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Abstract 1 

Activated carbon from oak tree is used as adsorbent for the removal of noxious anionic dye 2 

sunset yellow. The prepared adsorbent is characterized using X-ray diffraction, Scanning 3 

Electron microscopy equipped with Energy-Dispersive X-ray spectroscopy and Fourier 4 

transform infrared spectroscopy. In addition to this, parameters like initial concentration, 5 

adsorbent dosage, contact time, pH, and particle size on the uptake of SY dye from wastewater is 6 

well investigated and optimized. For maximum adsorption, the initial concentration of 10 mg/L; 7 

adsorbent dose of 0.25 g; pH =1; contact time= 35 min and particle size=150-250 µm is found to 8 

be optimal value. The adsorption isotherm data at different adsorbent dosage of 0.05- 0.25 g is in 9 

agreement with the Langmuir isotherm having Qmax = 5.8377- 30.1205 mg/g. On the other 10 

hand, models like, Group Method of Data Handling and multiple linear regression were used to 11 

forecast of the removal efficiency of noxious anionic dye sunset yellow and from results, it is 12 

specified that the GMDH model possess a high performance than MLR model for forecasting 13 

removal percentage of SY dye. Hence, activated carbon from oak tree can be efficiently used as 14 

adsorbent for the removal of SY dye from wastewater.  15 

Keywords: Adsorption, anionic dye SY, Adsorption kinetics, Isotherms, Modelling 16 
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1. Introduction  1 

   Groundwater and surface water has been exploited due to several noxious impurities and 2 

among all chemical dyes is one of the most detrimental impurity that possess serious 3 

environmental side effect on human being and marine life (Garg et al., 2003;Tanzifi et al., 2018; 4 

Yao et al., 2018 Gupta et al., 2011b; Gupta et al., 2013a). Synthetic dyes and pigments are 5 

widely utilized as colorants in different industrial processes including the pharmaceutical, textile, 6 

leather, paper, gasoline, food industries etc. and a huge amount of unused synthetic dyes is being 7 

released in water streams by various industries worldwide annually. Dyes being colored in nature 8 

is visible even at very low concentration and it resistive nature also decreases the sunlight 9 

penetration in water. Therefore, their release into the environment presents a major source of 10 

contamination (Gupta et al., 2013b; Gupta et al., 2014; Tian et al., 2018). Dyes molecules are 11 

normally produced from the aromatic structure and their degradation products are toxic or even 12 

carcinogenic and mutagenic. In addition to this, it lead to increased biological oxygen demand 13 

(BOD) and chemical oxygen demand (COD) levels of aquatic resources (Crini, 2006; Nekouei et 14 

al., 2017). Thus, it is the need of today to eliminate the toxic dyes from effluents of industries, 15 

before it is released into the environment.   16 

   Several technologies for instance flocculation–coagulation (Szygula et al., 2009; Wang et al., 17 

2012), photodegradation (Gupta et al., 2011c; Smirnova et al., 2015; Tadjarodi et al., 2013), 18 

biodegradation (Li et al., 2004), membrane separation(Bouazizi et al., 2017; Chen et al., 2017; 19 

Ruan et al., 2016; Saravan et al., 2013; 2015; Tahri et al., 2016), aerobic or anaerobic treatment 20 

(Fernando et al., 2013), electrochemical (Aquino et al., 2010; Riera-Torres and Gutiérrez, 2010),  21 

and oxidizing agents (Ghoneim et al., 2011) have been used worldwide for the removal of 22 

noxious dyes from wastewater. In spite of the growth of different techniques for treatment of dye 23 



effluent, but still there are some specific challenges, for example effective, rapid and economic 1 

for treatment of water and wastewater at a commercial level are going on. Among these methods 2 

for water treatments, the adsorption technique by solid adsorbents is one of the most efficient 3 

approaches for the uptake of dyes from industrial wastewater (Gupta et al., 2011a). The key 4 

advantage of this technology is that it is scalable and large volume of effluents can be passed in a 5 

single run, which lead to high quality of treated wastewaters without the formation of harmful 6 

materials (Gupta et al., 2010b). This technique currently can widely be used to remove or 7 

minimize diverse kinds of organic and inorganic contaminants from the aqueous media (Jain et 8 

al., 2003). One of the best and effective adsorbents, which are the most extensively employed for 9 

the treatment of wastewaters containing dyes, is activated carbon (Auta and Hameed, 2011; Li et 10 

al., 2011; Martins and Nunes, 2015) which due to its large surface area and high porosity lead to 11 

high adsorption capacity. However, two factors i.e. expensive and low regeneration rate of the 12 

commercial activated carbon restrict their usage (Crini, 2006). A rising interest has recently been 13 

observed in the use of alternative low cost non-conventional adsorbents including agricultural 14 

waste, industrial waste, etc. for the adsorption dye from wastewater (Malik, 2003; Mall et al., 15 

2005; Prakash Kumar et al., 2005). Hence, the studies in order to obtain more efficient and 16 

economic adsorbents with the higher adsorption capacity and better reusable are continuing. 17 

Nowadays, artificial intelligence (AI) approaches for instance artificial neural networks 18 

(ANNs), random forest (RF), adaptive neuro-fuzzy inference system (ANFIS) and support vector 19 

regression (SVR) have broadly utilized for modeling of adsorption processes, which these 20 

models can be generated more accurate outcomes than conventional techniques. Group method 21 

of data handling (GMDH) neural network is one sub-model of ANNs, which has been widely 22 

and successfully used in different fields of engineering and science. The researchers showed that 23 



GMDH tool could be utilized as a successful technique in the modeling of various processes 1 

(Abdolrahimi et al., 2014; Atashrouz et al., 2014; Najafzadeh and Azamathulla, 2012). Recently, 2 

Yousefi and Razavi used the GMDH network to estimate the amounts of glucose release from 3 

native and modified wheat starch gels during digestion under simulated gastrointestinal 4 

conditions (Yousefi and Razavi, 2017). Varamesh et al. (Varamesh et al., 2017) developed the 5 

GMDH as a predictive modeling method for estimation of the critical properties of pure chemical 6 

compounds. Dargahi-Zarandi et al. (Dargahi-Zarandi et al., 2017) utilized GMDH as modeling 7 

technique for forecasting the viscosity of pure hydrocarbon and gas mixtures including heavy 8 

components and impurities for instance nitrogen, carbon dioxide and helium. Barzegar et al. 9 

(Barzegar et al., 2017) developed a hybrid wavelet-GMDH model for prediction of groundwater 10 

level fluctuations. 11 

   There were no reports on the use of the GMDH model for prediction of the adsorption 12 

process. This led us to use GMDH for forecasting the uptake of SY onto AC prepared from oak 13 

tree wood as cost-effective adsorbent. The produced adsorbent was considered by XRD, SEM-14 

EDX and FT-IR spectroscopy techniques. The uptake efficacy of AC was considered under the 15 

important variables including particle size, contact time, concentration of dye, adsorbent dosage 16 

and pH of solution. Furthermore, the kinetics and isotherm of the adsorption process was 17 

considered. 18 

2. Materials and methods 19 

2.1. Materials and instruments  20 

          All chemicals i.e. SY dye (Molecular Structure is shown in Fig.1a), FeCl3, HCl, NaCl and 21 

NaOH were supplied from Merck (Darmstadt, Germany).  The dye concentration of the solution 22 

is determined using a Perkin Elmer UV–Vis spectrophotometer (Lambda 25, USA) and the pH 23 



of the solution is measured using a Metrohm 686 pH meter (Herisau, Switzerland). A Bruker 1 

AXS powder X-ray diffractometer (D8 advance, Bruker, Germany) was used to obtain the X-ray 2 

diffraction (XRD). A scanning electron microscope (SEM, VEGA3 TESCAN model) equipped 3 

with energy dispersive spectroscopy (EDS) was used to consider the morphology and elemental 4 

composition of the prepared AC. Fourier transform infrared spectroscopy (FTIR) was achieved 5 

by a Perkin Elmer Fourier transform infrared spectrometer (spectrum 65, USA). 6 

2.2. Preparation of AC 7 

              Oak tree trunk timbers (OT) were employed as a precursor to prepare the activated 8 

carbon. In order to eliminate the foreign materials, distilled water is used for washing, which is 9 

later on dried at 120 °C for 12 h and cut into smaller pieces of about 2–3 mm. The materials were 10 

mixed with 15 % FeCl3 solution (ratio of 1g: 10mL), and soaked at room temperature for 24 h. 11 

Then, the extra of FeCl3 solution was decanted and modified OT pieces were then dried at 110 12 

°C for 24 h. The treated TO pieces were exposed for carbonization for 1 h at 550 °C under 13 

vacuum using a muffle furnace. It is later on cooled to room temperature and then soaked in 0.1 14 

mol/L hydrochloric solution acid (ratio of 1g: 10mL) for chemical activation of the activated 15 

carbon at room temperature for 24 h and then washed with distilled water several times, the 16 

obtained washed product is then finally dried at 120 °C. These ACs were sieved to acquire the 17 

required particle size to study adsorption. 18 

2.3. Adsorption experiments 19 

         The dye stock solution in the concentration of 1000 mg/L was used to prepare the dye 20 

solutions at specified concentrations using distilled water. The NaOH and HCl solutions were 21 

applied for adjusting the dye solutions pH. Each experimental run was performed in 100 mL 22 

Pyrex glass beaker including 50 mL of dye solutions with required concentration, quantity of 23 



adsorbent, pH, contact time and particle size at room temperature. At the end of each 1 

experimental run, the solutions were filtered with Whatmann filter paper and the dye 2 

concentration was determined using the collected supernatant. The following equations were 3 

used to calculate the percent of removal (R%) and capacity of uptake (q), respectively. 4 

ܴ	% ൌ
ሺ஼బି஼೟ሻ

஼బ
	ൈ 100                                                                                                     (1) 5 

௧ݍ ൌ
ሺ஼బି	஼೟ሻ௏

ௐ
                                                                                                                  (2) 6 

where ܥ଴ shows the dye initial concentration (mg/L), ܥ௧ represents the time t the dye 7 

concentration (mg/L), ܸ indicates the solution volume (L), ܹ displays the adsorbent weight (g) 8 

and ݍ௧ shows the time t uptake capacity of adsorbent (mg/g). 9 

2.4. Group method of data handling (GMDH) 10 

     The GMDH (Fig. 1b) is a heuristic self-organizing principle-based learning machine in which 11 

a quadratic polynomial function was used to obtain each layer. Volterra–Kolmogorov–Gabor 12 

(VKG) polynomial can evaluate the relation between the input variables and the output variable. 13 

Ivakhnekoin as shown in the following equation has firstly suggested the general polynomial 14 

function of GMDH model (Ivakhnenko, 1968). 15 
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(3) 17 

The simplified equation to a quadratic polynomial containing of only two variables can be 18 

written as: 19 

ොݕ ൌ 	ܽ଴ ൅	ܽଵݔ௜ ൅	ܽଶݔ௝ ൅ ܽଷݔ௜௝ ൅	ܽସݔ௜
ଶ ൅	ܽହݔ௝

ଶ                                                                        20 

(4) 21 

where ݕො, a and x indicate the anticipated output, the coefficients of polynomial set by algorithm 22 

and the input variables, respectively. The main objective in the GMDH model was obtaining a 23 



function that is expected to output this function close to the experimental outputs. Therefore, to 1 

obtain the GMDH structure objective function should be minimized, which it can be described 2 

as: 3 

݁ ൌ 	∑ ሺݕపෝ െ	ݕ௜ሻଶ
௡
௜ୀଵ                                                                                                                      (5) 4 

where ݕ௜ represents the experimental data. Minimization of Eq. (5) can be employed to calculate 5 

the values of the coefficients of polynomial (a).  These parameters can be computed from 6 

multiple regression using the least squares method, which can be achieved by solving the 7 

following matrix: 8 

ܣ ൌ ்ܻܻ                                                                                                                                       (6) 9 
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ܾ ൌ 	 ሺܻݕሻ்                                                                                                                                (10) 14 

The equations can be written as: 15 

∑ ܺܣ ൌ	∑ ܾ௡
௜ୀଵ

௡
௜ୀଵ                                                                                                                (11) 16 

2. 5. Assessment of models 17 

             For assessing the reliability and precision of the suggested models, mean square error 18 

(MSE) and determination coefficient (R2) were employed. 19 
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where ሺ ௜ܱሻ௘௫௣ shows the ith actual value, ሺ ௜ܱሻ௣௥ௗ presents the ith predicted value, and ܱ௠ 2 

indicates the mean value of ሺ ௜ܱሻ௘௫௣. 3 

 4 

3. Results and discussion 5 

3.1. Characterization of adsorbent 6 

     The surface functional groups of the prepared AC is investigated using FTIR and the obtained 7 

spectrum is indicated in Fig. 1c. The produced AC revealed several major absorption peaks. The 8 

bands achieved at 2931, 2874 cm-1 are due to the C-H stretching, and -CH3 group of alkane, 9 

while the peaks in the range of 2850-3000 cm-1 may be assigned to the dimer OH group of 10 

carboxylic acids. The band at 1723 cm-1 shows the C=O stretching. The peaks in the region 11 

1400-1505 cm-1 may be assigned to the C-C stretching of aromatic groups. The bands in the 12 

range of 1000-1320 cm-1 are attributed to C-O stretching mode in carboxylic acids. The band at 13 

731cm-1 indicates the C-H mode out of plane. 14 

    The XRD pattern of the prepared AC is illustrated in Fig. 1d. The presence of sharp and broad 15 

peaks reveals that the AC is both crystalline and amorphous structures. The crystalline nature is 16 

about 26% while the amorphous nature is about 74%. Therefore, the XRD results show a mostly 17 

amorphous nature of the prepared AC with low crystallinity. The peaks detected in XRD patterns 18 

for the AC sample are similar to the (002), (100) and (101) planes which attributed to the 19 

graphite peaks (Rajendran et al., 2015). 20 

        The SEM micrographs of the produced AC surface illustrated the rough surface and cavities 21 

on the AC samples as depicted in Fig. 1e. These cavities on the sample surface significantly 22 

increase the surface available for dyes and metal ions uptake. A semi-quantitative study of the 23 



AC can be obtained using the EDS analysis. Fig. 1f displays the results of the EDS investigation 1 

for the AC samples. The AC sample indicates the carbon, oxygen and nitrogen content (% 2 

atomic) as 70.57, 24.17 and 5.26, respectively. 3 

 4 

3.2. Impact of pH 5 

The solution pH is known as one of the significant factor in the adsorption process because 6 

of its influences the surface charge of both adsorbent and dye molecules (Errais et al., 2011; 7 

Kumar et al., 2010; Rafatullah et al., 2010). Influence of initial pH of solution on the SY dye 8 

uptake with concentration of 15 mg/L, adsorbent dose of 0.2 g, particle size of 150-250 µm, 9 

stirrer speeds of 600 rpm and contact times of 35 min is well studied and the results obtained is 10 

shown is Fig. 2a. reveals the uptake behavior of SY dye on adsorbent at pH values ranging from 11 

1 to 10. As the figure shows, by growing the pH from 1 to 10 the dye removal significantly 12 

declines to 21.97% from 83.33%. These findings indicate that our results are in agreement with 13 

previous investigations (Celekli et al., 2012; Çelekli et al., 2012; Gupta et al., 2010a). It is 14 

needed to specify the zero point charge (pHzpc) of adsorbent is one of the main factor to 15 

recognize the mechanism of sorption. Fig. 2b shows that the pHzpc of the adsorbent is found to be 16 

about 3.0. The adsorbent surface could become positively charged at pH < pHzpc, thereby a high 17 

electrostatic attraction occurs between positive charges of adsorbent and negative charges of 18 

anionic dyes such as SY dye. At higher pH values than pHzpc, the surface of the adsorbent could 19 

be negatively charged, which decrease in the percentage removal of anionic dye because of 20 

electrostatic repulsion. The maximum percentage dye removal was obtained at pH 1. Hence, this 21 

pH value is the optimal value for the rapid adsorption of noxious SY dye.  22 

3.3. Impact of particle size 23 



For investigating the effect of particle size on the adsorption of SY dyes, three particle sizes 1 

(150–250, 250–425, and 425-850 µm) of AC in a beaker containing 50 mL of the adsorption 2 

solution with 10-40 mg/L, 5-35 min, 0.05-0.25 g and 600 rpm was used. The results obtained is 3 

shown in Fig. 3, which demonstrates the influence of particle size on adsorption of SY dye with 4 

concentration of 10 mg/L and contact time of 35 min. The results of the effect of particle size at 5 

different contact time is included in the supporting information (Fig. S1). From Fig 3 and Fig S1 6 

it was observed that as the particle size increases from 150–250 to 425-850 µm with dye 7 

concentration of 10 mg/L, adsorbent dosage of 0.25 g and contact time of 35 min, the removal 8 

percentage decreases from 88.30 to 65.07 %. This is because of increased surface area and large 9 

number of available active sites for molecules of noxious SY dye. Similar results have been 10 

obtained in previous studies (Celekli et al., 2012; Gupta et al., 2010a; Mui et al., 2010). 11 

3.4. Effect of contact time 12 

Various experiments at five contact times (5, 10, 20, 30 and 35 min) under different 13 

operating variables (particle size of 150–850 µm, adsorbent dosage of 0.05-0.25 g, pH 1, 600 14 

rpm and dye concentration of 10-40 mg/L were performed to assess impacts of contact time on 15 

the SY dye adsorption on AC (Figs. 4 and S2). From the results obtained, it is observed that the 16 

values of SY dye removal increases with contact time up to 10 mins and then remains constant 17 

with further increase in contact time. The fast sorption may be attributed to the abundance of 18 

functional groups on the surface of the absorbent during beginning contact time steps. 19 

3.5. Impact of dye concentration 20 

To estimate impact of dye concentration on the removal percentage of dye, experiments 21 

were performed at diverse quantity of adsorbents (0.05-0.25 g) and four dye concentrations (10-22 

40 mg/L) for three particle sizes (150–250, 250–425, and 425-850 µm). Figs. 5 and S3 23 



demonstrate the variation in removal percentage values versus dye concentration for SY. Results 1 

specified that the removal of SY dye significantly decreased with dye concentration. This could 2 

be the result of decline in the surface area of available unoccupied sites by enhancing in 3 

concentration of dye. Results also showed that value of adsorption capacity improved by 4 

elevating concentration of dye. The increment in the driving force for mass transfer by 5 

improving in concentration of dye could be the reason for this phenomenon. These results are in 6 

agreement with the results of previous adsorption investigations (Dehghanian et al., 2015; 7 

Ghaedi et al., 2014). 8 

3.6. Impact of adsorbent dosage 9 

           To calculate the impact of the adsorbent amount on the uptake of SY dye, five adsorbent 10 

dosage (0.05-0.25 g) were used with three particle sizes (150–850 µm) at the dye solution with 11 

four SY dye concentrations (10-40 mg/L). The result of the amount of adsorbent on the removal 12 

percentage of SY dye is displayed in Figs. 5 and S4. As seen from this figure, an enhancement in 13 

the dosage of adsorbent from 0.05 to 0.25 g improved the removal percentage values because of 14 

enhancement in active site and surface area. The same result was also obtained for the adsorption 15 

of methyl orange dye on tin oxide nanoparticles loaded on AC achieved from Pistacia atlantica 16 

wood (Ghaedi et al., 2016).  17 

3.7. Adsorption kinetics  18 

       For considering the kinetic of SY dye uptake on produced adsorbent Lagergren’s pseudo-19 

first-order, the pseudo-second-order, Elovich and intraparticle diffusion were employed. The 20 

equation of Lagergren’s pseudo-first-order is denoted as (Azizian, 2004; Lagergren, 1898),  21 

lnሺݍ௘ െ	ݍ௧ሻ ൌ ௘ݍ݈݊ െ	݇ଵ22 (14)                                                                                              ݐ 



where ݍ௘, ݍ௧ and ݇ଵ are the capacity of dye uptake at equilibrium (mg/g), the capacity of dye 1 

uptake at time t (mg/g), the rate constant of the first-order reaction (l/min). The pseudo-second-2 

order can be indicated in the linear form (Ho, 2006; Ho and McKay, 1998). 3 

ݐ ௧ൗݍ ൌ 	1 ሺ݇ଶݍ௘ଶሻ
ൗ ൅ ൫1 ௘ൗݍ ൯.  4 (15)                                                                                                   ݐ

where ݇ଶ represents rate constant of the second-order reaction (g/mg min). The Elovich model 5 

can be expressed  by the following relation (Ho and McKay, 2002; Rudziñski and Everett, 1992). 6 

௧ݍ ൌ 	
ଵ

ఉ
lnሺߚߙሻ ൅	

ଵ

ఉ
ln  7 (16)                                                                                                     ݐ

where β is the desorption coefficient (mg g−1 min−1) and α is the initial adsorption rate (g mg−1 8 

min−2). Finally, the simplified intra-particle diffusion model to achieve the diffusion rate 9 

coefficient may be written as below (Weber and Morris, 1963). 10 

௧ݍ ൌ 	݇௜	. ଴.ହݐ ൅  11 (17)                                                                                                                      ܥ

where ݇௜ represents the rate coefficient (mg g−1 min−0.5). The slope and intercept of the linear 12 

plot of ݍ௧ vs. ݐ଴.ହ can be used to find ݇௜ and C (mg g-1), respectively. The values obtained for the 13 

parameters of kinetic models in order to the removal of SY dye on AC at room temperature, pH 14 

1, 600 rpm, 40 mg/L, 150-250 µm and different adsorbent dosage have been shown in Table S2. 15 

Based on the high values of R2 (in the range of 0.9959-0.9984) can be deduced that the pseudo-16 

second-order kinetic is appropriate for demonstrating the SY dye uptake on AC. Three steps 17 

including pore diffusion, film diffusion and intra-particle transport determine the mechanism of 18 

the absorption process.  The process overall rate is controlled using the slowest of the three steps. 19 

To find the mechanisms of SY dye uptake on AC, the intra-particle diffusion model (Eq. 17) was 20 

used which in this equation C value indicates the boundary layer thickness. Thus, it can be 21 

deduced that the pore diffusion is not the only rate-limiting step whereas the rate-controlling step 22 

is probably chemical interactions (Ahmad, 2009). 23 



3.8. Adsorption isotherms 1 

            The equilibrium adsorption of the SY dye was performed with different adsorbent 2 

amount (0.05-0.25 g) with particle size of 150- 250 µm in 50 ml solution of dye with diverse 3 

concentrations from 10 - 40 mg/L for 35 minutes at pH 1. Four types of several isotherm models 4 

namely Freundlich, Langmuir, Dubinin-Raduskevich (D-R) and Temkin were used to fit the 5 

actual data. The isotherm parameters achieved by linear fitting were indicated in Table S3.  6 

    The Langmuir isotherm describes the formation of the uniform monolayer adsorption on the 7 

adsorbent surface (Langmuir, 1916). The linear form of Langmuir equation can be indicated as 8 

follow: 9 

஼೐
௤೐
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ଵ

௤೘௄ಽ
൅	
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௤೘

                                                                                                                        (18) 10 

  where ܥ௘ shows concentration of adsorbate at equilibrium (mg/L),	ݍ௘  is capacity of adsorption 11 

at equilibrium (mg/g),	ݍ௠ displays maximum capacity of monolayer coverage (mg/g) and ܭ௅ is 12 

constant of Langmuir isotherm (L/mg). Equilibrium parameter or separation factor (ܴ௅) as main 13 

characteristics of the Langmuir model can be expressed as follows: 14 

ܴ௅ ൌ 	
ଵ

ଵା	௄ಽ஼బ
                                                                                                                       (19) 15 

The value of ܴ௅ displays whether the nature of adsorption is favorable or unfavorable; linear if 16 

ܴ௅=1, favorable if 0< ܴ௅<1, unfavorable if ܴ௅>1 and irreversible if ܴ௅=0. As seen from Table 1, 17 

the RL values were between 0 and 1 representing that Langmuir isotherm is favorable. From the 18 

result obtained, the qm from Langmuir Isotherm model was found to be 5.8377- 30.1205 mg/g, 19 

KL values are between 0.1453 and 0.4287 L/mg. The R2 values were obtained to be 0.9862-20 

0.9954, demonstrating that the adsorption of SY dye on AC fitted well to the Langmuir Isotherm. 21 



            Freundlich isotherm has been applied for describing the adsorption onto heterogonous 1 

surfaces (Freundlich, 1906). Linearizing equation of the Freundlich isotherm can be indicated as 2 

follows: 3 

log ௘ݍ ൌ 	 logܭி ൅	
ଵ

௡
	log  ௘                                                                                    (20) 4ܥ

Where, ܭF shows the capacity of adsorption (L/mg). 1/݊ represents intensity of adsorption and 5 

the distribution of the surface heterogeneity and the energy of the active sites; the partition of 6 

adsorbents between the two phases is independent of the concentration if n=1, normal adsorption 7 

if 
ଵ

௡
<1 and cooperative adsorption 

ଵ

௡
> 1. The R2 values of 0.8843-0.9353 indicated that 8 

Freundlich model was inadequate to explain the association of qe with equilibrium 9 

concentrations. The values of KF were found as 1.9315- 4.9615. The value of 1/n = 0.3884- 10 

0.5379 showing that the uptake of SY dye onto AC is favorable, while this model is inadequate 11 

to designate the relationship between the Ce and qe because of the low R2 values. 12 

              D-R model is usually used for discovering the adsorption mechanism based on the 13 

Gaussian energy distribution onto a heterogeneous surface (Dubinin and Radushkevich, 1947). 14 

The linear form of this model is as follows. 15 

ln ௘ݍ 	ൌ 	 ln ௠ݍ െ  ଶ                                                                                                       (21) 16ߝ	ߚ	

ߝ ൌ ܴܶ lnሺ1 ൅	 ଵ
஼೐
ሻ                                                                                                              (22) 17 
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                                                                                                                             (23) 18 

where ݍ௠ (mg/g), ݍ௘ (mg/g), ߚ (mol2/J2), E (J/mol) and ߝ are maximum uptake capacity, 19 

equilibrium adsorption capacity, activity coefficient, mean free energy of adsorption and Polanyi 20 

potential. The E-value shows the nature of adsorption to be either chemical if 8<E<16 KJ/mol 21 

and physical if E<8 KJ/mol. By the linear regression analysis of D-R isotherm, the values of qm 22 



were measured to 4.7684-20.5426 mg/g. The value of E parameter (0.707-1.118 KJ/mol) 1 

indicating that SY dye uptake onto AC could be performed through the physical mechanism. The 2 

R2 values of D-R model were less than of Langmuir, nevertheless based on the relatively high 3 

value of R2 (0.9777-0.9869), it was deduced that the D-R model was also suitable to illustrate the 4 

association of qe with Ce.  5 

         The Temkin model supposes that the adsorption heat would reduce linearly and a uniform 6 

distribution of binding energies was used to characterize the adsorption (Temkin and Pyzhev, 7 

1940). The following relation can show this model. 8 

௘ݍ ൌ 	ܤ ln்ܭ ൅ 	ܤ ln                                                                                                            (24) 9	௘ܥ

ܤ ൌ	 ோ்
௕

                                                                                                                                     (25) 10 

where ்ܭ (L/g) and ܾ (J/mol) are Temkin isotherm constant. From linear regression of Temkin 11 

isotherm equation revealed in Table 1, the following values were obtained: KT = 1.1935-4.5108 12 

L/g, B=1.2348-7.2020 J/mol and R2=0.9537-0.9842. 13 

3.9. GMGH model 14 

         In this work, the GMDH model was utilized to forecast of removal percentage of SY using 15 

AC from aqueous system. Table S1 exhibits the experimental data. The actual data consist 300 16 

points while 70% of these data were utilized for training and 30% for testing. The in depended 17 

factors for example particle size, initial concentration of dye, adsorbent dosage and contact time 18 

have been designated as the inputs and the dye removal (%) has considered as the output of the 19 

network. The values of these parameters with related values of R2 and MSE were reported in 20 

Table 1. To acquire the optimal construction of GMDH neural network model different 21 

parameters of GMDH model for instance maximum number of layers, maximum neurons 22 

number in a layer, selection pressure and train ratio were investigated. The maximum R2 value 23 



and the minimum MSE value for the testing data points were used for selection the optimal 1 

construction of the GMDH model. It can be detected that the GMDH model with 100 maximum 2 

layer numbers, 6 maximum neuron numbers in a layer, 0.1 selection pressure and 0.7 train ratio 3 

has good performance for predicting the removal percentage of SY dye onto AC. For testing 4 

points the values of R2 and MSE were found to be 0.9702 and 3.4078 using the optimal GMDH 5 

model, respectively. In addition, the actual and anticipated data were compared in Fig. 6. As 6 

shown, the results of the MGDH model are in good agreement with the actual data. 7 

 8 

3.10. MLR model 9 

     The common objective of MLR is to learn more about the association among several 10 

independent parameters and a dependent parameter. The MLR equation can be written as follow 11 

form. 12 

ݕ ൌ ܽ ൅	ܾଵݔଵ ൅	ܾଶݔଶ ൅ ⋯൅	ܾ௡ݔ௡                                                                            (26) 13 

where b1, b2 and bn are the coefficients of regression and a is a constant. The same data used in 14 

the training and testing of GMDH model was used to construct and evaluate the MLR model. 15 

The MLR equation to forecast removal percent is shown below. 16 

%	݈ܽݒ݋ܴ݉݁ ൌ 45.347 ൅ 0.222 ଵܺ െ 0.612ܺଶ ൅ 0.348ܺଷ ൅ 55.542ܺସ                        (27) 17 

where ଵܺ, ܺଶ, ܺଷ and ܺସ are particle size (mesh), initial concentration (mg/L), and adsorbent 18 

dosage (g). Fig. 6 illustrates the relations between actual and forecasted values achieved from the 19 

MLR model. According to this figure, the MLR results are not very close to the actual results 20 

and the R2 and MSE values were found to be 0.780 and 26.839 for testing data sets, respectively. 21 

3.11. Comparison GMDH and MLR models 22 



          To compare reliable prediction of GMDH and MLR models for forecasting of removal 1 

percent, the MSE, R2 and the deviations from the actual values were calculated. Fig. 6 shows the 2 

distances of the anticipated values using the models built from the experimental values. The 3 

figure designated that the deviation distance (-5.0573 to +4.7495) of the forecasted values using 4 

MGDH model is lower than the deviation distance of the MLR model (-10.822 to +11.739). 5 

Table 4S indicates the values of R2 and MSE for training and testing data points from both 6 

GMDH and MLR models. The values of R2 and MSE of GMDH model for training and testing 7 

subsets were found to be 0.9785, 0.9702 and 2.8362, 3.4078, respectively. The R2 and MSE 8 

values of MLR model were 0.8434, 0.780 and 20.617, 26.839, respectively. Based on the MSE, 9 

R2 and the deviation interval values, it can be concluded that the GMDH model for predicting of 10 

removal percent revealed the more reliable anticipations than the MLR model.  11 

4. Conclusions 12 

      Biomaterial of Oak Tree is used for the preparation of AC and the prepared inexpensive 13 

adsorbent is characterized using SEM, XRD and FTIR. The prepared adsorbent is 26% 14 

crystalline in nature and 74 % amorphous in nature. Effective parameters were investigated and 15 

optimized and it was observed that for maximum adsorption, the initial concentration of 10 16 

mg/L; adsorbent dose of 0.25 g; pH =1; contact time= 35 min and particle size=150-250 µm is 17 

found to be optimized. Comparison of the MLR and GMDH models showed the good 18 

predictability of GMDH model for forecasting removal percent of SY dye. The optimal 19 

parameters for GMDH model were found to be 100 maximum number of layers, 6 maximum 20 

number of neurons in a layer, 0.1-selection pressure and 0.7 train ratio. For training points, the 21 

values of R2 of 0.9785 and MSE of 2.8362 were obtained using the optimal GMDH model. The 22 

results presented that the soft computing model is a good tool for predicting adsorption process. 23 
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Figure captions: 6 

Fig. 1. (a) molecular structures of the sunset yellow dye, (b) a schematic diagram of the used 7 

GMDH model, (c) FT-IR spectrum, (d) XRD pattern, (e) SEM image and (f) EDX analysis of 8 

the produced AC 9 

Fig. 2. (a) Impact of pH solution on the removal of SY dye and (b) adsorbent surface charge as a 10 

function of pH 11 

Fig. 3. Influence of particle size on the uptake of SY dye onto AC; 10-40 mg/L, 35 min, 0.05-12 

0.25 g, 600 rpm, pH 1 at room temperature 13 

Fig. 4. Influence of contact time on the uptake of SY dye onto AC; 10-40 mg/L, 150 –250 µm, 14 

0.05-0.25 g, 600 rpm, pH 1 at room temperature 15 

Fig. 5. Influence of initial concentration and adsorbent dosage on the uptake of SY dye onto AC; 16 

35 min, 150 –850 µm, 0.05-0.25 g, 600 rpm, pH 1 at room temperature 17 

Fig. 6. Anticipated removal percentage plotted versus experimental data and the variation of the 18 

values forecasted by MGDH and MLR models from the actual values 19 
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Table 1 
Parameters of MGDH model and results of MSE and R2 
Maximum Number 
of Neurons in a 
Layer 

Maximum 
Number 
of Layers 

Selection 
Pressure 

Train 
Ratio

Train data  Test data 
R2 MSE R2  MSE 

100 1 0.3 0.5 0.7603 31.5594 0.6655  38.1966 
100 2 0.3 0.5 0.8312 22.2242 0.7771  25.4549 
100 3 0.3 0.5 0.9639 4.7563 0.9537  5.2898 
100 4 0.3 0.5 0.9653 4.5695 0.9557  5.0537 
100 5 0.3 0.5 0.9696 4.0005 0.9602  4.5400 
100 6 0.3 0.5 0.9752 3.2664 0.9663  3.8459 
100 7 0.3 0.5 0.9772 3.0033 0.9656  3.9267 
100 8 0.3 0.5 0.9755 3.2261 0.9519  5.4894 
100 6 1.0 0.5 0.7565 32.0612 0.6658  38.1645 
100 6 0.8 0.5 0.7595 31.6614 0.6826  36.2470 
100 6 0.5 0.5 0.8329 22.0016 0.7791  25.2275 
100 6 0.1 0.5 0.9748 3.3112 0.9670  3.7715 
100 6 0.1 0.1 0.8806 15.7237 0.8601  15.9821 
100 6 0.1 0.3 0.9597 5.3009 0.9518  5.4990 
100 6 0.1 0.7 0.9785 2.8362 0.9702  3.4078 
100 6 0.1 0.9 0.9762 3.1394 0.9653  3.9658 
50 6 0.1 0.7 0.9715 3.7501 0.9589  4.6961 
150 6 0.1 0.7 0.9770 3.0267  0.9627  4.2554 
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Highlights 

1. AC from oak tree wood demonstrates efficient removal of Sunset Yellow dye from water.  

2. Batch studies reveal optimum performance at pH 1 and contact time of 35 mins  

3. Modeling reveals a better fit of experimental data with the Langmuir and pseudo-second 

order model 

4. GMDH model shows better performance in forecasting removal of the dye. 

5. Results reveal that soft computing model is a good tool for predicting adsorption 

performance 
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