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Abstract
This document presents the material of two lectures on statistical physics and neural representations,

delivered by one of us (R.M.) at the Fundamental Problems in Statistical Physics XIV summer school in
July 2017. In a first part, we consider the neural representations of space (maps) in the hippocampus.
We introduce an extension of the Hopfield model, able to store multiple spatial maps as continuous,
finite-dimensional attractors. The phase diagram and dynamical properties of the model are analyzed.
We then show how spatial representations can be dynamically decoded using an effective Ising model
capturing the correlation structure in the neural data, and compare applications to data obtained from
hippocampal multi-electrode recordings and by (sub)sampling our attractor model. In a second part, we
focus on the problem of learning data representations in machine learning, in particular with artificial
neural networks. We start by introducing data representations through some illustrations. We then
analyze two important algorithms, Principal Component Analysis and Restricted Boltzmann Machines,
with tools from statistical physics.
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1 Introduction
In the early 80’s, statistical physicists proved that ideas issued from their field could lead to substantial
advances in other disciplines. Simulated Annealing, a versatile optimization procedure in which a fictitious
sampling temperature is decreased until the minimum (ground state) of a cost function is reached, had major
impact in applied computer science and engineering [1]. Attractor neural network models for memories [2],
soon analytically solved with spin-glass techniques [3], emerged as one major conceptual tool in computational
neuroscience. From a theoretical point of view, it became rapidly clear that statistical physics offered a
powerful framework to deal with problems outside physics, in particular in computer science and theoretical
neuroscience, involving many random, heterogeneous, strongly interacting components, which had remained
very hard to tackle so far.
The purpose of the present document is to present some applications of statistical physics ideas and tools
to the understanding of high-dimensional representations in neural networks. How the brain represents and
processes information coming from the outside world is a central issue of computational neuroscience [4].
Experimental progress in electrophysiological and optical recordings make now possible to record the activity
of populations of tens to thousands of neural cells in behaving animals, opening the way to study this
question with unprecedented access to data and to ask new questions about brain operation on large scales
[5]. Concomitantly, machine learning algorithms, largely based on artificial neural network architectures,
have recently achieved spectacular performance in a variety of fields, such as image processing, or speech
recognition/production [6]. How these machines produce efficient representations of the data and of their
underlying distributions is a crucial question [7], far from being understood [8]. Profound similarities seem
to emerge between the representations encountered in real and artificial neural networks [9] and between the
questions raised in both contexts [10].
It is utterly hard to cover recent advances in such a diverse and vivid field, and the task is impossible in
two lectures of two hours each. The material gathered here merely reflects the interests and, presumably,
the ignorance of the authors more than anything else. The present notes focus on two applications of
statistical physics to the study of neural representations in the contexts of computational neuroscience and
machine learning. The first part is motivated by the representation of spaces, i.e. multiple environments, in
hippocampal place-cell networks. An extension of Hopfield’s attractor neural network to the case of finite-
dimensional attractors is introduced and its phase diagram and dynamical properties, such as diffusion within
one attractor or transitions between distinct attractors, are analyzed. We also show that effective, functional
Ising models fitted from hippocampal multi-electrode recordings (limited to date to few tens of neurons) or
from ’neural’ data generated by spatially subsampling our model, share common features with our abstract
model, and can be used to decode and to track the evolution of spatial representations over time. In a
second part, we move to representations of data by machine learning algorithms. Special emphasis is put on
two aspects: low-dimensional representations achieved by principal component analysis, and compositional
representations, produced by restricted Bolztmann machines combining multiple features inferred from data.
In both cases, we show how statistical physics helps unveil the different properties of these representations,
and the role of essential control parameters.
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2 Representation of space(s) in the hippocampus: model
2.1 Context and background
2.1.1 Zero-dimensional attractors: Hopfield model of associative memory

Statistical Mechanics and Neuroscience are not so far apart as they may seem at first sight. Indeed, brains
are made of billions of neurons that are connected together. In many cases, brain functions are thought to
be the outcome of collective states. This makes it a good playground for Statistical Mechanics. Here, we
will focus on one particular brain function: memory.
In 1949, D. Hebb had the visionary intuition that memory could correspond to the retrieval of certain activity
patterns in a network of interconnected neurons [11]. This attractor hypothesis goes as follows: (1) what
is memorized are attractors of the network, i.e. activity states stable under the dynamical evolution rule;
hence, recalling a memory corresponds to retrieving its activity pattern; (2) attractors are stored in the
network couplings Jij that govern the network dynamics and stable states; (3) a possible way to make an
arbitrary pattern an attractor is to ’wire together neurons that fire together’ in that pattern (the so-called
’Hebb rule’).
In 1982, J.J. Hopfield [2] proposed a model based on Hebb’s ideas in the case of zero-dimensional, or,
equivalently, point attractors. This model, known as the Hopfield model, is strongly inspired by statistical
physics models used in the context of the magnetic systems, such as the Ising model. It consists of a number
N of binary neurons {si}i=1...N = ±1 and stores a number P of configurations {ξµi }i=1...N,µ=1...p = ±1 (point
attractors), e.g. independently and uniformly drawn at random. The synaptic couplings that allow these
configurations to be attractors are given by the Hebb rule:

Jij = 1
N

P∑

µ=1
ξµi ξ

µ
j ∀i, j . (1)

The last thing to define is the dynamics of the network. In the original paper [2], time was discretized and,
at each time step t, neurons responded deterministically to their local fields, through the updating rule:

st+1
i = sign

(∑

j

Jijs
t
j

)
. (2)

Later studies, e.g. [12], incorporated stochasticity in the response, through a noise parameter T , so that the
system obeyed detailed balance for the Gibbs distribution associated to the Hamiltonian

EJ [s] = −
∑

i<j

Jijsisj (3)

at ’temperature’ T .
In terms of biological relevance, the Hopfield model is of course extremely schematic. Yet, it captures many
fundamental and robust aspects of neurons (in particular their linear summation of inputs, combined with
a thresholding effect) and network (synaptic coefficients with values affected by the activity through the
Hebb rule), while remaining, to a large extent, analytically tractable. The Hopfield model aroused a great
excitement in the Statistical Mechanics community during the 80’s, since it shared many common points with
frustrated and disordered magnetic systems. Tools and methods from the statistical physics of disordered
systems that had just been developed in the field of spin glasses [13] could therefore be used to derive
analytically the properties of the Hopfield model [12]. The first question was to check whether the patterns
{ξµi }i=1...N,µ=1...p were indeed attractive fixed points of the dynamics in eqn (2). The answer turned out to
be positive (up to a small fraction of the N neurons) for small enough values of T and of the ratio α = P/N
(in the double limit N,P →∞), i.e. for not too strong noise and memory load. Many aspects of this model
were studied and refined, in particular to make it more biologically realistic. The reader is kindly referred
to [14] for a detailed presentation of the literature. Rather, we will focus in an extension of this model to a
different kind of attractors, that is finite-dimensional attractors.

2.1.2 Place cells in the rodent hippocampus

Let us now turn to real brains, more specifically, how space is represented in the brain [15]. Experimentalists
use small electrodes that, implanted in the brain of awake animals, are able to record the simultaneous
activity of a population of single neurons. In particular, in a brain area called hippocampus, O’Keefe &
Dostrovsky have discovered the existence of ’place cells’ when recording in rodents freely moving in an
enclosure [16]. These neurons have the surprising property that they fire only when the animal is physically
located in a precise region of space, hence their name. The region of activity corresponding to a place cell in
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10 Figure 1: Remapping of place field for one recorded
place cell in CA1 for a living rat exploring two square
environments A and B with identical shapes. The
size of the environments is 60 × 60 cm. The figure
reports the average firing rate of the recorded cell
when the rat is in each of the 3× 3-cm spatial bins;
values in Hz, see color bar. Data from experiment by
K. Jezek et al [17].

the environment defines its ’place field’. In the CA3 area of the hippocampus, a region with strong recurrent
connection between pyramidal cells, the different place fields attached to a given place cell across different
environments visited by the rodent seem to be totally uncorrelated — a property called global ’remapping’.
In another hippocampal area, called CA1, remapping of place fields from one environment to another is
generally weaker; the change in the activity of a place cell is characterized mainly by a modulation of its
firing rate, a phenomenon called rate remapping, though global changes of the place fields as in CA3 may
also be observed for some cells, see Fig. 1.
For many reasons, the hippocampus — more precisely its subregion CA3 — is often supposed to work as
a continuous attractor neural network [18, 19]. It means that the attractors are not point configurations
(of zero dimension, as in the Hopfield model), but attractors in one 1 or two dimensions2 : each manifold
corresponds to an environment, i.e. the collection of activity configurations of the hippocampal neural
population characterizing the set of all positions in that environment. Apart from the dimensionality of
the attractors, place cells share common points with the Hopfield model, such as the absence of correlation
between attractors due to random remapping, and the Hebb rule that has some biological counterparts.
Hence, it is appealing to extend the Hopfield model to continuous attractors.

2.2 A model for memorizing D-dimensional attractors (spatial maps)
We thus introduce a model for place cells in one- or two-dimensional spaces (the extension to higher dimen-
sions is straightforward). As an extension of the Hopfield model, our model is based on binary neurons;
other models with real-valued neural variable, e.g. firing rates, can be found in literature [21, 22]. The N
place cells are modeled by binary units si equal to 0 (silent state) or 1 (active state)3. These neurons interact
together through excitatory couplings Jij . Moreover, they interact with inhibitory interneurons, whose effect
is to maintain the total activity of the place cells to a fraction f of active cells (global inhibition). We also
assume that there is some stochasticity in the response of the neurons, controlled by a noise parameter T .
All these assumptions come down to considering that the network states are distributed according to the
Gibbs distribution associated to the Hamiltonian (3), restricted to configuration of spins s such that

∑

i

si = fN . (4)

We want to store L + 1 environments in the coupling matrix. We call place field a position of space where
a place cell preferentially fires. An environment ` is defined as a random permutation π` of the N neurons’
place fields (assuming that the place fields are regularly arranged on a grid). This models the experimentally
observed remapping of place fields from one map to the other4. With this definition, an environment is
said to be stored when activity patterns localized in this environment are stable states of the dynamics. In
other words, the configurations where active neurons have neighbouring place fields in this environment are
equilibrium states. To make this possible, we assume a Hebbian prescription for the couplings Jij that is a
straightforward extension of the Hopfield synaptic matrix to the case of quasi-continuous attractors. This
rule is illustrated in Figure 2, and is mathematically described as follows:

• additivity: Jij =
L∑
`=0

J`ij where the sum runs over all the environments.

1The one-dimensional case would correspond to linear corridors.
2Though there is experimental evidence that place cells code also for rich contextual information [20], we consider only the

spatial correlate of place-cell activity in the present document.
3We will hereafter use indifferently the terms "neuron", "place cell" and "spin", from the analogy with magnetic systems.
4In this basic version of the model, every place cell has a place field in every environment. The possibility of silent cells has

been taken into account in [23]
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Figure 2: Remapping and connectivity rule in the model,
illustrated with three units and L+ 1 two-dimensional en-
vironments. The place field centers of the units are dis-
played respectively in red, blue and green. Thick yellow
lines indicate the excitatory couplings between cells with
neighbouring place fields in each environment. These place
fields overlap; here, for the sake of clarity, only the centers
of the place fields are represented.

• potentiation of excitatory couplings between units that may become active together when the animal
explores the environment:

J`ij = 1
N

if d`ij ≤ dc , 0 if d`ij > dc , (5)

where d`ij is the distance between the place-field centers of i and j in the environment `; for instance,
in dimension D = 1, d`ij = 1

N |π`(i)− π`(j)|. dc represents the distance over which place fields overlap.
In practice, it is chosen so that, in each environment, each neural cell is coupled to a fraction w of the
other cells (its neighbours); in dimension D = 1 again, we may choose dc = w

2 . The 1
N factor in eqn

(5) ensures that the total input received by a cell remains finite as N goes to infinity, a limit case in
which exact calculations become possible [24].

2.3 Replica theory and phase diagram
The aim of this calculation is to study the stable states of the network, and to find under which conditions
these stable states correspond to a set of active neurons whose corresponding place fields are nearby in one
of the environments. In other words, we want to know for which parameter values the Hebbian synaptic
matrix (5) ensures the retrieval of the stored maps. The system under study enjoys both disordered (due to
the random allocation of place fields in each map) and frustrated (from the competition between excitatory
synapses and the global inhibition) interactions.
We start by computing the free energy of the system,

F = −T logZJ(T ) , where ZJ(T ) =
∑

s with constraint (4)

exp(−EJ(s)/T ) . (6)

This quantity depends a priori on the realization of the random permutations in each map. We assume
that, in the large N limit, the free energy is self-averaging: its particular value for a given realization of the
disorder is typically close to its average over all possible realizations of the disorder, which is thus a good
approximation of F . The randomness of the remapping process is thus a key hypothesis for the model to
be tractable. To compute the average of the logarithm of ZJ(T ) we use the replica method [13]: we first
compute the nth moment of ZJ(T ), and then compute its first derivative with respect to n→ 0.
Since we are interested in configurations where the place fields of the active neurons are spatially concentrated
in one of the environments, we arbitrarily select one of the environments (called “reference environment”)
and do the averaging over the remaining L other permutations; details about the calculation can be found
in [23]. This choice is totally arbitrary because the difference between environments is eventually averaged
out. In the reference environment, neurons are indexed in the same order as their place fields, which allows
us to move from a microscopic activity configuration s to a macroscopic activity density over continuous
space

ρ(x) ≡ lim
ε→0

lim
N→∞

1
εN

∑

(x− ε2 )N≤i<(x+ ε
2 )N

〈si〉J , (7)

where the overbar denotes the average over the random remappings while the brackets correspond to the
average over the fast noise. For simplicity, we have assumed that the environment is one-dimensional here,
but the above formula can easily be extended to higher dimensions. Note that our model is analytically
tractable in the large N limit (thermodynamic limit), as each unit has an infinite number of neighbours
it weakly interacts with. The mean-field approximation therefore becomes exact in the sense that order
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Figure 3: Phase diagram of Lebowitz & Penrose’s theory of the lquid/vapor transition, in dimension D = 1 (periodic
boundar conditions). Insets show the density of particles ρ(x) as a function of position over space, x ∈ [0; 1].
Parameters: f = 0.1, w = 0.05. Note the coexistence between the homogeneous and bump states at intermediate
temperatures. The location of the bump is arbitrary.

parameters such as the density in (7) exhibits no fluctuation when N → ∞; however, contrary to standard
mean field approaches, these order parameters depend on space [24].
The case of a single (reference) environment, i.e. L = 0, is strongly reminiscent of the theory of the liquid-
vapor transition by Lebowitz and Penrose [24]: the continuous translational symmetry is spontaneously
broken at low enough temperature, i.e. ρ(x) 6= f , and a liquid drop (bump of high density fluid) is surrounded
by low-density vapor, see Fig. 3. this bump can then freely diffuse, and describes a finite-dimensional
continuum of ground states.
In the L > 0 case, the nth moment of ZJ(T ) is given by equation (20) in [23]. The averaged term depends
on the configurations s1, · · · sn only through the overlap matrix with entries qab = 1

N s
a · sb [13, 23]. Then,

to perform the n→ 0 limit, we consider the replica symmetric Ansatz, which assumes that the overlaps qab
take a single value (over all replica indices a 6= b),

q ≡ 1
N

∑

j

〈si〉2J , (8)

which is the Edwards-Anderson parameter of spin glasses, characterizing the site-to-site fluctuations of the
spin magnetizations [25]. This Ansatz is generally valid at high-enough temperature, when the Gibbs measure
defined on the energy landscape is not too rough, see below. It allows us to compute the free energy as a
function of the order parameters ρ(x), µ(x) (chemical potential conjugated to ρ(x)), q and r (conjugated to
q). µ(x) and r have simple interpretations. The effective field acting on neuron i, whose place field is located
in x = i/N in the reference environment, is the sum of two terms: a ’signal’ contribution µ(x) coming from
neighboring neurons j in the retrieved map (through the couplings J0

ij), and a Gaussian noise, of zero mean
and variance α r coming from the other maps ` ≥ 1 (see Fig. 14 in [23]). Here, α ≡ L/N denotes the load
of the memory.
The four order parameters (two scalar, two functional) fulfilll the following saddle-point equations obtained
through extremization of the free-energy functional,

r = 2(q − f2)
∑

k≥1

[
kπ

sin(kπw) − β(f − q)
]−2

, q =
∫

dx
∫

Dz
[
1 + e−βz

√
αr−βµ(x)]−2

,

ρ(x) =
∫

Dz
[
1 + e−βz

√
αr−βµ(x)]−1

, µ(x) =
∫

dy Jw(x− y) ρ(y) + λ , (9)

where β ≡ 1/T , Dz = exp(−z2/2)/
√

2π is the Gaussian measure, and λ is determined to enforce the
fixed activity level constraint

∫
dx ρ(x) = f , see (4). The precise expression of r depends on the eigenvalue

spectrum of the J0
ij matrix. Changing the hard cut-off dc to a smooth e.g. exponential decay of the coupling

with the distance d`ij between the place-field centers would change the expression for r, but would not affect
the overall behaviour of the model.
We find three distinct solutions to these coupled equations:

• a paramagnetic phase (PM), corresponding to high levels of noise T , in which the average local activity
is uniform over space, ρ(x) = f , and neurons are essentially uncorrelated, q = f2.

• a ’clump’ phase (CL), where the activity depends on space, i.e. ρ(x) varies with x and is localized
in the reference environment. This phase corresponds to the ’retrieval phase’ where the environment

6



Figure 4: Phase diagram in the (α, T )
plane in D = 1 with f = 0.1 and
w = 0.05. Thick lines: transition
between phases. Dashed-dotted line:
TPM(α). Thin dashed line: CL phase’s
longitudinal stability regions. Dotted
line: CL phase’s RSB line. αCL: stor-
age capacity at T = 0 of the replica-
symmetric clump phase. αg: CL-SG
transition load at T = 0. TCL: temper-
ature of loss of stability of the clump
at α = 0. Tc: CL-PM transition tem-
perature at α = 0. TPM = TPM(α = 0)
(see text).

is actually memorized. In fact, all the L + 1 environments are memorized since any of them could
be chosen as the reference environment. Note that the value of x (center of the bump of activity) is
totally arbitrary, as all positions are equivalent after averaging over the permutations.

• a glassy phase (SG), corresponding to large loads α, in which the local activity 〈si〉 varies from neuron
to neuron (q > f2), but does not cluster around any specific location in space in any of the environments
(ρ(x) = f after averaging over remappings). In this SG phase the crosstalk between environments is
so large that none of them is actually stored in the network activity. In the SG phase, contrary to the
CL phase, no environment is memorized. This is the ’black-out catastrophe’ [14] already described in
the Hopfield model, in which retrieval also takes place in an all-or-nothing fashion.

We now need to determine which solution is selected as functions of α, T , that is, the phase of lowest free
energy that will be thermodynamically favored, as well as the domains of existence (stability) of those three
phases against longitudinal and replicon modes [26], and the transition lines between them. To study the
stability, we write the Hessian of the free energy and study its eigenvalues in the longitudinal and replicon
sectors. Then, the transition between two phases is the line where the free energies in both phases equalize.
We have done these calculations in the one-dimensional case, as detailed in ref. [23]. The outcome is the
phase diagram shown in Fig. 4, displaying the three phases domains in the (α, T ) plane:

• the paramagnetic solution exists for all α, T and is stable for T > TPM(α) displayed with the dot-dashed
line in Fig. 4.

• the glassy phase exists for T < TPM(α), and is always replica-symmetry broken; we expect replica
symmetry breaking to be continuous in this region, as in the celebrated Sherrington-Kirkpatrick model
[13].

• the longitudinal stability of the clump phase is computed numerically and shown with the thin dashed
line in Fig. 4. The clump is stable against replicon modes except in a little low-T high-α region (dotted
line). An interesting feature of the clump phase stability domain is the reentrance of the high-α
boundary.

We have checked this analytically-derived phase diagram by Monte Carlo simulations. For a detailed compar-
ison of this phase diagram with the one of the Hopfield model, and how the dimensionality of the attractors
plays a role, see [27].

2.4 Dynamics within one map and transitions between maps
The phase diagram above informs us on the stable states of the model. For moderate temperature and
memory load, i.e. in the CL phase, thermodynamically stable states have an activity spatially localized
somewhere in one of the maps. But this does not constrain which map is retrieved and where in this map,
i.e. what is the position intersecting the place fields of the active cells. Indeed, under the influence of noise,
the bump of activity can move around in a given map, and also jump to another map. We have studied
both these dynamics within one map and between maps, respectively in [28] and [29].
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Within one map, we have shown formally that, in the case of a single continuous attractor (one map, i.e.
α = 0), the bump of activity behaves like a quasi-particle with little deformation. This quasi-particle
undergoes a pure diffusion with a diffusion coefficient that can be computed exactly from first principles,
i.e. from the knowledge of microscopic flipping rates of spins in Monte Carlo simulations. The diffusion
coefficient scales as 1/N , see eqn (31) in [28]. When imposing a force on the spins, see Section 3.3.1, the
activity changes so as to move the bump. An illustration is shown in Fig. 5. It can be shown analytically
that the mobility of the bump and its diffusion coefficient obey the Stokes-Einstein relation.
In the presence of multiple maps, the disorder in the couplings due to the additive storage creates an effective
free-energy landscape for the bump of activity in the reference environment. The free-energy barriers scale
typically as

√
N , and are correlated over space lengths of the order of the bump size, see [28]. In one

dimension, the bump therefore effectively undergoes Brownian motion in the Sinai potential, with strongly
activated diffusion. In higher dimension, diffusion is facilitated with respect to the 1D case, as can be
observed in simulations.
In addition to moving in the reference environment, the bump can also spontaneously jump between maps.
Fast transitions between maps, evoked by light inputs, have been observed by K. Jezek and colleagues in
the so-called ’teleportation experiment’ [17]. Understanding these transitions in the framework of a simple
model provides insight on the mechanisms involved in the biological system. Map-to-map transitions can
be studied with replica theory again, but in a more subtle framework, where solutions with non-uniform
activities in two maps (and not only one as in eqn. (9) above) are searched for. There are two scenarios for
spontaneous transitions between spatial representations, see Fig. 4 in [29]:

• through a mixed state, which gives bumps of activity in both maps; these bumps are weaker than the
one in the CL phase in a single reference environment. This scenario is preferred (has lower free-energy
cost) at low T . Transitions take place at special ’confusing’ positions in both environments, where
both maps locally resemble most.

• through a non-localized state, i.e. through the PM phase. Owing to the liquid-vapor analogy, the
bump of activity in map A evaporates, and then condensates in map B. This scenario is preferred
(has lower free-energy cost) at high T (but sufficiently low to make the CL phase thermodynamically
favorable with respect to PM, see phase diagram in Fig. 4).

We show in Fig. 6A the rate of transitions between maps computed from Monte Carlo simulations, see Sup-
plemental Material in [29] for details. We observe that the rate increases with temperature, and diminishes
with the load and the system size. According to Langer’s nucleation theory [30], we expect the rate to be
related to the free-energy barrier ∆F between CL phase in environment A and the CL phase in environment
B through (see formula 3.37 in [30]),

R = κ

√
T

2πN |λ−|
V exp

(
−N ∆F/T

)
, (10)

where κ is the growth rate of the unstable mode at the transition state, λ− is the unique negative eigenvalue
of the Hessian of the free-energy at the transition state, V is the volume of the saddle-point subspace
(resulting from the integral over continuous degrees of freedom leaving the saddle point configuration globally
unchanged). Hence, we expect the measures of the rates obtained for different system size to collapse onto
each other upon the following rescaling:

R→ − log
(
R
√
N
)

N
. (11)

This scaling is nicely confirmed by numerics, see Fig. 6B. We observe the collapse to a limiting curve, related
to the barrier height through ∆F/T . Note that ∆F is itself a function of temperature T , calculated in [29].

3 Representation of space(s) in the hippocampus: decoding and
data analysis

3.1 Decoding neural representations with effective Ising networks
The problem of decoding which brain state is internally represented from the observation of neural activity
has a natural application in experiments involving the simultaneous recording of a neural population [31]. The
decoding problem can be tackled by learning statistical properties of a known set of brain states and classifying
new observations accordingly, a problem which is deeply connected to high-dimensional classification in
machine learning. An example is provided by the environmental memory in the hippocampus. Activity is
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(a) Session A (b) Session B (c) Test Session

Figure 5: Monte Carlo simulation sessions of our memory model in the case of two 1D environments (random
permutations), denoted by A and B. X-axis: states of the system s(t) (black dots correspond to active neurons si = 1
and white dots to silent cells, si = 0), with neurons ordered in increasing order of their place field centers in the
A (left part of columns) or B (right part of columns) permutations. Y-axis: time in MC rounds, increasing from
top to down. The bump is forced to move rightwards with an external force, see [28]. In columns (a) and (b), the
system is initialized with a localized bump of activity in environments, respectively, A and B. Column (c): Test
simulations composed of the second halves of simulations reported in (a) and (b) used for decoding purposes, see
text. Parameter values: T = 0.006, N = 1000, w = 0.05, f = 0.1.
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Figure 6: Map-to-map spontaneous transitions. A. rate R of transitions computed from Monte Carlo simulations,
as a function of the temperature T , see [29]. Parameters: f = 0.1, w = 0.05. B. Replotting the same data as in
panel A for α = 0.006 after transformation in eqn (11) allows us to estimate the ratio of the free-energy barrier over
temperature, see eqn (10).

recorded while the animal explores a set of environments. Each environment is associated to a memorized
cognitive map, and these reference sessions are then used to learn models of the activity associated to each
map. In turn, these models can be used to decode activity recorded during a controlled test session, i.e.
decide which map this activity is associated to. During the test session, environmental cues are manipulated
by the experimentalist, and decoding the internal response to the change of experimental conditions allows
us to investigate the induced dynamics over internal representations [17,32].
We can tackle the decoding problem by inferring a probability density function over the neural patterns s
for each brain state M , P (s|M)5. These probability distributions can be used to decode the internal state
M given an observation (a neural pattern) s in the test session. More precisely, M is decoded by maximizing
the log-likelihood

L(M |s) = logP (s|M) . (12)

This inference framework relies on the definition of a parametric probability function, whose parameters
are inferred by solving the corresponding inverse problem from reference data. According to the max-
entropy principle, our choice is to use the family of graphical models [33–35] as parametric probabilistic
functions. Depending on the reference sample size and/or the complexity of representations we can invert
the Independent model, which accounts for the diferent average activations of neurons in different brain
states, or make a step further and include correlations between neuron activities, defining an Ising model for
each state M .

P (s|M) =
exp

(∑
i h

M
i si +

∑
i<j J

M
ij sisj

)

ZM (h, J) (13)

where ZM is a normalization constant

ZM (h, J) =
∑

s
exp


∑

i

hMi si +
∑

i<j

JMij sisj


 . (14)

The core steps of the Ising decoding procedure are:

(a) Reference session. For each brain state M , (a) collect samples of neural pattern in a known brain
state M (reference session), and compute the frequencies pMi and pairwise joint frequencies pMij of
the recorded neurons; (b) find the Ising model that reproduces the same quantities on average, i.e.
such that 〈si〉 = pMi and 〈sisj〉 = pMij , where 〈·〉 denotes the average over the probability distribution
P (s|M). This is a highly non-trivial computational problem, reviewed in Section 3.2.

5For definiteness, we will hereafter consider the neural configuration at a given time, s = {s1, s2, . . . , sN}, to be the set of
binarized neural activities of the neurons i=1...N under consideration, with si = 0 if neuron i is silent, 1 if it is active, see
Section 3.2 for more details.
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(b) Test session. Given a neural pattern from the test session st, compute the log-likelihood of each brain
state, and decode the internal state as the most likely one

M t = argmax
M

L(M |st) . (15)

Within this framework we can therefore decode the neural representation from the observed neural pattern.
This procedure has been applied to experimental data from the hippocampus, showing good performance
in retrieving the explored environment from neural activity [32]. Similar procedures have been successfully
applied to other brain regions, see for instance [36–39].
Before applying the decoding procedure in the context of the representations of space, let us review how the
effective Ising model in eqn (13) can be fitted from data.

3.2 Inference of effective Ising models from data
We discuss in this Section the problem of the inference of a graphical model from data [34,38,40–42]. Data
are defined here as a set of B recorded configurations of N variables, sb = {sb1, sb2, . . . , sbN}, with i = 1, . . . , N ;
sbi denotes the value of the variable at site i in configuration b. Variables sbi can be real valued, binary, or
multi-categorical (Potts state). Two cases of great practical interest are:

• Neurons can be described by binary variables si = 0, 1, expressing whether they are silent or active,
i.e. emit a spike. Spiking times obtained from multi-electrode recordings [38, 43–45] can be processed
into a series of B = T/∆t recorded neural configurations sb, by dividing the recording time T in small
time windows b = 1...B of duration ∆t; then, sbi is equal to 1 if neuron emits one or more spikes in
time bin b, to 0 if it remains silent.

• Amino acid si at site i in a protein sequence can take 20 different values. Data configurations are
sequences from a familiy of homologous proteins, assumed to share a common 3D fold and biological
function, collected in protein databases [46–50].

For the sake of simplicity, we assume hereafter that variables take binary values, s = 0, 1. We further assume
that the distribution over configurations s of N such variables is given by the Ising model defined in eqn
(13); to lighten notations, we will drop the M subscript hereafter. The model is parametrized by N fields
hi and 1

2N(N − 1) couplings Jij .
We assume that the different data configurations are independently drawn from P (s|h, J) in eqn (13). Hence,
the probability of the data reads

B∏

b=1
P
(
sb|h, J

)
= exp

[
−B S

(
h, J

)]
(16)

where the cross-entropy S is

S(h, J) = logZ(h, J)−
∑

i

hi pi −
∑

i<j

Jij pij (17)

depends on the data through the single-site and pairwise frequencies

pi = 1
B

∑

b

sbi and pij = 1
B

∑

b

sbi s
b
j . (18)

The best values for the fields and the couplings are the one minimizing S. While S is a convex function of
its arguments, the minimum is not guaranteed to be finite. For instance, the minimum of S is realized at
J12 = −∞ when neurons 1 and 2 never spike together (p12 = 0). This problem can be avoided by including
a prior, also called regularization, over the fields and couplings. Usual regularization schemes include adding
the L1 and/or L2 norms of the couplings, to avoid small nonzero couplings or couplings with very large,
unrealistic values. Another regularization scheme consists of imposing a small rank for the coupling matrix,
see Section 5.6.
The computational problem in the minimization of eqn (17) is the calculation of the partition function
Z(h, J), which is generally intractable as it involves a summation over the 2N configuration of the systems.
Some methods to solve the inverse Ising problem bypass the calculation of Z, such has Boltzmann Machine
algorithm [40], the Pseudo-Likelihood approximations [34,41], the minimum probability flow [51], or resort to
approximate expressions for Z, e.g. mean field [52], high-temperature expansions [53], and adaptive cluster
expansions [42,54].
Once the Ising model has been inferred, it can be used for various tasks:
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• Extract structural information on the connectivity/coupling matrix between the variables. In the
case of neurons, this functional connectivity is not physiological (synaptic), but is an effective set of
couplings depending on the brain state [31, 36, 55]. In protein covariation analysis, it has been shown
that large couplings often coincide with amino acids in contact on the three-dimensional structure of
the protein [48,49].

• Use the inferred model to score new configurations and decide if they are compatible with the data in
the training data set. We will see a direct application in Sections 3.3 and 3.4.

• Generate new configurations through Monte Carlo simulations. This can be very useful to obtain in
silico data with the same features as the ones in the training set, for instance, new proteins with the
same structure or function as natural proteins.

3.3 Back to model: the subsampling problem
The theoretical model for spatial memory in place-cell populations from Section 2.2 shows remarkable fea-
tures compatible with the recall of brain states at the level of population activity [56, 57]. The existence
of a clump phase, in which the system is maintained in a local minimum of self-sustained localized activ-
ity, is compatible with the attractor-neural-network (ANN) general paradigm of cognitive functions being
represented by collective states of the neural network. The presence of spontaneous transitions from one
representation to another is consistent with the flickering phenomena triggered by weak inputs observed in
the rat hippocampus [17], where spatial memory is thought to be stored and retrieved [58–60]. However,
theoretical results were obtained in the limit of very large systems, which is also the case of real brain regions
(∼ 109 neurons), while electrophysiological setups permit to record simultaneously a much smaller (< 102)
number of neurons. It is natural to wonder to what extent such a small number of neurons could provide
information about the collective state of the whole population.
Hereafter, we describe an attempt to draw a parallel between experimental conditions of multi-array record-
ings and the theoretical model for environment memory in the attractor neural network framework. We first
design a Monte Carlo simulation that mimics an experiment with two memorized environments, referred to
as A and B. We simulate single-environment reference sessions by forcing the activity to explore local min-
ima corresponding to the memorized environments in a system with a relatively large number (N = 1, 000)
of neurons. We then address the question if a small, randomly selected, set of neurons (here, Nsam = 33
over 1,000) could provide enough information to perform the decoding procedure and infer the time course
of the spatial representations from neural activity. As place cells are non topographical, i.e. cells that are
physically nearby in the hippocampus can have distant place fields, recording a spatially located population
of cells can be thought of to be equivalent to a random subsample in the place-field abstract space.
The decoding task is finally performed on the test session using Ising and independent models learned from
the reference sessions, and their decoding capability is tested in a classification problem on a test session
composed by samples from both states. The relationship between true and inferred coupling is then analyzed.

3.3.1 Simulations: constructing reference and test sessions

Monte Carlo simulations are conducted as follows:

• First we define two 1D environments, hereby referred to as A and B, through their two random place-
field permutations, denoted by πA, πB .

• From these two environments, two coupling matrices JM , M ∈ {A,B}, are created using learning
prescription described in eqn (5):

JMij :=
{ 1

N if 1
N

∣∣πM (i)− πM (j)
∣∣ ≤ w

2 ,
0 otherwise . (19)

• A unique coupling matrix J is then constructed as point-sum of the two single-environment matrices:
Jij = JAij + JBij .

• simulations are performed, with n = 104 Monte Carlo steps, each one starting from an initial neuronal
condition localized in one of the two reference environmentsM . To maintain the total activity constant,
we select, at each algorithm step, one active spin si = 1 and one silent spin sj = 0. The flip trial is
then defined as the joint flip of these spins.
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• an additional small force is added to make the bump exhaustively explore the one-dimensional map,
by an asymmetric term in the energy. This results in a left-right asymmetry in the Monte Carlo
acceptance rule:

∆E =
∑

k 6=i,j
(Jik − Jjk)sk +AM (i, j) (20)

with AM (i, j) being a right-pulling force in the environment M , namely

AM (i, j) := A

fN2 ×
(
πM (i)− πM (j) +NεM (i, j)

)
(21)

where A controls the magnitude of the pulling force, πM (i) is the position occupied by the place field
of neuron i in environment M , and εM ∈ {−1, 0, 1} ensures periodic boundary conditions.

Two simulations, one for A and one for B, are conducted. Parameters are carefully chosen such that the
clump phase is maintained: the bump thoroughly explores the environment, and no spontaneous transitions
occur. In other words, the same system is sampled in one of the two maps during the whole simulation;
this mimics the single-environment exploration of the rodent during training sessions [17]. Two reference
sessions are defined using the first half (5,000 steps) of each simulation, and a test session is constructed
by concatening the second halves, for a total of 10,000 total time steps. Parameters used in the following
analysis are: T = 0.006, N = 1000, w = 0.05, f = 0.1.

3.3.2 Decoding Results

As a measure of decoding precision we use the true positive rate (TPR), i.e. the overall fraction of correctly-
classified neural pattern.

TPR := # correctly classified time steps
# total time steps (22)

We obtain

Ising model : TPR = 0.928 (23)
Independent model : TPR = 0.491

The difference between the use of independent and Ising model, shown in Fig. 7, is remarkable. The
independent model, in which all couplings are set to zero, accounts only for the average firing rates of the
cells. It shows no decoding capability at all, with a TPR equal to 0.49 (compatible with random guessing).
This could be expected from the fact that the localized bump of activity, which represents the position of
the rat within the retrieved a map, moves along the entire environment during reference sessions. Hence the
average activity of all cells is close to f in both maps. The independent model, which only uses information
on averages to decode the activity, is therefore unable to achieve useful discrimination.
Conversely, the Ising model exhibits an impressive performance in the decoding task. As shown in Fig. 7b,
the time course of the likelihood difference ∆L allows us to unambiguously decode the spatial representation
as a function of time. This difference is also clear from the scatter plot of the likelihoods in the test session,
which shows a well-separated pattern in the plane, contrary to the Independent model (Fig. 8).

3.3.3 Inferred vs. true couplings

The application of inference routines to a simulated neural network allows us to investigate the relationship
between functional couplings, i.e. the inferred Jij in the inverse Ising model, and the real coupling strength,
defined in eqn. (19). We show in Fig. 9 the couplings inferred between the neurons as functions of the
distances between their palce-field centers in each map. We observe that:

• Couplings decay very rapidly with the distance, on a typical scale compatible with both wN and f N ,
and the width of the bump; Note that w, f have similar values in the simulations. At long distances,
couplings are independent of distance, and equal to a negative value. The presence of many long-range
inhibitory couplings, clearly visible in the histrograms of Fig. 10, is a natural consequence of constraint
(4) on the level of activity.

• The magnitude of coupling at small distances, ∼ 2 − 3 in Fig. 9, is much larger than the one of the
’true’ couplings in the model, equal to J0 = 1

T N = 0.167. This suggest that the inferred couplings
are effective, and would coincide with the true couplings only in the limit of perfect spatial sampling
(Nsam = N).
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Figure 7: Log-likelihood difference LA(t)−LB(t) along the test session using independent model and Ising model on
the montecarlo test session. The first half of the test session is sampled from environment A, the second half from
environment B.

To better understand the value of the inferred couplings, let us compute the statistical moments of the
neurons. As explained above in the description of the independent-cell models, all neurons have the same
average activity in both environments:

pAi = pBi = f , ∀i . (24)

We can also estimate easily the joint probability that two neurons are active. In the large-N limit, the true
couplings vanish as they scale as 1/N . Hence, spins become two-by-two independent in a ground state of the
Hamiltonian, that is, when the bump is centered around a given position x. Conditioned to x, and defining
the position of the place-field center of cell i in map M through

xi = πM (i)
N

, (25)

we have
〈si〉x = ρ

(
xi − x

)
, 〈sj〉x = ρ

(
xj − x

)
, 〈sisj〉x − 〈si〉x〈sj〉x ∼

1
N

, (26)

where ρ is implicitly centered in 0 in the above expression.
However, we have to average over the position x of the bump that moves across the environment (Fig. 5).
Doing so, we obtain the pairwise activity, see eqn (36) and Fig. 12 in [23]:

pMij =
∫
dx ρ

(
xi + x

)
ρ
(
xj + x

)
∀i, j . (27)

This effective matrix of pairwise activities threfore depends on the map, which explains why the Ising model,
contrary to the Independent model, is map-specific and can efficiently decode the representation. However,
the effective correlation between neurons, pMij −f2, does not scale as 1

N : the Ising couplings are thus effective
interactions, not simply related to the true couplings in the model. We expect this statement to hold also
for the functional couplings inferred from real recordings and their physicological, synaptic counterparts.

3.4 Analysis of multi-electrode recordings in CA1
The inference routines and the test-session validation described above are directly applicable to micro array
recordings of neural activity in vivo. As previously introduced, one can record the brain area activity in a
collection of stable memory states, build models from these activties, and use them to decode representations
(neural states) in a successive test session.
A good testing ground for this analysis is spatial memory in the rat hippocampus. Once environments have
been memorized by the animal, it is relatively easy to collect samples of one memory state by letting the rat
explore the corresponding environment. In a recent experiment, conducted by Jezek et al. [17], environmental
conditions (light cues) are abruptly changed to trigger instabilities in the evoked spatial maps in the test
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(a) Independent model (b) Ising model

Figure 8: Log-likelihood scatters computed from the Independent (a) and Ising (b) models. Each dot represents the
value of −LA and −LB for each neural configuration st during the Monte Carlo test session.
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Figure 9: Inferred coupling Jij vs. distance
∣∣πM (i)− πM (j)

∣∣ between the place-field centers of the corresponding
neurons in environment M = A (left) and M = B (right).

session. By decoding which representation is being expressed during the test session as a function of time,
we can investigate the response and fast dynamics of the memory state in the hippocampal network.
The Ising inference method has been used in this context to decode which map, denominated A or B,
is retrieved during test sessions with unknown environmental conditions. A test session recorded from
hippocampal CA1 containing an environment-switch (teleportation) event is shown in Fig. 11. Contrary to
the decoding analysis performed on the subsampled theoretical model, the Independent-cell model shows
good performance in decoding task on real recordings:

Ising model: TPR = 0.85 (28)
Independent model: TPR = 0.81

One simple possible reason is that, as a result of rate-remapping taking place in CA1, the average firing
rates of cells are different in both maps. These discrepancies can be exploited by the Independent-cell model
to adequately decode the loaded map as a function of time in the test session. For a more detailed analysis
and comparison of inference methods applied to hippocampal data see [32,62].
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(a) Environment A (b) Environment B

Figure 10: Relationship between true couplings and inferred couplings. In purple, historgram of inferred couplings.
In red, inferred couplings corresponding to truly connected neurons in the environment.
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Figure 11: Left: Log-likelihood difference LA(t)− LB(t) along the test session using Ising and independent decoder
on CA1 hippocampal data. The environmental conditions are abruptly changed from A to B in correspondence to
the red line. Right: log-likelihood scatters, see Fig. 8 for explanations.
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4 Representations of Data in Machine Learning
4.1 Introduction
We start by the definition of a data representation. Suppose we are given a set of P data samples
x(1),x(2), ...x(P) of a N -dimensional random variable X having joint density ρ(X). A data transforma-
tion is a deterministic transformation from the multidimensional vector space of data into another one:

F : x ∈ RN → x′ = F(x) ∈ RM , (29)

whereM can be larger or smaller than N . In general, F is assumed to be differentiable, but is not necessarily
invertible. We say that the random vector X′ is a representation of the original random vector X. Changing
the representation of a random variable can be often extremely helpful in data science because: i) it allows
for better visualization and understanding of the process that generated the data; ii) the performance of
machine-learning algorithms, such as classification or clustering methods heavily depends on the choice of
representation used.
Although it is not obvious that a given representation is good, it is clear that many, many representations
are useless: if F (X) = 0,∀X, then X′ is a trivial random variable, and does not carry any information about
X. More generally, it is clear that any transformation F that does not vary strongly across the support
of X is of little use. On the opposite, F = Id is not of much use either, since the properties of the data
distribution have not changed. Typically, a good data representation X′ must have helpful properties that
X does not have, such as low dimensionality, independence between components or sparse values, while
carrying information on the original random vector X. Thus, the transformation F must depend on ρ(X)
and should be learnt. Once learnt, a data representation can often shed light on how the data was generated:
one can find so-called ’features’, i.e. frequent collective modes of variation in the data, find a partition into
classes, discover outliers...
Moreover, a good data representation can significantly improve the performance of subsequent machine
learning tasks, by retaining only useful information about the data sample. For instance, in the so-called
deep neural networks, one learns a sequence of data transformations, e.g. to predict label from an image. By
using non-linearities and so-called pooling architectures, the learnt intermediate representations of the data
can become invariant, e.g. w.r.t. noise, shifts, rotations [63]. Deep neural networks have brought remarkable
breakthrough in many areas, such as visual and speech recognition, natural language processing,... [6, 7].
We now illustrate these concepts with two examples of great relevance in applications.

4.2 Example 1: Dimensionality reduction
One important subclass of data transformations is Dimensionality Reduction. One aims at compressing a
random vector X of typically high dimension N , into a smaller random vector X′ of dimension M < N ,
e.g. M = 2 or 3, while keeping as much information as possible about X. Such compression is motivated
by the fact that data very often lie in or close to a subspace of much lower dimension than N . This is the
so-called ’manifold hypothesis’. Indeed, consider for instance a data set constituted by pictures of a person’s
face, taken in many different positions; each picture is made of, say, 1000× 1000 pixels. It is clear that this
data set is a very small subset of all possible 1000× 1000 colored pictures, which define a 3 106–dimensional
vector. The reason is that, for a given face, there are only ∼ 50 varying degrees of freedom (the position of
all muscles), a very small number compared to 106 [64]. Hence, all data points lie in a (non-linear) manifold,
of very low dimension M compared to N . More generally, the variability in the data often comes from a
small number of explanatory latent factors that affect all components, and we would like to recover them.
In all generality, we do not have good and general methods to learn functions that turns an image into this
kind of ’muscle positions’ representation. Some simpler dimensionality reductions can nonetheless be learnt
and be extremely useful. For instance, dimensionality reduction can be obtained through a simple linear
transformation:

X′ = W X . (30)

where the weight W is a M × N rectangular matrix that must be trained on the data in order to retain
as much information as possible from X. An interesting choice of matrix W is obtained by the Principal
Components Analysis (PCA) algorithm: the rows Wi,. are the eigenvectors corresponding to the i’th largest
eigenvalues of the empirical data covariance matrix Cij = 〈XiXj〉−〈Xi〉〈Xj〉, where the average is computed
over the data; this choice will be justified in Section 5. Such transformation mainly serve two purposes. The
first one is to provide a better understanding of the data by visualizing it: one computes a 2 or 3 dimensional-
representation of the data distribution ρ; then each data point is represented in a 2 or 3D space. For example,
one can compute the 2D PCA representation 28 × 28 images of digits from the MNIST handwritten digits
dataset, vectorized as 784 dimensional vectors, see Fig. 12; the scatter plot shows two distinct clusters,
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Figure 12: (a) 100 digits extracted from the MNIST dataset; each digit is made of 28×28 pixels. (b) A 2-dimensional
PCA representation of the MNIST handwritten digits data set. Each point is a different image with x and y
coordinates being the value of the first and second components of the representation. Here, only the digits 0’s (dark
blue; left cluster) and 1’s (dark red; right cluster) are represented. (c) Visualization of the weight matrix W . Each
image is a principal component vector Wi,.; blue (resp. red) pixels denote large positive (resp. negative) values. the
PCA representation is obtained by computing the set of overlaps between an image and each principal component
vector

corresponding to two digit types (0s and 1s). A more interesting illustration is the interpretation of molecular
dynamics simulation of complex systems, made of many strongly interacting and heterogeneous microscopic
components. Observing the dynamics of such systems, e.g. a protein described at the atomic level, amounts
in practice to look at thousands of correlated time series. Principal component analysis offer low-dimensional
projections of these time traces, and allows one to visualize collective motions underlying the evolution of
the system, see [65] for a recent review on applications to biomolecules, including nucleic acids and proteins.
The second purpose of dimensionality reduction is to overcome the so-called curse of dimensionality. In
very high dimensional spaces, most datasets sample only very sparsely the vector space RN . Consider for
instance the following supervised learning problem. We are given a training data basis of 10, 000 100× 100
grayscale (normalized between 0 and 1) images of cats and dogs, with binary labels attached, and we want
to train a parametric model to classify whether images are cats or dogs. At this point, it is useful to think
that this classification task is essentially an interpolation problem: there exist a mathematical function
θ : X → y ∈ {0, 1} that assigns 0 to cats and 1 to dogs. We observe pairs of values

(
Xi, yi = θ(Xi)

)
, with

i = 1...10, 000, and want to interpolate the values of θ for new test images. This interpolation problem would
be trivial if the input space was densely sampled, e.g. if for any point in RN there would be a training data
point at distance ≤ ε. In practice, it is impossible because the latter condition requires about ε−N data
points, which is out-of-reach when N is large.
One possible way-out is to first learn a new data representation of lower dimension, x′ = F(x), e.g. using
PCA, and then train a classification model of the form: y = θ(x′). If the low dimensional representation keeps
relevant information about the nature of the image, then learning can be performed. One popular application
of PCA for supervised learning is the ’eigenface’ face recognition algorithm. A PCA representation is trained
on a data set of faces, before applying supervised learning [66]. The eigenface algorithm is considered among
the first successful face recognition algorithms.

4.3 Example 2: Extracting latent features from data
The variability in real-world data, such as images, can often be decomposed into a set of largely independent
modes of variation. For instance, two faces are different because some of their parts are different: nose,
ears, lips... At a lower level of description, an image can contain or not an edge at a given location, or
at some angle or scale, and two different images have different set of activated edges. Extracting these
so-called ’features’ is of particular interest for machine learning, in particular for classification, because the
decision function y = θ(X) that must be learnt may be expressed more easily as a function of these ’features’
X ′ than from the raw pixels X. For instance, one could achieve better results by expressing θ(X ′) as a
linear function of X ′, instead of a higher order polynomial of X. Moreover, the learnt representations have
interesting statistical properties, such as low statistical dependence between modes, invariance with respect
to irrelevant perturbations of the data such as corruption by noise... that can be used for denoising. Some
notable algorithms for unsupervised feature extraction are Independent Component Analysis (ICA) [67],
sparse autoencoders [68], and sparse dictionary learning [69]. We display in Fig. 13 the features learnt by
ICA applied to the MNIST digits data set. The features learnt correspond to individual handwritten strokes,
unlike PCA where the principal component do not have a simple interpretation. Interestingly, the features
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Figure 13: Features learnt by Independant Component Analysis on MNIST

found by sparse dictionary learning applied to natural images dataset qualitatively match very well the
receptive fields of neurons in the visual cortex of mammalians, such as in monkey [70,71]. Feature extraction
carried out in the brain bear strong analogies with machine-learning procedures [9].

5 Low-Dimensional Representations: Principal Component Anal-
ysis (PCA)

In this section, we focus on the PCA transformation introduced in Section 4.2. To cast PCA in a Bayesian
framework, we start with a basic reminder about Bayes’s approach to inference.

5.1 Mathematical reminder: Bayesian inference
We observe a data sample σ, and would like to fit these data with a model parametrized by some variable
τ . We assume that both σ and τ are random variables, with a joint distribution p(σ, τ). According to the
definition of conditional probabilities, we may write

p(σ, τ) = p(σ|τ)× p(τ) = p(τ |σ)× p(σ) . (31)

In the first equality, p(σ|τ) is the the probability of the data given the model parameters, also called
likelihood of the model parameters given the data. The second term, p(τ), is the prior distribution over
model parameters. The expression can be rewritten using the posterior distribution of the parameters given
the observations p(τ |σ) (which can be maximized, sampled from...), and the overall probability p(σ) of the
data to be generated by the class of models uner consideration. This posterior distribution is given by Bayes
formula:

p(τ |σ) = p(σ|τ)p(τ)
p(σ) , (32)

which is simply derived from eqn (31). One historical application of the Bayesian inference formula is
Laplace’s statistical proof that boys and girls have different birth rates. Laplace had access to the number
of boys and girls born in Paris between 1745 and 1770: σ = 245, 945 girls out of P = 245, 945 + 251, 527 =
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Figure 14: The posterior probability density of the
female birth rate τ for Laplace’s birth rate problem
according to eqn (34). Notice that p(τ = 0.5) is very
small, but non zero.

497, 472 babies born during this time period. Although the numbers of male and female births are different,
it is not possible to know a priori whether the discrepancy comes from a statistical fluctuation or from a
systematic difference in birth rates. Laplace assumed that each birth was a realization of an independent
and identically distributed random variable, giving a girl with probability τ and a boy with probability 1−τ .
Under this basic assumption, σ follows a binomial distribution B(P, τ), with a likelihood:

p(σ|τ) =
(
P
σ

)
τσ(1− τ)P−σ . (33)

Assuming a uniform density prior p(τ) = 1 over τ ∈ [0; 1], the posterior distribution reads

p(τ |σ) = C τσ(1− τ)P−σ , (34)

where C is a normalization constant, and is shown in Fig. 14. It is then easy to calculate the mean value
and the standard deviation of τ with the posterior distribution, with the results Mean(τ) = 0.490291 and
Std(τ) = 0.007117. The probability that τ is actually larger or equal to 1

2 is given by the integral of p(τ |σ)
over the τ ∈ [ 1

2 ; 1] interval, and is approximately equal to 10−42. This extremely small value makes it very
unlikely that the discrepancy between the large numbers of female and male births is due to a pure statistical
fluctuation.

5.2 Multivariate Gaussian variables
A popular example of parametric model is the multivariate Gaussian distribution, used to model sets of
continuous random variables exhibiting correlations. Hereafter, we will assume that all random variables
have zero mean for the sake of simplicity. Given a vector of N variables σ = (σ1, σ2, ..., σN ), we write:

ρ(σ|τ ) =
√

det τ
(2π)N2

exp
(
−1

2σ
T · τ · σ

)
(35)

where τ , called precision matrix is a symmetric, positive definite matrix that encodes the inter-dependencies
between variables. Its off-diagonal entries can be interpreted as (minus) the couplings between the variables.
For instance, with N = 2, τ12 > 0 means that the configurations (a, b) and (−a,−b) are more likely that the
configurations (−a, b) and (a,−b) (when a, b > 0), leading to a positive correlation between σ1 and σ2. Given
a data set of P samples σ(1), σ(2), ..σ(P ), one can compute analytically the maximum likelihood estimator of
the precision matrix:

τMLE = argmax
P∑

s=1
log ρ(σ(s)|τ) . (36)

To solve for τMLE , the gradient of the right hand side in the above equation reads

∂

∂τij

P∑

s=1
log ρ(σ(s)|τ) = −1

2

P∑

s=1
σ

(s)
i σ

(s)
j + P

2 (τ−1)ji . (37)

We recognize that first term is the empirical data covariance matrix, C. The gradient vanishes -and it is
easy to show that this corresponds to a global maximum- when

τMLE = C−1 . (38)

The inversion can be performed numerically as long as P ≥ N ; for P < N , the data covariance matrix is not
full rank. However, finite sampling effects of order 1√

P
in C result in error on τ = C−1 of the order of

√
N
P .

Thus, for large-dimensional data sets, i.e. when the ratio N/P is of the order of unity, we expect inference
to be plagued with errors.
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Figure 15: Probability density contours for (left) the null model (τ = Id) and (right) the principal-component model
of eqn (39).

Figure 16: Distribution of the eigenvalues of the empirical covariance matrix for: (a) the null model with infinite
sampling; (b) the null model with finite sampling; (c) the principal component model with finite sampling

5.3 Principal components as minimal models of interacting variables
The simplest model distribution over vector of random variables, each components being normalized to have
zero mean and unit variance, is the independent one, which corresponds to C = τ = Id. In this case, we have
p(σ|τ) ∝ exp

(
− 1

2
∑
i σ

2
i

)
, and the resulting distribution is isotropic, see Fig. 15(left). A minimal non-trivial

model is obtained by breaking this isotropy. We assume there exists a specific direction, denoted by |e〉, in
the N dimensional space with a larger variance:

τ = Id− s

1 + s
|e〉〈e| ⇐⇒ C = τ−1 = Id+ s |e〉〈e| , (39)

where s > 0. In this expression, |e〉, the principal component can be interpreted as a collective mode of
variation of the data. Indeed, the random variable σe =

∑N
i=1 eiσi has variance Ve = 〈e|C|e〉 = 1 + s larger

than 1, whereas it would be 1 if the σi were independent. The σi variables correlate in a way that makes σe
have large variance, see Fig. 15(right).
Given a data set, maximum likelihood estimation can be performed analytically to infer the principal com-
ponent |e〉. The likelihood writes

ρ
(
σ(s)∣∣ |e〉

)
=
√

det τ
(2π)N2

exp


−1

2
∑

i,j

σ
(s)
i τij σ

(s)
j


 . (40)

The |e〉-dependent part of the log-likelihood is simply

L = s

2(1 + s)
∑

i,j

ei ej

(∑

s

σ
(s)
i σ

(s)
j

)
. (41)

Hence, the MLE for the direction |e〉 (assumed to be normalized) is the top eigenvector (with largest eigen-
value) of the empirical covariance matrix C = 1

n

∑
s σ

(s)
i σ

(s)
j . Although the inference can be performed

easily for any covariance matrix, we do not expect that the inferred vector is always statistically significant,
according to the discussion at the end of Section 5.2. For instance, even if the data are generated accord-
ing to the null model τ = Id, the empirical covariance matrix has a largest eigenvalue (> 1) due to finite
sampling (Fig. 16). Similarly, if the data is generated according to the principal-component model but s
is ’small’ and P is moderate, the largest eigenvector of the empirical correlation matrix may be far away
from |e〉 (Fig. 16). In the next section, we report analytical results derived using random matrix theory and
statistical mechanics tools telling us when inference is possible.
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Figure 17: The Marcenko-Pastur distribution of eigenvalues, ρ(λ), for various values of the noise level r, reported in
the Mathematica script on the top. Left: r < 1. Right: r > 1; the Dirac peak in λ = 0 is omitted.

5.4 The retarded-learning phase transition
We first study the empirical covariance matrix Cij = 1

n

∑
s σ

(s)
i σ

(s)
j , and its spectrum when the data are

generated according to the null model τ = Id. We are interested in particular in the empirical density of
eigenvalues:

ρ(λ) = 1
N

N∑

µ=1
δ(λµ − λ) , (42)

where {λ1, ..., λN} is the set of eigenvalues of C. The overbar denotes the average over the realizations of
the N data samples (s). Note that, in the large P,N limits with a fixed ratio r ≡ N

P , we expect that the
spectrum attached to a random realization will coincide with the average spectrum ρ with high probability.
The probability density of eigenvalues can be computed analytically using random matrix theory tools, in
the limit case where the dimension N and number of data points P both go to infinity, and at fixed noise
level r [72]. The result is the so-called Marcenko-Pastur distribution:

ρ(λ) =
√

(λ+ − λ)(λ− λ−)
2πrλ , with λ± =

(
1±√r

)2
. (43)

The expression above is valid for r < 1; for larger r, the covariance matrix is not full rank, and there is also
a Dirac peak of mass 1− 1

r in λ = 0. The distribution of eigenvalues is plotted in Fig. 17 for various values
of the noise level r. For very good sampling r → 0, Wigner semi-circle law is recovered around λ = 1, as
the different entries of the correlation matrix become essentially uncorrelated. Interestingly, the spectrum
density can be quite wide when r is small: for instance, for r = 1, eigenvalues can be as large as λ = 4. As
a consequence, these ’sampling noise’ eigenvectors can screen away true principal components if s is not too
large.
The same computation as above can be carried out for the principal-component model with s > 0, and shows
the existence a phase transition, see Fig. 18 [73,74]:
• If r < s2 (weak noise regime), the largest eigenvalue is well above the ’bulk’ of eigenvalues due to finite

sampling, and the largest eigenvector |v1〉 has a finite overlap 〈e|v1〉 with the principal component |e〉.
• If r > s2 (strong noise regime), the principal eigenvalue is inside the Marcenko-Pastur ’bulk’ of eigen-

values, and |v1〉 is merely noise, i.e. the overlap 〈e|v1〉 vanishes in the large size limit.
In summary, recovering the principal component is impossible unless P ? ∼ N

s2 examples at least are presented,
after which the error decays monotonously; hence the name of retarded learning coined in a slightly different
context in [75]. This computation can be generalized to any finite number of eigenvalues K > 1, associated
to the set s1 > s2 > ... > sK ; each time the noise level r crosses s2

k, one more eigenvalue pops out of the noisy
bulk of eigenvalues, and the corresponding eigenvector is informative about the kth principal component to
be inferred. A practical application of this computation is to serve as a guideline for how many principal
components one should keep when PCA is used for dimensionality reduction. For instance, one can choose
to keep only the eigenvalues that are larger than λ+, the bulk top eigenvalue in eqn (43).
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Figure 18: The retarded-learning phase transition. Left panels: spectrum of eigenvalues of the empirical correlation
matrix in the principal-component model in the cases of weak noise (left, r < s2) and of strong noise (right, r > s2).
Right panel: average squared overlap between the top components of the true and empirical correlation matrices as
a function of the noise level r, for s = 0.2.

Figure 19: Prior potentials V (e) used for learning top components. In the nonnegative case (left), the top component
can be inferred when r < 2s2 in the presence of the prior, which is twice bigger than the maximum-likelihood
threshold, r = s2. Other prior potentials include the L1 regularization (middle), and a potential favoring large
components (right), see [79].

5.5 Incorporating prior information
We have seen in the previous Section that, when r < s2, it is possible to extract a vector with a finite scalar
product with the top component |e〉. One natural question is whether exploiting prior information about
the structure of the top component can help us increase this threshold, i.e. find out the top component with
less data. We assume a prior distribution for the entries of the top component:

P (|e〉) =
∏

i

P (ei) , with P (ei) ∝ exp
[
− V (ei)

]
. (44)

Several expressions of interest can be considered for the potential V , with the representative curves shown
in Fig. 19. We may for instance know that the top component has all its components ei positive or zero.

V (e) =
{

+∞ if e < 0
0 if e ≥ 0 (45)

This can be useful in practice if we look for a collective excitatory mode, e.g. in gene expression data [76,77].
At first sight, it seems trivial to find a vector with a positive dot product with |e〉, as a good candidate is
|v〉 = 1√

N
(1, 1, ..., 1). However, since |e〉 may be arbitrarily sparse (have all components equal to zero but

a finite number), there is no guarantee that 〈e|v〉 is actually finite in the large N limit. It was recently
shown that maximizing (41) under the condition ei ≥ 0,∀i leads to an estimate of the top component with
a positive dot product as long as r < 2 s2 [78], see Fig. 19. Hence, incorporating prior information about
the non-negativity of the entries of the top components allows for doubling the noise level.
Other cases of interest are the L1 regularization,

V (e) = V0 |e| (46)

which favors sparsity. Recently, motivated by the study of covariation in protein families and the search for
eigenvectors of the residue-residue correlation matrix with strong components on sites in contact on the 3D
structure [80], we have considered the following potential [79, 81],

V (e) = −V0 e
4 , (47)
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Figure 20: The PCA retarded-learning phase
diagram using priors for large entries in eqn
(47), for s = 0.5. At fixed r, inference of the
top component is possible if the strength of
the large-component prior, V0, is comprised be-
tween V− and V+. For V0 < V−, the prior is too
weak, and the situation is similar to maximum
likelihood decoding. For V0 > V+, the prior
is too strong: the inferred vector will have few
large entries ei, as required, but the sites i car-
rying these large entries will not match their
counterparts in the true top component.

which favors large components. As the total normal of |e〉 is still fixed to unity, only a finite number
of components can be large (and finite). Note that the cost of weak components is very small, hence this
potential does not enforce any sparsity constraint, contrary to eqn (46). Instead of maximizing the likelihood,
we now maximize the full a posteriori probability P (|e〉|C) ∝ P (C||e〉) × P (|e〉). The optimization can not
be performed analytically anymore, but the analysis of the typical properties of the solution can be analyzed
with the replica method [82]. For the prior shown in eqn (47), small values of V0 can reduce the learning
lag, whereas too large values impeach learning, see Fig. 20.

5.6 Inverse Hopfield problem
PCA has also a strong connection with the inverse Ising problem of Section 3.2, when the coupling matrix
J is constrained to have low rank, typically � p. This assumption may help avoid overfitting the data. We
therefore write the interaction matrix as follows [80,83],

Jij = 1
N

k∑

µ=1
ξµi ξ

µ
j −

1
N

k̂∑

µ=1
ξ̂µi ξ̂

µ
j . (48)

Here, k and k̂ are, respectively the numbers of positive and negative eigenvalues of J , and the total rank is
k+ k̂. The interaction matrix in eqn (48), together with the Gibbs measure in eqn (13), define a generalized
Hopfield model, made of the standard attractive patterns ξµ and of repulsive pattern ξ̂µ. To make the
meaning of these patterns more explicit, we rewrite the probability distribution (13) of this generalized
Hopfield model:

P
(
s|h, ξ, ξ̂

)
= 1
Z(h, ξ, ξ̂)

exp


h · s + 1

2N

k∑

µ=1

(
ξµ · s

)2 − 1
2N

k̂∑

µ=1

(
ξ̂
µ · s

)2


 , (49)

where · denotes the scalar product (summation over components i). The meaning of the patterns is trans-
parent: they define favored, for attractive patterns, or disfavored, for repulsive patterns, directions in the
space of configurations s, along which the probability increases or decreases quadratically.
Attractive and repulsive patterns may be inferred through minimization of the cross-entropy defined in eqn
(17). To the lowest order in ξµi /

√
N and ξ̂µi /

√
N , one finds that the fields and patterns minimizing S are

given by [83]:

hi = log pi

ξµi =
√

1− 1
λµ

vµi√
pi(1− pi)

(µ = 1, . . . , k)

ξ̂µi =
√

1
λN−µ

− 1 vN−µi√
pi(1− pi)

(µ = 1, . . . , k̂) (50)

where λ1 ≥ λ2 ≥ ... ≥ 1 ≥ ... ≥ λN−1 ≥ λN are the eigenvalues of the Pearson correlation matrix,

Cij = pij − pi pj√
pi(1− pi) pj(1− pj)

, (51)
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Figure 21: Top: Eigenvalue spectrum of the
Pearson correlation matrix for the sequences
of the trypsin inhibitor family (PF00014); the
noise ratio is r ' 0.5, hence the edges of the
Marcenko-Pastur spectrum are approximately
λ− = 0.09 and λ+ = 2.9, see eqn (43). Bottom:
pattern contributions to the log-likelihood of
the inferred Hopfield model for the patterns
corresponding to the eigenvalues along the x-
axis. The most-contributing patterns are at-
tractive patterns corresponding to the largest
eigenvalues and repulsive patterns correspond-
ing to the smallest eigenvalues. See [80] for
more details.

Figure 22: Two of the smallest-eigenvalue repulsive patterns obtained for the trypsin inhibitor family (PF00014).
x index: i + s/20, where i is the site index and s = 1 . . . 20 is the amino acid (or gap) index. Each pattern is
localized on essentially two components, corresponding to two sites i1, i2 in contact through a cysteine-cysteine
bridge. Importantly, the two sites are close on the 3D fold but distant along the protein backbone. See [80] for more
details.

and the vµ are the associated eigenvectors (with squared norms equal to N)6.
The above procedure is strongly reminiscent of PCA. Formula (50) shows, however, that the patterns do not
coincide with the eigenvectors of C due to the presence of pi-dependent terms. Furthermore, the presence
of the λµ-dependent factor discounts the patterns corresponding to eigenvalues close to unity. This effect is
easy to understand in the case of independent spins: in the limit of perfect sampling (B →∞), C coincides
with the identity matrix, hence λµ = 1,∀µ, and the patterns and the couplings vanish as they should. In the
general case of coupled spins, the sum of the eigenvalues of C is equal to N (since Cii = 1,∀i). Therefore,
the largest and smallest eigenvalues are guaranteed to be, respectively, above and below unity, and the
corresponding attractive and repulsive patterns are real valued.
Inserting expression (50) in the cross-entropy (17), we obtain the contribution (per data configuration) of
pattern µ to the log-likelihood,

δLµ = 1
2
(
λµ − 1− log λµ

)
, (53)

a quantity which is strictly positive for λµ 6= 1, see Fig. 22. This expression helps select most relevant
patterns, in decreasing order of their contributions δLµ. This is in analogy with PCA when one selects
the signal eigenvectors as the ones detaching most from the spectrum of the Marcenko-Pastur distribution,
see Section 5.4. However, at difference with PCA, where only top eigenvalues (large λµ) and attractive

6Note that the Hopfield model is, by construction, invariant under global rotations in the pattern index space, e.g. any
rotation O of all the attractive patterns in the k−dimensional space:

ξµ →
∑

ν

Oµ,ν ξν . (52)

In other terms, the patterns are defined up to a rotation and are not unique; the gauge chosen in eqn (50) corresponds to
orthogonal patterns in site space. Obviously, the couplings Jij are gauge-invariant.
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patterns are taken into account, selected patterns in the inverse Hopfield model are on both ends of the
spectrum. Small eigenvalues, much below λ = 1, can give large contributions to the log-likelihood (Fig. 22).
In applications to the study of amino-acid covariation in protein families, repulsive patterns can be shown
to be localized on a small number of sites; they are much more informative about structural constraints in
the protein, e.g. on the pairs of amino acids in contact, than attractive patterns [80].

6 Compositional Representations: Restricted Boltzmann Ma-
chines (RBM)

6.1 Definition and motivation
A Restricted Boltzmann Machine (RBM) is a graphical model, i.e., a probability distribution over a multidi-
mensional data set, similar to the multivariate Gaussian distribution or the Boltzmann Machine distribution.
It is constituted by two sets of random variables, a visible layer (v) -the data layer- and a hidden layer (h),
which are coupled together, see Fig. 23. The joint probability distribution of the visible and hidden unit
configurations, v = (v1, v2, ..., vN ) and h = (h1, h2, ..., hM ), is the Gibbs distribution

P (v,h) = 1
Z
e−E(v,h) , (54)

defined by the energy

E(v,h) =
N∑

i=1
Ui(vi) +

M∑

µ=1
Uµ(hµ)−

∑

i,µ

wiµvihµ , (55)

where the Ui,Uµ are unary potentials that control the marginal distributions of the variables vi, hµ, and
the weight matrix wiµ couples the visible and hidden layers. Depending on the choice of the potentials,
the visible and hidden variables can be binary or continuous. The visible potentials Ui is in general chosen
based on the data we want to model; for example if v ∈ [0, 1], then Ui(vi) = −givi, where the field gi is a
parameter of the model. The hidden potentials Uµ can be chosen arbitrarily as long as sampling is feasible.
Some useful examples are:

• The Bernoulli potential: Uµ(hµ) = −gµhµ with hµ ∈ [0, 1] ;

• The Quadratic potential: Uµ(hµ) = 1
2 h

2
µ, hµ ∈ R ;

• The ReLU potential: Uµ(hµ) =
{ 1

2 h
2
µ + θµ hµ if hµ ≥ 0

+∞ if hµ < 0 .

By marginalizing over the hidden units, one can compute the probability distribution over the visible layer:

P (v) =
∫ ∏

µ

dhµ P (v,h) ≡ 1
Zeff

exp [−Eeff (v)] (56)

The marginal distribution in eqn (56) can be expressed analytically in terms of the weight matrix and the
potentials. Training an RBM consists in fitting this marginal distribution to the data by maximum likelihood.
Unlike multivariate Gaussian distributions studied in the previous Section, the optimal RBM must be found
numerically, e.g. using approximate stochastic gradient ascent over the likelihood [84].
We stress that, in contradistinction with Boltzmann Machines (Ising models) or multivariate Gaussian
distributions, there are no direct couplings between pairs of units in the same layer (hence, the name

Figure 23: Architecture of Restricted Boltzmann Machines. A
RBM is defined on a bidirectional bipartite graph, with a visible
(v) layer that represents the data, connected to a hidden (h)
layer supposed to extract statistically meaningful features from
the data and, in turn, to condition their distribution. There are
N visible units indexed by i, and M hidden units indexed by µ.
The connections between visible and hidden units are denoted
by wiµ.
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Figure 24: How to model correlations among a set of variables. A. Boltzmann Machine approach: The matrix of
pairwise correlations between variables is computed from data, and a network of couplings is inferred to reproduce
those correlations. B. Restricted Boltzmann Machine approach: observed correlations are due to one or more common
input(s), whose values drive the configurations of the variables. A network of connection between the visible layer
(support of data configurations) and a layer of hidden units (support of common inputs) is found to maximize the
probability of the data items. The rightmost column indicates the magnitude h of the hidden unit as a function of
the visible configuration.

restricted). RBM can nonetheless model correlations between visible variables, as the latter can be indirectly
correlated through the hidden layer. Informally speaking, instead of explaining the correlations between
several visible units through a set of adequate couplings, we interpretate them as collective variation driven
by the common inputs (the hidden units) shared by these visible units, see Fig. 24. The hidden units thus
represent collective modes of variation of the data.
Another way to state this is to observe that, as one marginalizes over the hidden layer, effective couplings
between visible layer units arise. For instance, it is easy to show that for Gaussian hidden units, i.e. for the
Quadratic potential Uµ in the list above, the marginal distribution over the visible layer is:

Eeff (v) = −
∑

i

gi vi + 1
2
∑

µ

(∑

i

wiµvi

)2

(57)

In that case, we recognize a pairwise effective Hamiltonian, the Hopfield model with M patterns [2, 85]. In
general, non-quadratic hidden-unit potentials generate effective Hamiltonian for the visible units with high-
order interactions. The presence of couplings to all orders produced from a unique set of N ×M connections
wiµ has deep effects on the sampling dynamics of RBM.

6.2 Sampling
The connection with data representation algorithms is best seen when considering the sampling scheme.
Since there are no connections within a layer, the hidden layer units are conditionally independent given the
configuration of the visible layer, and conversely; hence the following Gibbs sampling procedure, schematized
in Fig. 25:

• Compute hidden units inputs IHµ =
∑
i wiµvi

• Sample each hidden unit independently P (hµ|IHµ ) ∝ exp
[
−Uµ(hµ) + hµI

H
µ

]

• Compute the visible layer inputs IVi =
∑
µ wiµhµ

• Sample each visible unit independently P (vi|Ivi ) ∝ exp
[
(gi + IVi )vi

]

The first two steps can be seen as a stochastic feature extraction from configuration v, whereas the last
two steps are a stochastic reconstruction of v from the features h. One can define in particular a data
representation as the most likely hidden layer configuration given a visible layer configuration, that is,
through the set of

h∗µ(v) = arg maxP (hµ|v) = argmaxP (hµ|v) = Φµ
(
IHµ (v)

)
, (58)

where Φµ = (U ′µ)−1 is the transfer function, see Fig. 26.

6.3 Phenomenology of RBM trained on data
Once maximum-likelihood training is completed, RBM can be very good generative models for complex,
multimodal distributions. In the following, we describe the phenomenology of RBM, with various kind of
hidden-unit potentials, trained on MNIST, a dataset of 60,000 28×28 grayscale images of handwritten digits.
Each image can be flattened, binarized by thresholding the grayscale level, into a 784-dimensional binary
vector. The following observations can be made:
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Figure 25: Back-and-forth
sampling procedure in RBM.
Hidden configurations h are
sampled from visible configu-
rations v, and, in turn, de-
fine the distribution of visi-
ble configurations at the next
sampling step.

Figure 26: Transfer functions Φ for various hidden units
potentials Uµ, see main text. The transfer function gives
the most likely value of the hidden unit, h∗, as a function
of the input IH received from the visible units.

• After training, samples drawn from the equilibrium distribution of Bernoulli or ReLU RBM look like
real digits, suggesting that it is a good fit for the data distribution, see Fig. 27(b). On the contrary,
Gaussian RBM, i.e. pairwise Hamiltonians, do not fit the data distribution as well.

• Each hidden unit is activated selectively by the presence of a specific feature of the data: this is seen
by visualizing the columns of the weight matrix wiµ, see Fig. 27(a). The features are strokes, that
is, small part of digits. The weight matrix is therefore essentially sparse, with a fraction of nonzero
weights p ∼ 0.1, see Fig. 27(d).

• For ReLU hidden units, each data image strongly activates around ∼ 20 hidden units, whereas most
hidden units are silent or weakly activated, see Fig. 27(c). For a precise definition of how the number
strongly hidden units is estimated, see eqn (62) and [86].

• The learnt probability distribution is very rough, with many local maxima of probability (much larger
than the values of N or M), as seen in Fig. 27(e). Remarkably, after training, each data sample is
within few pixels of a local maximum of probability. This shows the combinatorial nature of RBM,
capable of generating a very large number of configurations after training.

This phenomenology raises several questions. First, how can such simple networks generate a complex
distribution with a large variety of local minima, matching the original data points? Secondly, why do some
hidden unit potentials give good results, whereas others do not? Lastly, can we connect this behavior to the
one of the Hopfield model, corresponding to the case of quadratic potential?

6.4 Statistical mechanics of RBM
It is hopeless to provide answers to these questions in full generality for a given RBM with parameters fitted
from real data. However, statistical physics methods and concepts allow us to study the typical energy
landscape and properties of RBM drawn from appropriate random ensembles. We follow this approach
hereafter, using the replica method [86]. We define the Random-RBM ensemble model for ReLU hidden
units as follows, see also drawing in Fig. 28,

• N binary visible units, M ReLU hidden units, with N,M →∞ and α = M
N is finite.

• uniform visible layer fields, i.e. gi = g, ∀i.

• uniform hidden layer thresholds, i.e. θµ = θ, ∀µ.

• a random weight matrix wiµ = ξiµ√
N
, where each ’pattern’ ξiµ is drawn independently, taking values

+1,−1 with probabilities p
2 and 0 with probability 1 − p. The degree of sparsity p is the fraction of

non-zero weights.
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Figure 27: Training of RBM on MNIST.
Data are composed of N = 28× 28 bina-
rized images, and the RBM includesM =
400 hidden ReLU. (a) Set of weights wµ

attached to four representative hidden
units µ. (b) Averages of v conditioned
to five hidden-unit configurations h sam-
pled from the RBM at equilibrium. Black
and white pixels correspond respectively
to averages equal to 0 and 1; few inter-
mediary values, indicated by grey lev-
els, can be seen on the edges of digits.
(c) Distributions of the numbers of very
strongly activated hidden units, L̂ (left),
and of silent hidden units, Ŝ (right), at
equilibrium. (d) Evolution of the weight
sparsity p̂ (red) and the squared weight
value W2 (blue). The training time is
measured in epochs (number of passes
over the data set), and represented on a
square–root scale. (e) Evolution of the
number of distinct local maxima of P (v)
in eqn (56) (left scale) and distance to the
original sample (right scale, for training
and test sets). For each sample, the lo-
cal minimum is obtained through T = 0–
sampling of the RBM, see Section 6.2.

Figure 28: The Random-RBM en-
semble, with its control parame-
ters: threshold θ of hidden ReLU,
ratio α of the sizes of the hidden
and visible layers, field g on visi-
ble units, sparsity p of the weights
(rescaled by W = 1/

√
N).

Hence, α, p, g and θ are the control parameters of our model. Several variants or special cases have already
been addressed in the literature. Choosing Gaussian hidden units and ±1 visible units leads back to the
original Hopfield model, studied in [3]. The sparse weight distribution was previously introduced to study
parallel storage of multiple sparse items in the Hopfield model [87,88].
It is important to understand the magnitude of hidden-unit activations for a given a visible layer configuration
v. Two cases are encountered:

• let us call L the number of hidden units µ coding for features wµ present in v. These hidden units
will be strongly activated, as their inputs IHµ = wµ · v will be strong and positive, comparable to
the product of the norms of wµ, of the order of ' √p for large N , and v, of the order of

√
pN .

Therefore, we expect IHµ to scale as m
√
N , where the prefactor m, called magnetization, is finite in

the thermodynamical limit.

• The remaining M −L hidden units µ′ have, however, features wµ′ essentially orthogonal to v. Hence,
the vast majority of hidden units receive random inputs IHµ′ fluctuating around zero, with finite vari-
ances.

To answer the questions raised in Section 6.3, we are interested in computing the averages of m, L over
the distribution and over the random weights. They can be obtained through a replica computation of the
average free energy,

f(α, p, g, θ) ≡ lim
N→∞

− 1
βN

logZ (α, β, p, g, θ, {ξiµ}) , (59)
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Figure 29: The three regimes of operation of Random RBM, see text. Black, grey and white hidden units symbolize,
respectively, strong (h ∼

√
N), weak (h ∼ ±1) and null (h = 0) activations.

where the overbar denotes the average over the {ξiµ} and the partition function reads

Z (α, β, p, g, θ, {ξiµ}) =
∑

v∈{0,1}N

∫ M∏

µ=1
dhµ e

−βE(v,h) . (60)

After some algebra, see [86], we find that f(α, p, g, θ) is obtained through optimizing a free-energy functional
over the order parameters L,m, q, r, B,C:

• m and L are, respectively, the magnetization and the number of feature-encoding hidden units,

• r is the mean squared activity of the other hidden units,

• q = 1
N

∑
i 〈vi〉 is the mean activity of the visible layer in the GS,

• B,C are response functions, i.e. derivatives of the mean activity of, respectively, hidden and visible
units with respect to their inputs.

For non-sparse weights (p = 1) and depending on the values of the other control parameters, the system can
show one of two following qualitative different behaviors, as is found for the Hopfield model [3] and Fig. 29:

• A ferromagnetic phase, in which hidden configurations with L = 1 and m > 0 dominate. Visible
configurations have strong overlap with one feature, say, µ = 1. It is likely that vi = 1 if ξi,1 = 1 and
vi = 0 if ξi,1 = −1. As the choice of µ is arbitrary, there are αN such ’basins’ of visible configurations.
Phases with L > 1, i.e. having strong overlap with several features exist and may be thermodynamically
stable, but are unfavorable: their free energies increase with L.

• A spin-glass phase, in which configurations with m = 0 dominate. Most configurations have weak
normalized overlap ∼ 1√

N
with all hidden-unit weight vectors.

The phase transition occurs out of the frustration in the system. Assume for instance that the system is in
the ferromagnetic phase. The input received by a visible unit, say, i has a strong contribution (of the order
of 1 as N →∞) from the strongly magnetized unit, say, µ = 1, and a lot (of the order of αN) of weak inputs
(of the order of ±1/

√
N) from the other hidden units. As the ratio α increases, these numerous, weak noisy

contributions win over the unique, strong signal contribution, and the systems enters the glassy phase. The
transition takes place at a well defined value of α, which depends on θ and g [86].
For small p, a new intermediate qualitative behavior emerges:

• The compositional phase, in which visible configurations have strong overlap with L features, where
1 � L � M , see Fig. 29. As observed for RBM trained on real data in Fig. 27(e), random RBM
may generate a combinatorial diversity of low-energy visible configurations, corresponding to different
choices of the subset {µ1, ..., µL} of strongly activated hidden units. This new phase is found in the
low p limit, and for appropriate values of the threshold θ (large enough to silence a large number of
hidden units and suppress interference, see Fig. 27(c)), and of the field g (to reproduce the average
activity of the data in the visible layer).

6.5 Validation on data
One of the outcomes of our statistical physics analysis is that, in the compositional phase, the number L of
strongly activated hidden units scales as the inverse of the degree of sparsity, p. More precisely, L ∼ `

p , when
p → 0, where ` is determined by minimzing the free energy of the Random-RBM model. The minimum `∗

of the free energy is found at `∗ > 0 in the compositional phase, contrary to the ferromagnetic phase, where
`∗ = 0.
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Figure 30: Average number L of ac-
tive hidden units vs. degree p of spar-
sity of the weights, for RBM trained on
MNIST data. Values of the ratio α and
of the exponent x in the regularization
term in eqn (61) are reported in the fig-
ure. The figure also shows the theoret-
ical curve obtained for Random RBM
model of Fig. 28; Dashed lines show one
standard deviations away from the mean
value of L due to finite-size fluctuations,
see [86] for details. Results for a more
realistic statistical ensemble of random
weights, in which the degree of sparsity p
fluctuates with the visible sites i, can be
found in [86].

This prediction can be tested in RBM trained on real data, e.g. MNIST, see Fig. 27(b). The value of p
at the end of training without any regularization was found to be ∼ 0.1, see Fig. 27(d). However, higher
sparsities, i.e. lower values of p, can be imposed through regularization of the weights. To do so, we add to
the log-likelihood the penalty term

C({wiµ}) = −
∑

µ

(∑

i

|wiµ|
)x
, (61)

where x ≥ 0. The case x = 1 gives standard L1 regularization, while, for x > 1, the effective penalty
strength, ∝

(∑
i |wiµ|

)x−1, increases with the weights, hence promoting homogeneity among hidden units.
After training we generate Monte Carlo samples of each RBM at equilibrium, and monitor the average
number of active hidden units, L, estimated through the participation ratio

L =
(
∑
µ h

2
µ)2

∑
µ h

4
µ

. (62)

By changing the value of x, we obtain, at the end of training, RBM with higher sparsities. Figure 30 shows
that the theoretical scaling law L ∼ `∗/p is well reproduced over one decade of variation of p. In addition,
the product L× p is in good agreement with the theoretical prediction `∗ [86].
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