more costly than performing
the same operations on the CPU due to the overhead of uploading and down-
loading the image to/from the GPU. However, using the CUDA-based Hough
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Figure 1: Left figure: Time to apply convolutions (dilate, erode, invert) on star images of
various sizes on both CPU and GPU; GPU is slower due to overhead of uploading and down-
loading the image to/from the GPU. Right figure: Time to apply convolutions and detect
Hough circles on star images of various sizes; GPU is faster due to GPU-optimized Hough
circle algorithm and no need to download the processed image from the GPU. Memory limi-
tations of the GPU prevented testing larger images.

circle detector is significantly more efficient than the CPU-based Hough circle
detector, as shown in the right plot. In this latter approach, one does not need
to download the image from the GPU. Only a vector of detected circle coordi-
nates is downloaded. On the other hand, the edge detection step of the Hough
circle detection algorithm requires as much memory as the original image, so
the maximum image size that can be uploaded to the GPU for Hough circle
detection is limited by the amount of memory on the graphics card (in our case,
12 GB).

Besides the tradeoff between CPU and GPU image processing, one also
must decide how to use multithreaded processing. In our case, the images were
stored on disk in either a RAID array of hard disk drives (HDD) or a single
solid state drive (SSD). As one increases the number of processing threads (a
simple parameter in Spark), processing time is impacted differently depending
on properties of the underlying storage. The performance of HDD vs. SSD is
shown in Figure 2. The figure shows that the SSD is significantly faster than
HDD for image storage since the images are large and a significant amount of
processing time is spent loading each image into memory. The figure also shows
that for HDD storage, the number of Spark worker threads may impact the
overall processing time as more threads cause more competition for the hard
drives’ (or RAID controller’s) limited I0 bandwidth and random access seek
time. It is worth noting that if the GPU is used to process the images, then a
kind of parallelism may be achieved by stitching multiple images together, but
multithreaded operation may provide no benefits since the GPU will be busy
and its memory exhausted by the stitched image.

The star detection and counting assignment exposes multiple tradeoffs in
processing efficiency with respect to computing hardware (CPU vs. GPU, HDD
vs SSD), algorithms (Hough circle vs. contour detection), and parallelism (num-
ber of stitched images or number of threads). All of these concerns may be too
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Figure 2: Time to complete the computations of the star detection and counting project on
our class server for different numbers of Spark worker threads with star images stored on a
hard disk (HDD) or solid-state drive (SSD). The GPU was not used in this experiment.

much for students to grapple with in a single project. We advise teachers to
pick a subset of these concerns with which to challenge their students depending
on hardware available and their pedagogical goals.

Résumé Note.

Star Identification from Wide-Field Astronomical Imaging (Apache
Spark, OpenCV, Python)

I built a parallel processing pipeline using Apache Spark to analyze
nearly 16,000 images totaling more than one trillion pixels provided
by the Panoramic Survey Telescope and Rapid Response System.
Using Python and OpenCV, I wrote an algorithm that eliminated
noise from each image and detected each star. Ultimately, I dis-
covered more than 10 million stars in the images and reported the
“Right Ascension / Declination” coordinates for the top 100 bright-
est stars in the survey.

3.5. Capstone Project

The final project requires individual students or pairs of students to formu-
late their own data analysis problem. This ensures the students are engaged
in a novel task that they personally find interesting. They must find relevant
datasets that total at least one million records or 1 GB of data. They must
produce a report that hides all code and answers the original question with
supporting evidence. In addition to this report, they must also complete the
decision matrix described in Section 4. Finally, they must prepare a 5-10 minute
presentation that poses the question, summarizes findings, and offers a conclu-
sion.
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During the most recent offering of this course, students posed the following
data analysis problems.

e “Do Hacker News posts about programming languages correlate with an
increase in questions related to that programming language on Stack Over-
flow?”

e “Can we group Reddit users by certain attributes such as comment fre-
quency, comment length, subreddit subscriptions, etc.?”

e “Do highly controversial subreddits experience more growth than less con-
troversial subreddits? And are certain words in titles correlated with con-
troversy?”

e “Can we predict Bitcoin price based on sentiment in Twitter messages
that include the word ‘bitcoin’?”

e “What are the most common video tags for the top YouTube channels?”

e “Generate a 2016 ‘annual report’ for the San Francisco Bike Share pro-
gram.”

Our learning objectives for this project are straightforward.

e Formulate a question about big data that the student personally finds
interesting.

e Collect data that helps answer the question.

e Formulate and implement an appropriate high performance data process-
ing strategy after evaluating alternative approaches.

e Report findings in a written document and oral/visual presentation.

In our experience, only a fraction of the proposed capstone project problems
are answered in the positive. For example, students found it is not the case that
highly controversial subreddits experience more growth than less controversial
subreddits. We emphasize to the students that they are not evaluated (for grad-
ing purposes) according to whether their problem statement can be answered
positively, but instead whether they engaged in an appropriate data processing
strategy, argued the appropriateness of their strategy with a decision matrix,
and clearly and effectively presented their findings.

4. Decision Matrix

In order to help students identify the best approach to a data processing task
and avoid a common tendency to simply attack every problem with a trendy but
inappropriate technology, e.g., applying Spark to every data processing task, we
developed a “decision matrix” that allows students to connect tools and tech-
niques with data processing subtasks. An example decision matrix for solving
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the star detection and counting project is shown in Table 5, and accompanying
explanation follows below. Depending on the task, the rows and columns may
list different tools and subtasks. The decision matrix is an enhanced version of a
decision tree tool developed previously [18] to help determine if a data process-
ing task required big data technology and whether batch or stream processing
was required.

We only asked students to complete their own decision matrix for the final
capstone project. We recommend instead that students complete a decision ma-
trix for every project. We will take this approach in future offerings of the course.
As described in each project above, there are often alternative approaches that
have their own characteristics in terms of ease of implementation and efficiency.

The following explanation accompanied the marked-up table:

e Data acquisition: “The images were acquired using a Perl script (aka
Linux tool) that iterated through URLs for each image.”

e Exploratory analysis: “My exploratory analysis consisted of examining
the file listing and writing sample code with OpenCV to process a single
image. I did not use any big data tools for this. In another situation,
like the Taxi data, I might well use big data tools (BigQuery) to perform
exploratory analysis since BigQuery is quick for small queries.”

e Plotting: “I plotted the stars with their RA/Dec coordinates in ggplot
since ggplot is easier to code (for myself) than Excel.”

e Distributed workers: “For processing all the images, I used Spark in a
distributed manner to pipe image filenames to a C+-+ program.”

e Numeric/string processing: “For sorting and finding the top stars (i.e.,
numeric/string processing), I also used Spark. R would have worked as
well but would be less efficient since I would then have to load all of the
star data into R after saving from Spark. By keeping all the processing in
Spark, I avoided an expensive operation.”

e Image processing: “Image processing was accomplished with OpenCV. In
simpler cases, Linux tools from the ImageMagick suite might have suf-
ficed.”

The following section details the hardware infrastructure used to support
our big data analytics course as well as an evaluation of alternative options.

5. Infrastructure

A course on big data or high performance computing strongly benefits from
a hardware infrastructure that allows students to actually process big data or
compute at high performance. Such a realistic infrastructure is not necessarily
required, as one could focus more on theoretical aspects or use software designed
for large systems on relatively small systems or virtual machines.
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Large institutions typically have an advantage in providing large infrastruc-
ture for courses and research. At a small school like Stetson University, we felt
the need to be innovative and to evaluate alternative approaches. In this sec-
tion, we present several approaches and discuss their benefits and drawbacks.
As infrastructure has an associated cost, we detail costs or estimates for each
approach. Ultimately, we decided to make use of a moderately-sized server (32
processing cores, 128 GB of memory, about 30 TB of disk, Nvidia Titan Xp
GPU) to host a virtual cluster environment using virtual machines for Hadoop-
based projects, Spark in multithreaded “local” mode (thus avoiding the over-
head of the virtual cluster), and the Google Cloud Platform for BigQuery. Our
experiments below include Amazon Elastic MapReduce for a comparison of the
virtual cluster and a cloud-based cluster. This section is an extension to our
previous work on this subject [7].

5.1. Prior Work

Recently, several researchers have documented various approaches to pro-
viding infrastructure for a big data analytics or similar course.

For example, St. Olaf College built both virtual and physical clusters using
KVM and Beowulf platforms [19, 20], respectively. They examine energy usage
and the costs of cooling a room full of servers. In a more recent report by Brown
and Shoop [21], the authors report that virtual clusters are less performant
than physical clusters, but the penalty depends on the workload. They do not
compare physical and virtual cluster costs.

Ngo et al. [9] report on a variety of physical clusters for teaching Hadoop.
They do not address the costs of building these clusters nor analyze their perfor-
mance characteristics. Kaewkasi and Srisuruk [22] address the other end of the
hardware spectrum by documenting low-powered clusters and experimentally
evaluating various configurations of ARM-based clusters. Although consuming
very little power, their ARM-based clusters are also significantly less performant
than traditional x86-64-based server architectures.

Rabkin et al. [2] report their experiences using Amazon Web Services rather
than on-premise infrastructure. Because cloud computing is an ongoing expense,
typically either students or the institution must cover these costs. Rabkin et
al. obtained a grant from Amazon for the offering of the course documented in
their work. They found that students utilized an average of $45 worth of cloud
resources during the semester. Because code efficiency is variable, processing
time can be hard to predict and thus cloud computing costs can be hard to
predict.

Eickholt and Shrestha [23] recently looked at several physical cluster config-
urations in an evaluation that closely mirrors our prior work in this area [7]. As
such, we will review their findings after discussing our virtual cluster environ-
ment.

5.2. Virtual Cluster

When our big data analytics course was initially developed, our department
already managed a moderately-sized server running Linux. We upgraded this
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server and repurposed it to support this course. Given that the server is only
one machine and therefore cannot form a physical cluster on its own, we opted
to develop a virtual cluster environment with LibVirt virtualization and the
KVM/QEMU hypervisor. Students access the virtual cluster by connecting to
the server with a common SSH client and submitting their code via typical
Hadoop commands. Spark is also installed on this server but does not access
the virtual cluster. Instead, Spark is configured to run in multithreaded “local”
mode to best take advantage of the system’s multiple CPU cores and memory.

We authored Vagrant and Ansible scripts to create a virtual cluster environ-
ment with any number of worker nodes in addition to Hadoop’s Name Node,
Resource Manager, and MapReduce Job History nodes. Our scripts update
the server’s local Hadoop configuration to point to these virtual machines for
running jobs. The server’s Apache webserver configuration is also updated to
allow full access to the Hadoop web interfaces, silently proxying all requests to
the appropriate virtual machine. These scripts are available online? and licensed
under the MIT open source license. Our server is managed by the faculty and IT
department and the virtual cluster scripts are maintained by the faculty. Other
institutions have explored student-managed clusters [21, 24] in both virtual and
physical environments.

Our server without the GPU is equivalent to a Dell PowerEdge R430 with
dual Intel Xeon E5-2640 processors, 128 GB memory, hard drives totaling 28
TB, and SSD drives totaling 3 TB. At the time of writing, the cost of these
components totals about $8400. Assuming the system is operational for three
years and uses 400W of power continuously during these years, power costs total
about $1000 at the US national average electricity rate. Thus, the total cost for
three years is about $9400.

To estimate the cost per student per submitted job, we assume that each
of 20 students submits an average of five processing jobs per project. This
amounts to 500 jobs submitted per semester, or 3000 jobs over the lifetime of
the cluster. Thus, the cost per job for our proposed server is $3.13. There are
a lot of assumptions in forming this number, the most egregious of which is
that the server will be replaced in its entirety every three years. Even so, these
assumptions allow us a point of comparison with other platforms such as cloud
computing.

Eickholt and Shrestha [23] built several physical clusters: Cluster A had 24
CPU cores, 64 GB memory, and 16 TB disk; Cluster B had 16 CPU cores,
128 GB memory, and 16 TB disk; and Cluster C consisted of retrofitted com-
puters provided by students with different processor speeds, at least 32 GB
memory overall, and 8 TB disk overall. Given prices of comparable hardware
as of August 2016, the cost per job for these clusters is $3.08 for Cluster A,
$1.68 for Cluster B, and $0.80 for Cluster C. The authors do not include an
evaluation of the performance for these clusters, so it is not clear if these costs
are reasonable. In any event, the costs are close to our own virtual cluster cost

2https://github.com/StetsonMathCS/hadoopvirtualcluster
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per job and the costs of cloud computing, detailed next.

5.3. Cloud Cluster

Cloud computing has completely changed the landscape of acquiring com-
puting resources. Now any individual or institution alike may acquire a cluster
of arbitrary size in just minutes, and pay for only the time the cluster is running.
Several large organizations offer cloud computing resources including Amazon,
Google, and Microsoft. In this section, we evaluated Amazon Web Services,
specifically their Elastic MapReduce (EMR) systems which automatically in-
stall and configure Hadoop, Spark, and related software.

Cloud computing resources are typically billed by the hour, and minutes are
rounded up to the nearest hour. In our evaluation, we computed the cost of
Amazon EMR without rounding up to the nearest hour. We also factored out
the time involved in setting up the cluster (a process automated by Amazon),
which typically required 5-10 minutes.

Figure 3 shows the average time (plus/minus the standard error) required to
perform a word frequency count on the 37 GB Westbury Lab Usenet Corpus [25].
The various cases compared along the x-axis are as follows:

e On-Premise Spark: Spark running on our server in multithreaded “local”
mode, with varying number of worker threads. Hadoop is not involved
and the virtual cluster was disabled.

e On-Premise Hadoop: Hadoop running in our virtual cluster environment.
The 37 GB corpus was uploaded to HDFS on the virtual cluster before
processing.

e EMR Spark: Amazon Elastic MapReduce running Spark on Hadoop with
m3.xlarge EC2 instances (8 vCPU, 15 GB memory, 80 GB SSD storage).
Different cluster sizes from 2 to 8 nodes were tested and their various
timings produced the average and standard error bars shown.

e EMR Hadoop: Similar to EMR Spark, except Spark was not used, only
Hadoop MapReduce.

e On-Premise Non-Parallel Shell Pipes: For comparison’s sake, we also
coded a word frequency count using the shell command:
time cat file.txt | tr > ’ ’\n’ | sort | uniq -c

We see from the figure that On-Premise Spark is the most efficient for
the word frequency count task. The virtual cluster, indicated by On-Premise
Hadoop, is still comparable to the cloud computing offering. Overall, Spark is
faster than Hadoop (i.e., MapReduce), which underscores the reason for Spark’s
continued rise in popularity. On-premise or in the cloud, distributed computing
performs better than the On-Premise Non-Parallel Shell Pipes. This is to be
expected.

Amazon is naturally interested in selling higher performance cloud comput-
ing beyond the m3.xlarge systems with which we tested. In our experience, their
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Figure 3: Average time to complete a 37 GB word frequency count job for various hardware
configurations. The categories along the x-axis are explained in the text.

costs are generally aligned with their performance. E.g., paying twice as much
generally means the data processing task will finish twice as quickly. Our costs
for the various Amazon EMR cluster configurations we tested stayed within
a small range of $1.06 per job for Hadoop MapReduce and $0.85 for Spark
on Hadoop. Spark cost less since it is more efficient on the same hardware.
These costs compare favorably to our virtual cluster estimated cost of $3.13 per
job. However, the numbers are difficult to compare because cloud computing
costs are ongoing while the on-premise server is a fixed cost, modulo periodic
upgrades, maintenance, and power costs.

Whether a big data analytics course should use an on-premise or cloud
computing cluster depends on several factors unique to the institution. If a
moderately-sized server or collection of free machines is already available, then
establishing a virtual cluster environment will likely be the most cost-effective
solution without significant penalty in performance, as illustrated by our own
virtual cluster setup. However, if such resources are not available, cloud com-
puting is likely the only reasonable choice. The choice is somewhat more com-
plicated across a second dimension. On-premise hardware is mostly an upfront,
fixed cost that the students do not usually bear. Cloud computing, on the other
hand, is an ongoing cost that either the students must bear, or the institution,
or covered by a grant which must be periodically renewed.

Cloud computing may well be the future of big data processing, so there is an
advantage in introducing students to the mechanics of cloud computing. Even
if the students do not have to pay for cloud computing resources themselves,
a course could be designed that models the ongoing cost by giving students
“credits” to spend on their data processing jobs. Students may start the course
with a fixed number of credits and be asked to “budget” their credits across
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Spring 2015 Spring 2017
Prompt Mean | Std. dev. | Mean | Std. dev.
Gaining factual knowledge 4.29 0.89 5.00 0.00
Learning fundamental principles 4.18 0.86 5.00 0.00
Learning to apply course material 4.18 0.78 5.00 0.00
Developing specific skills needed | 4.19 0.96 5.00 0.00
by professionals
Learning how to find and use re- 4.24 0.81 5.00 0.00
sources
Acquiring an interest in learning | 4.18 0.92 5.00 0.00
more

Table 6: Anonymous student ratings responding to various queries about the course. Possible
scores range from 0 (“no apparent progress”) to 5 (“exceptional progress”). Data are shown
for Spring 2015, N = 17 out of 20 enrolled students; and Spring 2017, N = 8 out of 12 enrolled
students.

their data processing jobs. If a job is implemented poorly and crashes before
producing output or runs too long, a student may exhaust far more credits than
he or she was intending. The lesson might be painful but mirrors the reality
outside of the classroom that many businesses and other organizations face when
engaged in big data processing and analytics.

6. Outcomes

The success of our big data analytics course may be viewed through multiple
lenses. First, we find that students are engaged with the material. Across two
semesters, students demonstrated multiple tools and techniques and ultimately
contributed 17 cookbook examples related to R, 7 cookbook examples related to
ggplot, 3 additional data sources, and 2 cookbook examples related to big data
processing in Python. The course website, which was the sole source of course
material in lieu of a textbook, was heavily used during the course. Between
course offerings and up to the time of writing, the website is accessed about 80
times a month by returning visitors (presumably mostly students), with about
2 minutes spent looking at each page. The most popular pages are those that
describe RStudio (our R code editor of choice) at 34% of page accesses, the
website front page (26%), notes about setting up a development environment
on Linux (7%), notes about Hadoop, HDFS, and MapReduce (5%), notes about
ggplot (4%), and notes about Spark (3%).

Student anonymous ratings about the course are summarized in Table 6. It
is clear from this table that students find the course to be valuable and that
they are encouraged to learn more about big data processing.

We are able to get more insight about the students’ experiences by looking
at their anonymous comments responding to the query, “Which aspects of this
course helped you learn the most?”
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e “[...] mostly the projects and how they were structured, they allowed us
to take the content from the class and apply it.”

e “The hands on labs and extremely well put together projects.”
e “The practice with the various tools and software used in the class.”
e “Hands on experience with current trends in the industry.”

e “The projects that involved finding our own solution to a data analytics
problem were the most challenging and I learned a lot from them. It was
also nice to learn new techniques from the student presentations.”

e “Constantly added new and innovative content throughout the year.”

e “Slowly building up to bigger data sets made me understand big data
clearly. Having multiple small and big project with different tools was the
best part of this class. I can say that I have learned a lot from this course,
and projects were really challenging and really fun.”

e “The bulk of the grades in this course come from our projects, which really
allow us to get familiar with the tools we have learned in the class.”

These unfiltered comments conclusively show that the project-oriented cur-
riculum appealed to the students. They appreciated the hands-on nature of the
course and the gradually increasing level of difficulty of the projects.

It is worth noting two negative student comments. One student mentioned
that the course should have more servers for cluster computing. As noted above,
we used a virtual server environment, so performance sometimes suffered when
many students were using the hardware at the same time. Our second offering
of the course included new material that helped students make use of cloud
computing resources. A significant benefit of cloud computing is that students
do not compete for resources. Thus, we recommend teachers strongly consider
cloud computing options and seek out educational grants offered by Google,
Amazon, and Microsoft.

Second, one student mentioned that the projects required they learn a sig-
nificant amount of material on their own that was not presented in lecture. Ap-
propriately balancing lecture exposition and student self-guided discovery can
be challenging when developing new curricula. We advise that teachers who
adopt some of the projects reported here take time to show students the various
APIs and libraries required to build Hadoop, Spark, and OpenCV projects.

Direct student outcomes of this course include the following: two students
now work as data scientists at the Pacific Northwest National Laboratory (PNNL),
two students work as data analysts at GEICO; one student participated in a
Facebook summer internship in a data analytics role; one student participated
in a Microsoft summer internship in a data analytics role; one student partic-
ipated in a Florida Institute of Technology (FIT) summer research experience
applying data analysis techniques; and one student participated in a Carnegie
Mellon summer research experience applying data analysis and machine learning
techniques.
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7. Conclusion

This report detailed a big data analytics course that serves as an elective
course for upper-level computer scientists at Stetson University. The course
is project-oriented and engages students with realistic, hands-on practice using
modern big data tools and techniques. Different options for supporting hardware
infrastructure were explored and experimentally evaluated. Student feedback
and academic and professional outcomes conclusively show that the course is a
success and the high-level learning objectives were met.

A course like the one described here is necessarily continuously evolving.
New technologies are introduced while others go out of favor. For example, in
the first offering of this course, we did not cover Spark. Now, such an omission
is unjustifiable. Likewise, we believe it is important for the projects to stay
relevant and timely. As new big datasets are made available, projects should
be updated to make use of those datasets. For example, at the time of writing,
the NYC Yellow Taxi dataset is well known and several blog posts have been
authored detailing different ways to analyze the data. The novelty of a NYC
taxi data analysis project is rapidly waning, indicating that a different project
might be more appropriate in the future.

We expect that cloud computing will become more ubiquitous than it al-
ready is and more appropriate for students to practice with than a small- or
moderate-scale on-premise cluster environment. Cloud computing also allows
instructors to develop a curriculum that includes larger data processing tasks
than those illustrated in this report, e.g., analyzing the Google Books Ngrams
corpus (2.2 TB) or the Common Crawl corpus (multiple petabytes). Both of
these corpora are already available on the Amazon Web Services platform.

Ultimately, it is important that students learn the various data processing
paradigms and tools but also develop a mature understanding of when to use
certain approach to solve specific data processing tasks. Our various projects
and decision matrix are designed to help students meet these goals. As larger
datasets are made available and more varied and sophisticated paradigms and
tools are developed, the importance of these goals is only reinforced.
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