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Abstract

In the context of a single report of location information, existing researches de-

fine location privacy by adversary’s uncertainty, inaccuracy, or incorrectness of

the estimation, or by geo-indistinguishability which is a generalization of dif-

ferential privacy. Each of these existing notions has problems in some specific

scenarios. In this paper we illustrate the limitations of existing notions by con-

structing such scenarios, and introduce a formal definition on location privacy

by quantifying the distance between the prior and posterior distribution over

the possible locations. Further more, we show how to construct a near-optimal

obfuscation mechanism by solving an optimization problem. We compare our

proposed mechanism with the Laplace noise based geo-indistinguishable mech-

anism, and Shokri’s optimal obfuscation mechanism, using both our proposed

privacy metric and the traditional metric based on the estimated distance errors.

The results show that our proposed metric better describes location privacy and

our proposed mechanism makes a better tradeoff between privacy and utility.
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1. Introduction

With the development of mobile computing and the wide spread of mobile

devices, mobile social network applications have become increasingly prevalent

across mobile users. These applications rely on various location based services

(LBS) to make use of users’ location information and thus can provide users5

personalized services. Without an adequate location privacy preserving mecha-

nism, users may be hesitant to use these applications.

Researchers have proposed a variety of location privacy preserving mecha-

nisms (LPPM) which allow users to make use of the LBS with reduced location

information [1, 2, 3, 4]. These LPPMs provide different trade-offs between lo-10

cation privacy and LBS utility, offering alternatives to better meet individual

requirements of different users.

However the comparison between LPPMs can be tricky due to a lack of

reasonable privacy benchmark for location information. For given datasets and

adversary assumptions, many early researches define user’s privacy [2] by the15

“’uncertainty” of the adversary, which tells the probability that the adversary

will make a wrong estimate. Then “incorrectness”, which is a combination of

uncertainty and “inaccuracy”, is introduced as a better definition of privacy

[5], since privacy deals with not only the probability of an error, but also the

magnitude of this error. This notion of privacy is reasonable, however it is20

difficult to measure the error magnitude, since no distance metric can be used

for all situations. For example, one may suggest using the Euclidean distance,

and then he will find that with a same distance, the privacy that the real location

and the estimated location belong to a same region, can be different with that

they belong to two different regions.25

In recent years, differential privacy [6] gains popularity since it abstracts

from the side information of the adversary. In the context of location privacy,

geo-indistinguishability is introduced and supposed to be “independent of the

prior”. It defines privacy by the maximum difference among the probability of

reporting a location from all possible real locations (and this difference decays30
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with the distance between two possible real locations). This definition can be

problematic if the prior is taken into account, and we prove in this paper that

geo-indistinguishability is not independent of the prior, instead it is based on

the assumption that the prior is unknown.

In this paper, we propose DPLO (short for differentially private location ob-35

fuscation) as a notion of location privacy by describing the difference between

the prior and the posterior knowledge of the adversary. We distinguish the prior

distribution over locations before and that after the user decides to access LBS

at some location, and use the latter as the prior knowledge. This is because

the user decides to trade-off privacy for utility, and no matter which LPPM is40

used, the decline of privacy is inevitable. Moreover, we distinguish the poste-

rior distribution over locations before and that after the LPPM finally outputs

some obfuscated location, and use the former as the posterior knowledge. This

is because our goal is not to quantify privacy for some specific outputs of an

LPPM, but to propose a general privacy metric for evaluating LPPMs based on45

a probabilistic model. We study the problem of optimizing the DPLO under

given quality constraints, and construct a near-optimal obfuscation mechanism

by solving a non-linear optimization problem. Our proposed obfuscation mech-

anism is evaluated by comparison with selected existing mechanisms based on

the same datasets used by other literatures.50

2. Existing Notions of Location Privacy

In situations when people do not have to disclose their locations, they can

use security approaches such as encryption or some other access control mech-

anism to ensure location privacy. However, in most other situations, one has to

trade-off between location privacy and utility, e.g., when a user accesses an un-55

trustworthy LBS. We focus on location privacy when such trade-offs take place,

which is so-called the computational location privacy introduced by Krumm [7].

Since location privacy is computational, we can make comparison between

different privacy preserving mechanisms. During the last decade, a variety of
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privacy metrics have been proposed and they mainly fall into three categories[4]:60

k-anonymity, expected distance error, and differential privacy.

2.1. Uncertainty: k-Anonymity and Location Entropy

k-anonymity [8] is a property of anonymized data in databases. Briefly

speaking, a table satisfying k-anonymity means that, for each record in this

table, there exist at least k − 1 other records with exactly the same quasi-65

identifier (sensitive attribute) values. To achieve k-anonymity, generalization

techniques are often used.

This notion is widely adopted in early researches on location privacy. Gru-

teser et al [1] introduce a cloaking based mechanism, which employs a trusted

anonymizer (or uses a peer-to-peer algorithm to solve the one point of failure70

problem as in [9]), to aggregate location reports from at least k users (or dummy

users to achieve a higher k in sparse regions as in [10]), and replace the locations

with one generalized area to ensure k-anonymity. Beresford et al [2] introduce

a confusion based mechanism. The idea behind confusion is that if at least k

users change their pseudonyms and report a same generalized location at the75

same time (e.g., two cars at a crossroad in path confusion [10]), they become in-

distinguishable since then. Other techniques like cache [11] may also be used to

better trade-off between location privacy and utility, while the notion of privacy

remains the same: location privacy is defined as the uncertainty of adversary,

and the more possible locations there are, the higher location privacy will be.80

2.2. Incorrectness: Expected Distance Error

Suppose an LPPM which outputs obfuscated locations based on user’s real

locations. It is obvious that if the distance between the real location and the

obfuscated location is not large enough, these two locations can belong to a

same logical location, e.g., two different locations in a hospital. In this case, the85

user’s location privacy is not preserved. The minimal distance which ensures two

locations each belongs to a different logical location can vary widely accordingly.

It depends highly on the map information, the scale of location, the type of
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application, the privacy requirement of the user, and many other contextual

information, and is too complex to define. An intuitive way to improve privacy90

is to make larger the distance between the real location and the obfuscated

location, since the larger this distance is, the less likely the two locations will

belong to a same logical location. In the meanwhile, this distance contributes

to the quality loss, so the complex problem of trading-off between privacy and

utility can be transformed to the problem of deciding the distance error.95

However, this notion of location privacy is still problematic. In particular,

a smart adversary may compute an estimated location based on his knowledge

of the obfuscation algorithm used by the LPPM. So the expected distance er-

ror should measure the distance between the real location and the estimated

location, instead of the reported one. Further more, a smart LPPM should100

consider the adversary’s knowledge and capability to better trade-off between

privacy and utility. Shokri et al[5, 3] introduce a comprehensive location privacy

notion by completing the existing adversary’s model based on the understand-

ing that the privacy of users and the success of the adversary are two sides of

the same coin. Unlike traditional k-anonymity based approaches, [5] measures105

location privacy using so-called incorrectness, which is a combination of the

adversary’s uncertainty and inaccuracy on the estimated locations.

2.3. Differential Privacy: Geo-Indistinguishability

Differential privacy [6] is a notion of privacy from the area of statistical

databases. It is introduced to protect against deanonymization techniques which110

identify personal information by linking two or more separately anonymized

databases. It can be used to measure location privacy in statistical databases

[12, 13]. However, location privacy in LBS scenarios is to some extent dif-

ferent, since most LBSs require specific location information of a single user

instead of some statistics on aggregate information of multiple users. Dewri [14]115

proposes differential perturbation which is a hybrid of differential privacy and

k-anonymity. In this approach, the k locations in an anonymity set are required

to have similar probabilities to report a same obfuscated location.
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Table 1: Summary of Notations

Symbol Meaning

r, r′, r̂ Real location, obfuscated/reported location, estimated location

R,R′ The set of all real locations, the set of all obfuscated locations

ψ(r) User profile (probability of being at location r)

f(r′|r) Obfuscation function (probability of reporting r′)

h(r̂|r′) Attack function (probability of estimating r̂ as real location)

Q(r′|r) Utility of reporting r′ instead of r

Qmin User’s minimum acceptable utility

A(r̂|r) Prior probability of estimating location r̂

B(r̂|r) Posterior probability of estimating location r̂

dA(r′, r) Distortion function of two locations (considering utility)

Geo-indistinguishability [4, 15] proposed by Andrés and Bordenabe et al,

has gained popularity in recent years. It relaxes Dewri’s constraint of putting120

locations in anonymity sets. Multivariate Laplace noise is used by Andres et al

[4] to achieve ε-geo-indistinguishability. Then in their later work, Bordenabe et

al [15] propose an optimal geo-indistinguishable mechanism by solving a linear

optimization problem, which chooses obfuscation probability distribution func-

tion f(·, ·) (i.e., to choose the noise distribution instead of simply using Laplace125

noise), to minimize the service quality loss.

Geo-indistinguishability is now widely adopted [16, 17], and it is also im-

proved in recent approaches by considering the temporal correlations of multiple

locations [18, 19].

3. Limitations of Existing Notions130

The limitations of existing notions motivate this work. For better under-

standing these limitations, we illustrate them in detail by computing location

privacy using the formal definitions of existing notions under the following sce-

nario settings and adversary assumptions. In Table 1, we summarize the main
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Figure 1: Limitations of existing notions: (a) User profile, probability distribution on user’s

location. (b) Two anonymity zones with the same k and the same location entropy but not

equally private. (c) With ε = 0, there is still a 4/9 chance of reporting r′1, r′2, r′4 or r′6, each

of which identifies user’s real location r. (d) When the estimated distance error increases, the

probability of identifying the real location can also increase (i.e., privacy can degrade).

notations introduced throughout this article.135

3.1. Scenario Description and Adversary Assumptions

The example scenario is as shown in Fig. 1. We focus on a 5×5 grid consisting

of 25 square regions with each of which represents a location. The symbol in the
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bottom left corner of a region indicates whether this location is a real location

r, an obfuscated locations r′ or an estimated locations r̂. We use R to represent140

the set of all possible real locations (it is obvious that r̂ ∈ R, if R is known by

the adversary), and R′ to represent the set of all possible obfuscated locations.

The icon in the top right corner of a region indicates its logical location, e.g., a

restaurant, a gym or a hospital, etc.

Suppose our target user u0 is now locating at r0 = C3, and his profile can145

be modeled by a prior distribution ψ on R is as shown in Fig. 1(a), with the

grayness of a region shows the prior probability that the user is located at this

location. In our scenario, we have ψ(C3) = 0.5, ψ(D4) = ψ(E2) = 0.25.

We assume the adversary is aware of the LPPM’s internal algorithm and the

user profile (the adversary can accumulate this knowledge with repeated obser-150

vations/eavesdropping). Base on these assumptions, we show the gap between

the existing notions of location privacy, and what privacy naturally is.

3.2. Limitations of k-Anonymity

By applying Shannon’s classic measure of entropy, Beresford et al [2] define

location privacy as location entropy:

Privacy = −
∑

r

Pr(r) log2 Pr(r) (1)

where Pr(r) represents the probability that location r is the real location in the

adversary’s estimate. Ideally, k = 2b locations with exactly the same probability155

result in a location entropy that equals to b.

The limitations to this notion includes:

1. k-anonymity suffers from homogeneity attacks and background knowledge

attacks [20].

2. Uncertainty of the adversary does not always mean privacy of the users160

[5].

These limitations of k-anonymity have been widely discussed, here we give

a simple example for illustration. As shown in Fig. 1(b), four users u0, ..., u3
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locate at r0, ..., r3 respectively. To achieve 2-anonymity, r1 and r2 are aggregated

and generalized to zone Z1, while r0 and r3 are aggregated and generalized to165

zone Z2. Although users in both zones have the same location entropy (k = 2),

location privacy in zone Z2 is obviously preserved much better than in Z1. In

our example, since locations of two anonymous users are close to each other (r1

and r2), adversary can deduce that both users locate at a logical location (the

gym at D2) by performing a homogeneity attack. Moreover, if the adversary170

is aware of u0’s profile, he can deduce that u0 locates at C3 by performing a

background knowledge attack.

3.3. Limitations of Geo-Indistinguishability

Geo-indistinguishability is a generalization of differential privacy in the con-

text of location privacy. In [4], ε-geo-indistinguishability is defined as

dP(f(r′|r), f(r′|r̂)) ≤ εdR(r, r̂) (2)

where r, r′ and r̂ are arbitrary locations, f(r′, ·) is a probabilistic function

for selecting the obfuscated location r′, and dP(·, ·) measures the supremum175

of distance between two distributions, dR(·, ·) measures distance between two

locations.

The limitations to this notion of location privacy include:

1. ε-geo-indistinguishability as a notion of location privacy may be problem-

atic, since privacy is not always enhanced with ε decreases.180

2. ε-geo-indistinguishability does not perform well for location traces, since

privacy degrades rapidly when traces become longer. Some recent ap-

proaches introduce notions of location privacy considering temporal cor-

relations [18, 19]. However we are only interested in location privacy at

a single time-stamp in this paper, and we leave the extension of location185

privacy for traces as future work.

In Formula 2, dR(·, ·) is a metric measuring the distance between two loca-

tions. In the vanilla geo-indistinguishability [4], the euclidean distance is used;
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and in optimal geo-indistinguishability [15], this metric is defined accordingly

in various applications. Suppose the following distance metric,

dR(r1, r2) =





0 if r1 ∈ Grid3×3(r2)

∞ otherwise

(3)

where Grid3×3(r2) is a r2-centered, 3 × 3 grid consisting of 9 regions. As in

Fig. 1(c), the dotted-line square can be represented as Grid3×3(r). This metric

is reasonable for many LBSs, e.g., which provides a user with nearby geographic

information based on his location r. If the reported location r′ is within an area,190

i.e., r′ ∈ Grid3×3(r), the utility of the LBS can be ensured, so the distance is

set to 0. Otherwise, the information obtained by the user may be completely

useless, so the distance is set to ∞.

With this metric, we can construct a simple mechanism satisfying 0-geo-

indistinguishability as follows:

f(r′|r) = 1/9, ∀r ∈ R, r′ ∈ Grid3×3(r) (4)

Note that in statistical databases, 0-differential privacy means “complete

privacy” since it ensures that the personal information will never be identified.195

However a 0-geo-indistinguishability mechanism may perform poorly in privacy.

For example the 0-geo-indistinguishability mechanism in Equation 4, the user

will have a 4/9 chance to report an obfuscated location r′1, r′2, r′4 or r′6, and

reporting any of these locations leads to disclosure of user’s real location.

Even if we use some other distance metric such as the Euclidean distance,200

and use some complicated noise distribution such as Laplace noise as in [4]

to construct some other geo-indistinguishability mechanism, there is still great

difference between location privacy and geo-indistinguishability.

One may argue that geo-indistinguishability, just like differential privacy, is

designed for situations when priors are unknown. This statement is true for the205

differential privacy in statistical databases, since it guarantees that the posterior

probability is as much as the prior probability, so we say it is “independent of the

prior”. However, there is a misunderstanding for the geo-indistinguishability,
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since it is no independent of the prior, instead it makes a strong hypothesis that

the prior cannot be known.210

3.4. Limitations of Optimal Geo-Indistinguishability

Now let’s move on to the optimal geo-indistinguishability proposed in [15].

It employs the definition of vanilla geo-indistinguishability [4] as the notion of

location privacy, and is essentially a better trade-off between utility and geo-

indistinguishability.215

Since geo-indistinguishability is problematic, we can also conclude that the

optimal geo-indistinguishability is also problematic. Back to our example shown

in Fig.1(c). We can prove that the only mechanism achieves ε = 0 is the

mechanism we proposed in Equation 4, so this mechanism is also an optimal

0-geo-indistinguishable mechanism, and we have already proven this mechanism220

performs poorly in privacy.

3.5. Limitations of Expected Distance Error

Using the estimated distance error, location privacy is defined as:

Privacy(ψ, f, h, dP ) =
∑

r,r′,r̂

ψ(r)f(r′|r)h(r̂|r′)dP (r̂, r) (5)

where ψ(r) represents the prior probability (i.e., the user profile) that the user

locates at location r, f(r′|r) represents the probability that the LPPM outputs

an obfuscated location r′ based on an real location r, h(r̂|r) represents the225

probability that the adversary guesses the user’s location to be r̂ based on a

reported location r′, and dP (r̂, r) represents the distance between locations r̂

and r.

In [3], Shokri introduces an optimal strategy for location privacy by solving

a linear program, which chooses LPPM’s obfuscation probability distribution230

function f(·, ·), to maximize the location privacy defined in Equation 5, subject

to service quality constraints which give an upper bound on the distance between

real location r and obfuscated location r′. This approach is optimal with this

notion, however, there still remain two limitations:
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1. It relies on the modeling of adversary’s side information, meaning that it235

suffers from background knowledge attacks.

2. The real location privacy is not always enhanced with estimated distance

error increases.

With this notion, if no location is reported, the expected distance error can

be computed based on the user profile as:

PrivacyPrior =
∑

r̂∈R
ψ(r̂)d(r, r̂) ≈ 0.91,

where d(·, ·) here is the euclidean distance.

Assume a mechanism outputs some obfuscated location to report (e.g., when

f(D2|C3) is relatively high), and finally makes the adversary estimates a pos-

terior distribution as shown in Fig. 1(d): Pr(C3) = 0.5, Pr(E2) = 0.45 and

Pr(D4) = 0.05. The expected distance error can be computed as:

PrivacyPosterior =
∑

r̂∈R
Pr(r̂)d(r, r̂) ≈ 1.08.

It is weird that the privacy increases with this location report. Shokri [3] uses240

Equation 5 to compute the averaged minimum posterior privacy on all locations

r ∈ R, so the privacy with posterior is always lower than the privacy with only

prior. However, for a single user’s single access to an LBS, the case as in our

example can happen occasionally.

This problem becomes especially pronounced if we take into account other245

side information. Suppose the user reports his location at lunch time, the adver-

sary can deduce that this user is unlikely to be at location E2, since E2 is a gym

and nobody will do strenuous exercises after a meal. With only user profile, the

adversary has a 2/3 chance to identify user’s real location; while with posterior

as shown in Fig. 1(d), the chance increases to 10/11. This example shows that250

privacy is not always enhanced with the estimated distance error increases, and

also the importance of independence of the prior.
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4. DPLO: Differentially Private Location Obfuscation

We have shown the limitations of using uncertainty, inaccuracy, incorrect-

ness, and geo-indistinguishability as the notion of location privacy. Our goal255

is to provide a formal notion of location privacy according to the common un-

derstanding that privacy is “the ability of an individual to seclude information

about himself”. In access to an LBS, the user has to trade-off between loca-

tion privacy and utility, and report some obfuscated location information. In

this context, complete privacy means “adversary knows no additional informa-260

tion from the obfuscated location”. Based on this understanding, we introduce

differentially private location obfuscation (DPLO) as a formal notion of loca-

tion privacy, by quantifying the additional knowledge probably disclosed by the

obfuscation. Some important notations are listed in Table 1.

4.1. Assumptions265

Let R be a set of points of interest, including all possible real locations of a

given user, and R′ be a set of locations, including all possible reported locations.

Suppose the user locates at location r ∈ R, he uses an obfuscation mechanism

to protect his location. This obfuscation mechanism chooses a pseudo-location

r′ ∈ R′ by sampling from a probability distribution f(r′|r).270

The adversary knows the obfuscation function f(·, ·), and he also knows

in prior the user profile ψ(ri), i.e., the probability distribution of user’s real

location. Based on any obfuscated location r′ he obtains, he will estimate a

location r̂ ∈ R as the user’s real location. The attack function he uses can be

represented as h(r̂|r′). Typically, a Bayesian adversary uses Bayesian inference

attack on the obfuscation mechanism, thus he can estimate r̂ for each observed

r′, with prior information ψ:

h(r̂|r′) =
Pr(r̂, r′)
Pr(r′)

=
f(r′|r̂)ψ(r̂)∑
r f(r′|r)ψ(r)

. (6)

Note that, due to utility reasons, r′ is always around r, so h(r̂|r′) is always no

less than ψ(r̂).
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4.2. Quality Metric

The quality of the LBS for a user locating at r reports r′ can be computed

as:

Q(r′, r) = e−dR(r′|r). (7)

where the distance function dR(·, ·) can be defined as different metrics accord-

ingly. For example, the Euclidean distance dE(·, ·) between the locations is a275

typical metric.

For any given real location r, the LPPM should ensure that the utility of

reporting an obfuscated location r′, so we have:

Q(r′, r) ≥ Qmin. (8)

4.3. Definition of Posterior Distribution

For a given real location r, the probability that the adversary will guess that

the location to be r̂ is:

B(r̂|r) =
∑

r′

f(r′|r)h(r̂|r′). (9)

Typically for a Bayesian adversary, we have

B(r̂|r) =
∑

r′

f(r′|r)f(r′|r̂)ψ(r̂)∑
ri
f(r′|ri)ψ(ri)

. (10)

4.4. Definition of Prior Distribution

The definition on “prior distribution” worth taking up analysis. We start

with the clarification of two different moments. The first moment is the time

before the user decides to use the LBS. The probability distribution prior to

this moment is no doubt ψ(r). The second moment is the time after the user

has decided to use the LBS at some real location r, but before he really report

some location r′. At this moment, the user has decided to trade-off privacy

for utility, and the privacy will definitely degrade if the utility is considered,

no matter what obfuscation mechanism is used. So the probability distribution

14



prior to this moment is no longer the user profile ψ(r), and we use A(r̂|r) to

denote this prior, which can be computed as follows:

A(r̂|r) =
dA(r̂, r)ψ(r̂)∑
ri
dA(ri, r)ψ(ri)

, (11)

where dA is another metric different from dR. If the distance metric dR is

defined by the Euclidean distance dE , we can compute dA as:

dA(r̂|r) = e−dR(r̂|r)/2. (12)

No matter which obfuscation mechanism is chosen, we have that A(r̂|r) is an

upper bound (but not necessarily a supremum) of location privacy in case that280

utility is ensured. For better understanding the difference between the prior

ψ and A, we give an example: Suppose a user’s real location is somewhere in

Los Angeles, and his profile shows that there is a 50 percent chance that he is

in Los Angeles, and another 50 percent chance in San Francisco. The overall

prior ψ is a distribution mapping from all locations in both cities, and we have285

∑
r∈LA ψ(r) =

∑
r∈SFO ψ(r) = 0.5. Now this user accesses an LBS, which re-

quires city-level accuracy of location, so he can only report some pseudo-location

in the same city. In this case, the function A indicates the prior distribution

ensuring utility which maps from the locations in only one city, and we have
∑
r∈LAA(r) = 1 and

∑
r∈SFOA(r) = 0. This is because the user has to trade-290

off privacy for utility, and at the time he decides to report a location for some

utility, his location privacy degrades.

4.5. Definition of DPLO

We define ε-DPLO, which is short for “differentially private location obfus-

cation”, as the notion of privacy by quantifying the difference between the prior295

and the posterior of the adversary.

Definition 1 (DPLO). Let ε be a positive real number, a location obfuscation

mechanism f(·|·) satisfies ε-DPLO iff for all r, r̂:

e−ε ≤ A(r̂|r)
B(r̂|r) ≤ e

ε (13)
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where A(r̂|r) represents the prior distribution which is a constant for any given

pair of r and r̂ and is defined in Equation 11, and B(r̂|r) represents the posterior

distribution which is a function of f(·|·) defined in Equation 9.

4.6. Examples on Computing ε-DPLO300

In Fig. 1 we provide several sample obfuscation mechanisms to illustrate

the limitations of existing notions of location privacy. Here, we compute the

ε-DPLO that each of these mechanisms satisfies.

For all the cases, we assume a Bayesian adversary to compute the posterior

distribution by Equation 10, and suppose the user profile ψ(r) is as shown in

Fig. 1(a): ψ(C3) = 0.5, ψ(D4) = ψ(E2) = 0.25. The distortion metric dA(·, ·)
can be computed from the distance metric dR(·,·) we assumed in Equation 3, so

we have:

dA(r1, r2) =





1 if r1 ∈ Grid5×5(r2)

0 otherwise

where Grid5×5(r2) is a r2-centered, 5 × 5 grid. The prior distribution A(r̂|r)
can be computed by Equation 11, so we have A(r̂|C3) = A(r̂|D4) = A(r̂|E2) =305

ψ(r̂), for all r̂ ∈ R.

Now we can compute ε for each sample mechanism. For the k-Anonymity

Mechanism we assumed in Section 3.2, it satisfies ∞-DPLO; for the 0-Geo-

Indistinguishable Mechanism we assumed in Section 3.3 (Equation 4), it satisfies

1.35-DPLO; for the estimated distance error based mechanism we assumed in310

Section 3.5, it satisfies 1.61-DPLO.

Suppose an obfuscation mechanism fopt(D3|r) = 1, for all r ∈ R. We have

fopt(·|·) satisfies 0-DPLO. This is reasonable, since the adversary will obtain no

extra knowledge from this obfuscation, and we say this mechanism is optimal,

since it ensures utility and privacy simultaneously.315

5. Near-Optimal DPLO Mechanism

In the previous section, we introduce DPLO as the notion of location privacy,

and show via case study how to compute the ε-DPLO that various obfuscation
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mechanism can satisfy. In this section, we propose a method of constructing a

near-optimal mechanism by solving an optimization problem.320

5.1. Problem Statement

Given the distortion function dR(·, ·), and the user profile ψ(·) on a set of

locations R as prior knowledge, the problem is finding the obfuscation function

f(·, ·) that minimizes the chance of identifying the real locations, i.e., minimizes

ε as in Definition 1. The solution must consider that the adversary is aware of325

the obfuscated location r′ and the obfuscation function f(·, ·).

5.2. Optimal Mechanism

With inequality constraint 15 in Definition 1, we can construct an optimal

obfuscation mechanism for a given setR of all possible real locations and a given

set R′ of all possible reported locations, by solving a nonlinear optimization330

problem:

Choose f(r′|r) in order to

Min ε (14)

s.t. e−ε ≤ A(r, r̂)

B(r, r̂)
≤ eε, ∀r, r̂ ∈ R (15)

Σr′f(r′|r) = 1, ∀r ∈ R (16)

f(r′|r) ≥ 0, ∀r′ ∈ R′, r ∈ R (17)

ε ≥ 0, (18)

e−dR(r′|r) ≥ Qmin, if f(r′|r) > 0,∀r′ ∈ R′, r ∈ R (19)

The inequality constraint 15 and 18 can be combined and transformed to:

(lnA(r, r̂)− lnB(r, r̂))2 ≤ ε2.

Minimizing ε while ε ≥ 0 is equivalent to minimizing

max
r,r̂

(lnA(r, r̂)− lnB(r, r̂))2.

By doing so, the variable ε is reduced.
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For any given r and r̂, A(r, r̂) is a constant, and B(r, r̂) is a function of

variables f(·|·). These variables are non-independent, e.g., f(r′1|r) and f(r′2|r)
subject to equality constraint 16. We assume a set of independent non-negative

integers xi,j with i ∈ R′, j ∈ R, and let

fx(r′, r) , xr′,r/
∑

i

xi,r. (20)

So we have fx(r′, r) = f(r′|r). Using fx(·, ·) to replace f(·|·) in B(·|·), the

optimal mechanism can be constructed by solving the following optimization

problem:335

Choose xi,j in order to

Min y(x) = max
r,r̂

(lnA(r, r̂)− ln
∑

r′∈R′

fx(r′, r)fx(r′, r̂)ψ(r̂)∑
k∈R fx(r′, k)ψ(k)

)2 (21)

s.t. (e−dR(r′|r) −Qmin) · xr′,r ≥ 0,∀r′ ∈ R′, r ∈ R (22)

xr′,r ≥ 0. ∀r′ ∈ R′, r ∈ R (23)

5.3. Near-Optimal Mechanism

This optimization may have many local minimums. To find the approximate

global minimum, a typical way is to find several local minimums with random

initialization of independent variables by sub-gradient method as shown in Al-

gorithm 2, and treat the smallest local minimum as the approximate global340

minimum as shown in Algorithm 1. The algorithm takes loop different random

initialization, and finds x that leads to the smallest local minimum, and finally

construct the near-optimal mechanism. The larger loop is, the more likely that

the near-optimal mechanism is optimal.

6. Experiment and Evaluation345

In this section, we evaluate our near-optimal mechanism and compare it to

some existing LPPMs.

6.1. Experimental Method

The selected compared LPPMs and benchmarks are as follows.
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Input: loop

Output: f

1 ygmin ←∞;

2 x, x′ ← zeros(|R′|, |R|);
3 for a = 0; a < loop; a+ + do

4 for b in Range(x) do

5 xb ← Random();

6 end

7 Compute y(x) by function 21;

8 Compute arg minx y(x), ylmin by sub-gradient method;

9 if ylmin < ygmin then

10 ygmin ← ylmin;

11 x′ ← x;

12 end

13 end

14 Compute f(x′) by Equation 20;

15 return f ;

Algorithm 1: Find Near-Optimal Mechanism

Compared LPPMs. We choose two mechanisms for comparison.350

• Shokri’s optimal obfuscation mechanism presented in [3]. Here optimal

means it achieves the maximum estimated distance error.

• Andrés’ geo-indistinguishable mechanism presented in [4]. This mecha-

nism adds the Laplace noise to the location. We do not use the optimal

geo-indistinguishable mechanism presented in [15], since it assumes the355

adversary is aware of the user profile, and under this assumption, some

other mechanism performs better in privacy, e.g., the previous mechanism.

Comparison with simple cloaking/obfuscation mechanisms is meaningless, since

they are proven to perform poorly according to [4, 3].
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Input: ∆ = 0.0001, x, y(x)

Output: xopt, ylmin

1 flag ← true;

2 xopt ← x;

3 while flag do

4 flag ← false;

5 for i in Range(x) do

6 xL, xR ← xopt;

7 xLi ← xLi −∆;

8 xRi ← xRi + ∆;

9 if y(xL) < y(xopt) then

10 xopti ← xopti −∆;

11 flag ← true;

12 end

13 else

14 if y(xR) < y(xopt) then

15 xopti ← xopti + ∆;

16 flag ← true;

17 end

18 end

19 end

20 end

21 return xopt, y(xopt);

Algorithm 2: Sub-Gradient Method

Datasets. Two datasets are used.360

• The simulated data in [4], which considers three different profiles. Simu-

lation on this data is simple and also straightforward.

• The GeoLife GPS Trajectories dataset [21], which contains 17, 621 trajec-

tories of 182 users from April 2007 to August 2012. The majority of the
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Figure 2: Priors considered.

data was created in Beijing, China.365

Privacy Metrics. Two privacy metrics are used.

• The estimated distance error as defined in Equation 5, this metric is used

by most of the recent location privacy literatures.

• DPLO by Definition 1, our proposed metric.

6.2. Experiments on Simulated Profiles370

The simulated user profiles are as shown in Fig. 2, in each case, the probabil-

ity distribution is accumulated in the regions in the gray area, and distributed

uniformly over them.

We use the same settings of Andrés’ mechanism as in [4], and the quality loss

is 107.30m1. This quality loss value comes from a simple cloaking mechanism375

with a fixed quality loss which always reports the center of 3×3 anonymity zone.

We fix this value for all our selected compared mechanisms, and especially we

let ε = 0.0162 for Andrés’ mechanism under this experiment setting.

When we use the estimated distance error as the location privacy metric, the

results are shown in Fig. 3. With this metric, our proposed near-optimal method380

achieves better privacy than the Andrés’ mechanism, but worse than Shokri’s

1In [4], this value is said to be 107.03m which is mistaken but of no great importance.
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Figure 3: Estimated distance error (higher is better).
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Figure 4: ε-DPLO (lower is better).

optimal obfuscation mechanism (this is reasonable since this mechanism takes

the maximum estimated distance error as the optimized object).

When we use DPLO as the location privacy metric, the results are shown in

Fig. 4. With this metric, our proposed near-optimal method achieves much bet-385

ter privacy than the other two mechanisms. This means that with our proposed

method, the adversary will obtain the least extra knowledge.

6.3. Experiments on GeoLife Dataset

Using latitude-longitude geographic coordinate system, most user locations

are within an area ranges from (116.295E, 39.965N) to (116.355E, 40.015N)390

in Beijing. We divide the map of this area into 50 × 50 regions as shown in

Fig. 5(a). The latitudinal and longitudinal extent of each region is 0.005, i.e.,

about 426.6m × 556.6m in size. We focus on the top 20 regions with the highest

density, as shown in Fig. 5(b). We treat the set of these 20 regions as R, and
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(a) (b)

Figure 5: Geolife user profile in Beijing: (a) Spatial histogram showing the density of users

per region in log scale. (b) Top 20 regions with the highest density.

Shokri Andrés Ours
0

200

400

600

E
s
ti

m
a
te

d
 D

is
ta

n
c
e
 E

rr
o

r

(a) Estimated distance er-

ror (higher is better)

Shokri Andrés Ours
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

(b) ε-DPLO (lower is bet-

ter)

Figure 6: Location privacy.

compute location privacy with both metrics for all compared methods as shown395

in Fig. 6.

For the estimated distance error, Shokri’s mechanism performs the best since

it takes the maximum estimated distance error as the optimized object, however

this does not always mean better privacy according to our discussion in Section

3.4. Our proposed method performs reasonably and a little bit worse than400

Shokri’s optimal mechanism using this metric. Andrés’ mechanism performs

much worse than the other two mechanisms, since it is the only mechanism

which assumes the user profile to be unknown and makes no profit from this prior

knowledge. More over, it seems that Andrés’ mechanism performs much worse
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in real profile (Fig. 6(a)) than in simulated profile (Fig. 3), this contrast mainly405

comes from the difference between the continuity of the Laplace noise function

(also that of the distribution of the simulated profile), and the irregularity and

sparsity of real user locations.

For the ε-DPLO, our proposed near-optimal method achieves much smaller

ε than the other compared mechanisms. This means that with our proposed410

method, the adversary will obtain the least extra knowledge. With our defini-

tion, it means better privacy.

7. Discussion and Future Work

The near-optimal algorithm we use (Algorithm 2, and Algorithm 1) does

have high complexity, and it takes about 1-2 hours to compute a result for a415

user’s profile with 20 different locations in our experiments. The experiments are

performed by 7 python programs running in parallel on a desktop in Ubuntu

14.04, with 7.7GB memory and 8 i7-4770 CPUs. This algorithm cannot be

directly applied on mobile devices to compute an obfuscation in real-time, but

it can be performed offline by a powerful server and finally generates a personal420

privacy rule for any given user profile which performs like a guide on how to

hide his location. The privacy rule describes the probability distribution of

reporting any obfuscating location with any given real location. With this rule,

the obfuscation can be generated on a mobile device in real-time (within several

milliseconds). We believe there are ways to optimize the gradient process by425

applying some general optimization method like [22]. We leave it as our future

work.

8. Conclusion

In this paper, we survey on existing notions of location privacy and make

detailed analysis on their limitations. We introduce a new notion of privacy,430

by quantifying the difference between the prior and posterior knowledge of ad-

versary. With this notion, we show that an optimal obfuscation mechanism
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can be constructed by solving a non-linear optimization problem. We propose

a near-optimal mechanism, and compare it with the state-of-the-art obfusca-

tion mechanisms, using both our proposed metric and the estimated distance435

error. The results show that under the same quality constraints, our proposed

mechanism can achieve better privacy.

Acknowledgments

This work was supported by the National Natural Science Foundation of

China under Grant 61320106007, 61402104, 61502100, 61532013, 61572130,440

61602111, and 61632008, and by the Jiangsu Provincial Natural Science Foun-

dation of China under Grant BK20140648, BK20150628, and BK20150637, and

by Collaborative Innovation Center of Novel Software Technology and Industri-

alization.

References445

[1] M. Gruteser, D. Grunwald, Anonymous usage of location-based services

through spatial and temporal cloaking, in: Proceedings of the 1st interna-

tional conference on Mobile systems, applications and services, ACM, 2003,

pp. 31–42.

[2] A. R. Beresford, F. Stajano, Mix zones: User privacy in location-aware450

services., in: PerCom Workshops, 2004, pp. 127–131.

[3] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, J.-Y.

Le Boudec, Protecting location privacy: Optimal strategy against local-

ization attacks, in: Proceedings of the 2012 ACM Conference on Computer

and Communications Security, CCS ’12, ACM, New York, NY, USA, 2012,455

pp. 617–627. doi:10.1145/2382196.2382261.

URL http://doi.acm.org/10.1145/2382196.2382261

[4] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, C. Palamidessi, Geo-

indistinguishability: differential privacy for location-based systems, in:

25



Proceedings of the 2013 ACM SIGSAC conference on Computer &#38;460

communications security, CCS ’13, ACM, New York, NY, USA, 2013, pp.

901–914. doi:10.1145/2508859.2516735.

URL http://doi.acm.org/10.1145/2508859.2516735

[5] R. Shokri, G. Theodorakopoulos, J. Y. L. Boudec, J. P. Hubaux, Quanti-

fying location privacy, in: 2011 IEEE Symposium on Security and Privacy,465

2011, pp. 247–262. doi:10.1109/SP.2011.18.

[6] C. Dwork, Differential Privacy, Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2006, pp. 1–12. doi:10.1007/11787006_1.

[7] J. Krumm, A survey of computational location privacy, Personal

and Ubiquitous Computing 13 (6) (2009) 391–399. doi:10.1007/470

s00779-008-0212-5.

URL http://dx.doi.org/10.1007/s00779-008-0212-5

[8] L. Sweeney, k-anonymity: A model for protecting privacy, International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10 (05)

(2002) 557–570.475

[9] C.-Y. Chow, M. F. Mokbel, X. Liu, A peer-to-peer spatial cloaking algo-

rithm for anonymous location-based service, in: Proceedings of the 14th

annual ACM international symposium on Advances in geographic informa-

tion systems, ACM, 2006, pp. 171–178.

[10] B. Hoh, M. Gruteser, H. Xiong, A. Alrabady, Preserving privacy in gps480

traces via uncertainty-aware path cloaking, in: Proceedings of the 14th

ACM conference on Computer and communications security, ACM, 2007,

pp. 161–171.

[11] J. Meyerowitz, R. Roy Choudhury, Hiding stars with fireworks: location

privacy through camouflage, in: Proceedings of the 15th annual interna-485

tional conference on Mobile computing and networking, ACM, 2009, pp.

345–356.

26



[12] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, L. Vilhuber, Privacy:

Theory meets practice on the map, in: Proceedings of the 2008 IEEE 24th

International Conference on Data Engineering, ICDE ’08, IEEE Computer490

Society, Washington, DC, USA, 2008, pp. 277–286. doi:10.1109/ICDE.

2008.4497436.

URL http://dx.doi.org/10.1109/ICDE.2008.4497436

[13] S.-S. Ho, S. Ruan, Differential privacy for location pattern mining, in: Pro-

ceedings of the 4th ACM SIGSPATIAL International Workshop on Security495

and Privacy in GIS and LBS, SPRINGL ’11, ACM, New York, NY, USA,

2011, pp. 17–24. doi:10.1145/2071880.2071884.

URL http://doi.acm.org/10.1145/2071880.2071884

[14] R. Dewri, Local differential perturbations: Location privacy under ap-

proximate knowledge attackers, IEEE Transactions on Mobile Computing500

12 (12) (2013) 2360–2372. doi:10.1109/TMC.2012.208.

[15] N. E. Bordenabe, K. Chatzikokolakis, C. Palamidessi, Optimal geo-

indistinguishable mechanisms for location privacy, in: Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications Se-

curity, CCS ’14, ACM, New York, NY, USA, 2014, pp. 251–262. doi:505

10.1145/2660267.2660345.

URL http://doi.acm.org/10.1145/2660267.2660345

[16] M. Li, H. Zhu, Z. Gao, S. Chen, L. Yu, S. Hu, K. Ren, All your location are

belong to us: Breaking mobile social networks for automated user location

tracking, in: Proceedings of the 15th ACM International Symposium on510

Mobile Ad Hoc Networking and Computing, MobiHoc ’14, ACM, New

York, NY, USA, 2014, pp. 43–52. doi:10.1145/2632951.2632953.

URL http://doi.acm.org/10.1145/2632951.2632953

[17] K. Fawaz, K. G. Shin, Location privacy protection for smartphone users,

in: Proceedings of the 2014 ACM SIGSAC Conference on Computer and515

Communications Security, CCS ’14, ACM, New York, NY, USA, 2014, pp.

27



239–250. doi:10.1145/2660267.2660270.

URL http://doi.acm.org/10.1145/2660267.2660270

[18] Y. Xiao, L. Xiong, Protecting locations with differential privacy under tem-

poral correlations, in: Proceedings of the 22Nd ACM SIGSAC Conference520

on Computer and Communications Security, CCS ’15, ACM, New York,

NY, USA, 2015, pp. 1298–1309. doi:10.1145/2810103.2813640.

URL http://doi.acm.org/10.1145/2810103.2813640

[19] R. Shokri, G. Theodorakopoulos, P. Papadimitratos, E. Kazemi, J. P.

Hubaux, Hiding in the mobile crowd: Locationprivacy through collabo-525

ration, IEEE Transactions on Dependable and Secure Computing 11 (3)

(2014) 266–279. doi:10.1109/TDSC.2013.57.

[20] A. Machanavajjhala, D. Kifer, J. Gehrke, M. Venkitasubramaniam, l-

diversity: Privacy beyond k-anonymity, ACM Transactions on Knowledge

Discovery from Data (TKDD) 1 (1) (2007) 3.530

[21] Y. Zheng, X. Xie, W.-Y. Ma, Geolife: A collaborative social networking

service among user, location and trajectory., IEEE Data Eng. Bull. 33 (2)

(2010) 32–39.

[22] Y. Yu, H. Qian, Y.-Q. Hu, Derivative-free optimization via classification.,

in: AAAI, 2016, pp. 2286–2292.535

28



Haibo Ye is currently an Assistant Professor in the College of Computer

Science and Technology Nanjing University of Aeronautics and 

Astronautics, China. He received the Ph.D. degree in computer science in 

2016 from Nanjing University. His research interests include indoor

localization, mobile and pervasive computing. 

haibo ye



Kai Dong is currently an assistant professor at the School of Computer 

Science and Engineering in Southeast University, China. He received the

PhD degree in Computer Science in 2014 from Nanjing University. His 

research interests include security, privacy, localization and social

networks. 

kai dong



Taolin Guo is currently a Ph.D candidate in Computer Science and 

Technology in Southeast University, China. He received the Master degree 

in Software Engineering in 2013 from Southeast University, His research

interests include data mining, personal privacy and data security in 

online social networks and location-based services. 

taolin guo



Xuansong Li is currently an assistant professor in the School of Computer

Science and Engineering at Nanjing University of Science and Technology, 

China. He received the PhD degree in Computer Science in 2016 from 

Nanjing University. His research interests include software methodology, 

formal methods and pervasive computing. 

xuansong li



Zhen Ling is currently an assistant professor at the School of Computer

Science and Engineering in Southeast University, China. He received the

PhD degree in Computer Science in 2014 from Nanjing Institute of 

Technology and Southeast University, respectively. He joined Department 

of Computer Science at the City University of Hong Kong from 2008 to 2009

as a research associate, and then joined Department of Computer Science

at the University of Victoria from 2011 to 2013 as a visiting scholar. 

His research interests include network security, privacy, and forensics. 

zhen ling



haibo ye.jpg
Click here to download high resolution image



kai dong.jpg
Click here to download high resolution image



taolin guo.jpg
Click here to download high resolution image



xuansong li.jpg
Click here to download high resolution image



zhen ling.jpg
Click here to download high resolution image



Highlights
• We prove that existing notions of location privacy are
problematic.
• We define privacy by the difference between the prior and
posterior of adversary.
• An obfuscation mechanism can be constructed by solving an
optimization problem.
• A near-optimal mechanism is proposed.


