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ABSTRACT
A stochastic model is developed to describe the fracture behaviour of concrete fibres at micro-level, and 
a probabilistic relation between the fibre strain and the concrete damage variable is established. In this 
context, the concrete damage evolution can be quantified by two representative random variables. In 
this regard, the number of random variables employed in potential reliability assessment studies can be 
greatly reduced. The accuracy of the proposed method is verified by comparing the first- and second-order 
moments of the stochastic damage evolution with the corresponding closed form solutions. Further, the 
proposed method is applied to the non-linear analysis and reliability assessment of a five-story reinforced 
concrete frame, and the results show that it is quite efficient for stochastic response determination and 
reliability evaluation of complex structures.

1.  Introduction

In the concrete structural reliability assessment, the material 
damage and its influence on the response are often of particu-
lar concern. Generally, the continuum stress–strain law with 
random coefficients is adopted in the simulation. However, the 
concrete material is heterogeneous, non-uniform and random at 
micro-level. In this context, the non-uniformity and randomness 
at micro-level may influence the constitutive law of the con-
crete in a stochastic manner. In addition, this randomness finally 
affects the structural behaviours and reliability assessment. In 
this regard, it is more reasonable to consider the stochastic dam-
age of the concrete material at micro-level, and study its effects on 
the non-linear response and reliability evaluation of structures.

The concrete fracture or damage has been widely investigated 
and a number of models (Beck & Gomes, 2013; Curtin, 1998; 
Strauss, Zimmermann, Lehký, Novák, & Keršner, 2014) have 
been proposed. Among these models, the fiber bundle model 
(Li & Zhang, 2001; Peirce,1926) is the most commonly used, and 
also effective in practical applications at micro-level. The fiber 
bundle model research could be traced to the pioneering work 
of Peirce (1926). Later, Daniels (1945) studied the influence of 
microscopic randomness to the macro-strength of material, and 
proposed the primary form of stochastic damage model. In 1986, 
Krajcinovic and Fanella (1986) established the classic parallel 
bundle model for concrete damage mechanics analysis, and the 
degradation of concrete was denoted by the failure probability 
of the bundle.

It should be noted that the damage variable is determinis-
tic in Krajcinovic’s model. Therefore, Kandarpa, Kirkner, and 
Spencer (1996) improved Krajcinovic’s model by introducing 

a random field to describe the stochastic damage evolution at 
micro-level. Li and Zhang (2001) developed a uniaxial stochas-
tic damage model for concrete, and the fracture strains of the 
micro-elements were also defined as random field. Li and Yang 
(2009) further modified the classic fiber bundle model by intro-
ducing the remnant strain. The fiber bundle model uses a series 
of fibres to simulate the concrete material, and appears in an 
extremely simple form. Nonetheless, it can achieve a perfect bal-
ance between complexity and comprehensiveness. Furthermore, 
it can be quite effectively used in the simulation of stochastic 
fracture and damage of material.

At present, the calculation of the stochastic damage is mainly 
based on two types of methods. One is the moment-based 
method (Krajcinovic & Fanella, 1986; Kandarpa et al., 1996) 
and the other is the direct numerical simulation method (Iwan, 
1967). The moment-based method, in general, obtains the first- 
and second-order moments of the stochastic damage while the 
direct numerical simulation is usually time-consuming in com-
putation, especially when a large number of random variables 
are required. In this regard, reducing the random variables would 
be the key issue for the numerical simulation of the problem.

In this paper, a stochastic model is developed and used to 
establish a probabilistic relation between the fibre strain and the 
concrete damage variable. In this context, the stochastic damage 
evolution of the concrete can be quantified by two representative 
random variables. In this regard, the number of random variables 
employed in potential reliability assessment studies can be greatly 
reduced. In this context, the paper is structured as follows: the 
stochastic fracture/damage fiber bundle model is first reviewed in 
Section 2. And Section 3 describes a stochastic model to simulate 
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where FΔ(⋅) and FΔ1Δ2
(Δ1,Δ2;|x2 − x1|) are the 1-D and 2-D 

cumulative distribution functions (CDF) of the random field, 
respectively.

The higher order moment solutions of stochastic damage 
may also be obtained following the similar procedure mentioned 
above. However, the higher order integrations required in the 
expressions may prohibit their applications in structural reliabil-
ity analysis. Further, the probability density function of damage 
evolution, which represents the complete stochastic information, 
may be very difficult (or even impossible) to derive analytically. 
Thus, the stochastic damage model expressed in the present form, 
simply with the mean value and STD of damage variable, could 
not be easily used in the analysis of structural reliability. On the 
other hand, the stochastic damage evolution (2) can also be esti-
mated by the direct Monte Carlo simulation (MCS) with respect 
to random field Δ(x). However, the MCS often needs many terms, 
e.g. 100~200, to achieve the required accuracy.

As is shown above, neither the moment-based method nor the 
direct MCS offers a satisfactory solution of the stochastic damage 
evolution. In this regard, a random functional model is proposed, 
and a probabilistic relation between the stochastic fibre strain and 
damage evolution is established, with only two random variables 
needed to represent the concrete damage evolution.

3.  Stochastic damage model based on functional 
method

3.1.  Mathematical framework

The basis of the random field and stochastic damage evolution 
is clarified and some strict definition about sub-σ-algebra is 

(3)

{
�D(�) = FΔ(�)

VD =
√

1

A2
Ω

∫
Ω
∫
Ω
FΔ1Δ2

(�, �;|x2 − x1|)dAdA − �2
D(�)

,

the stochastic fracture/damage system. The procedure of reliabil-
ity assessment of reinforced concrete (RC) structure is presented 
in Section 4. Section 5 shows some numerical verifications of 
the model, and the non-linear reliability analysis of a RC frame 
structure. Conclusions are summarised in the last section.

2.  Stochastic fracture/damage fiber bundle model

Concrete is the most widely used material in infrastructure engi-
neering. Due to its composition, the response of concrete mem-
bers and structures shows stochastic characteristics, especially 
to its damage evolution. In order to study the stochastic damage 
evolution of the concrete, the fiber bundle model was put for-
ward from micro/meso point of view. In the bundle model, the 
concrete is simulated by a series of fibers linked in parallel with 
two rigid ending plates (Figure 1). The cracking at micro-level 
is denoted by the rupture of fibres. As shown in Figure 1, the 
un-ruptured fibres have the same strain denoted by ɛ, while the 
ruptured ones retract to the initial length. The elastic-rupture 
behaviour (Figure 2) was adopted for each fibre.

Based on the fiber bundle model (Kandarpa et al., 1996), the 
stress–strain law in continuum level can be expressed in the form 
of conventional damage constitutive relation as follows:

 

and the damage variable is expressed as:
 

where Ω denotes the occupied domain of the fiber bundle 
(Figure 1); AΩ  =  ∫Ω dA represents the total measure of the 
occupied domain Ω; and H(⋅) is the Heaviside function with 

H(x) =

{
0 x ≤ 0

1 x > 0
; Δ(x) is the limit strain of each fibre, which 

describes the stochastic fracture at micro-level and can be rep-
resented by a stationary random field; x denotes the coordinate 
within Ω.

It can be seen that Equation (2) describes the upscaling from 
the microscopic random field to the damage evolution in con-
tinuum level. According to Kandarpa et al.(1996), Li and Zhang 
(2001) and Li and Yang (2009), the mean value and standard 
deviation (STD) of damage variables can be expressed as:

(1)� = (1 − D)E�,

(2)D(�) =
1

AΩ
∫
Ω

H[� − Δ(x)]dA,

Figure 1. Fiber bundle model.

Figure 2. Elastic-rupture behaviour.
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STRUCTURE AND INFRASTRUCTURE ENGINEERING﻿    3

firstly presented. Consider a random field {Δ(x)}
x∈Ω defined on 

a probability space (Θ, ,P) and assume values in R, and Ω is the 
parameter space. All samples of the random field are considered 
as follows 

{
Δ1(x),Δ2(x),⋯ ,Δn(x),⋯

}
x∈Ω

. Moreover, the n-th 
sample Δn(x) still defines a probability space for random vari-
able Δ ∈

(
Δn(x),n,Pn

)
x∈Ω

, where n ⊆  is sub-σ-algebra. In 
addition, the probability Pn could be defined by the conditional 
probability:
 

while the conditional probability density function (CPDF) and 
the conditional cumulative distribution function (CCDF) are 
given as follows:
 

Substituting Δn(x) into the stochastic damage evolution (2) and 
based on the properties of conditional expectation (Øksendal, 
2005), we get:
 

where �
(
⋅|n

)
 is the conditional expectation operator defined 

by n. In most cases, conditional CDF FΔ(�|n) in Equation (6) 
could be expressed by a series of parameters related to the ran-
dom field:
 

where �n =
[
�n1,�n2,… ,�nr ,…

]T is the parameter vector 
representing the random fields. Substituting Equation (7) into 
Equation (6) and recalling the definition of strong convergence, 
it can be derived that:
 

where the random parameter vector � =
[
�1,�2,… ,�r ,…

]T 
represents the characteristic value of the random field, usually 
denoted by the moments of different orders. Herein, the com-
ponents of � are the moments and defined as the integration of 
random field Δ(x):
 

where ℐr[⋅] is the r-th integration operator and ωr is the r-th 
moment.

Using Equation (8), the relation between the damage evolu-
tion and probability function of fibre strain is established. From 
Equations (8) and (9), it can be noticed that the damage evolu-
tion can be expressed by the CDF of the random field parameters 
Δ(x). For some special distribution, such as the commonly used 
Gaussian distribution, only two random variables are needed 
to describe the cumulative distribution function. Therefore, 
the randomness of damage evolution could be quantified by 
a few random parameters. Thus, the stochastic damage consti-
tutive law of the concrete material could be represented by the 
above-mentioned random parameters. Actually, the function-
al-based method proposed here could be treated as a kind of 
stochastic homogenisation (Vanmarcke, 2010) over the micro-
scopic cell.

(4)Pn(⋅) = P(⋅|n)

(5)

{
fn(Δ) = f (Δ|n)

Fn(Δ) = F(Δ|n)

(6)
D

n
(�) =

1

AΩ
�
Ω

H
[
� − Δ

n
(x)

]
dA = �

[
H(� − Δ)|

n

]

= P(Δ ≤ �|
n
) = FΔ(�|n

)

(7)FΔ(�|n) = FΔ(�;�n)

(8)D(�) = FΔ(�;�)

(9)�r = ℐr[Δ(x)]

3.2.  Gaussian random field

Taking the most commonly used Gaussian distribution random 
field as an example, the non-Gaussian cases can be transformed 
into Gaussian distribution. For the Gaussian random field, the 
marginal distribution function is ΦΔ

(
x;�0, �

2
0

)
, where �0, �

2
0 

are the mean value and variance of the random field samples, 
which need to be determined first, and can be determined from 
concrete material experiments. The exponential autocorrelation 
function was adopted:
 

where L0 is the correlation length of the material and the pos-
itive number m is the correlation order; and (x1, x2) are spatial 
coordinates.

Combining Equations (6) and (8), the damage evolution 
defined by one of the random field samples can be expressed as:

 

where Φ(✷) denotes the CDF of standard normal distribution; 
ω1 and ω2 are the random parameters related to one random field 
sample, which can be obtained by the first- and second-order 
local averaging of the random field (Vanmarcke, 2010) as follows:
 

From Equation (11), it can be seen that the damage evolution 
is only governed by the random variables 

(
�1,�2

)
. Thus, the 

stochastic damage evolution could be solved as long as the corre-
lated density function p

�1�2
(x, y) is known. And then samples of 

damage evolution are generated and introduced into stress–stain 
law used in the simulation of structural analysis.

The deviation of the first and second moments of variables (
�1,�2

)
 can be found in Appendix 1. And based on the deduction 

in Appendix 1, it can be found that the random variables ω1, ω2 
are independent to each other. Therefore, the joint probability 
density function of ω1, ω2 could be expressed as follows:

 

It is well known that the integration of Gaussian field is still 
Gaussian distribution; thus, the marginal distribution of ω1 is 
also Gaussian distributed:
 

where �
�1

= �0, �
2
�1

= �1�
2
0 (see Appendix 1) are the mean value 

and the variance of variable ω1, respectively.

(10)R(|x2 − x1|) = exp

[
−

(|x2 − x1|
L0

)m]

(11)

D(�) =
1

AΩ
∫
Ω

H[� − Δ(x)]dA = ΦΔ

(
�;�1,�2

)
= Φ

(
� − �1

�2

)

(12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�1 = lim
N→∞

N∑
i=1

Δ(xi)A

N∑
i=1

A

=
1

AΩ

∫
Ω
Δ(x)dA

�2 = lim
N→∞

N∑
i=1
[Δ(xi)−�1]

2
A

N∑
i=1

A

=
1

AΩ

∫
Ω
Δ2(x)dA − �2

1

(13)p
�1�2

(x, y) = p
�1
(x)p

�2
(y)

(14)p
�1
(x) =

1√
2��

�1

exp

�
−
(x − �

�1
)2

2�2
�1

�
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4   ﻿ X. REN AND Q. YUE

set of semi-empirical formulas for the ratio between the orig-
inal Gaussian distribution and the transformed non-Gaussian 
distribution:
 

where R0

(||x2 − x1
||
)
 and R

(||x2 − x1
||
)
 denote the autocorrela-

tion functions of the original normal distribution and generated 
non-linear distribution, respectively.

3.4.  Statistical properties of damage evolution

Using the aforementioned stochastic damage evolution (20), 
the joint PDF Equation (13) and the ratio Equation (21), the 
complete statistical properties of damage evolution can be cal-
culated in a consistent way. The n-th order moment of damage 
evolution is:
 

and the n-th order central moment is:
 

The corresponding CDF of damage can be expressed as:
 

Differentiating Equation (24) yields the PDF of damage evolution 
as follows:
 

where δ(⋅) denotes the Kronecker delta function.

4.  Structural reliability assessment procedure

The reliability of a structure Pr is usually defined as:
 

where R is structural resistance, P is load and Pf is the probabil-
ity of failure. Assuming R and P are statistical independent, the 
reliability in Equation (26) becomes:
 

where fR(x) is the probability density function (PDF) of structure 
resistance R and FP(x) is the cumulative distribution function 
(CDF) of P.

The structural resistance R is a function of a series of variables 
expressed as follows:

(21)� =
R0

(||x2 − x1
||
)

R
(||x2 − x1

||
) ,

(22)mD(�;n) = ∫
+∞

−∞
∫
+∞

−∞

[
FΦ

(
�;x, y

)]n
p
�1�2

(x, y)dxdy

(23)

m�
D(�;n) = ∫

+∞

−∞
∫
+∞

−∞

[
FΦ

(
�;x, y

)
−mD(�;1)

]n
p
�1�2

(x, y)dxdy

(24)
lFD(d;�) = P{D(�) ≤ d} = P

{
FΦ

(
�;x, y

) ≤ d
}

= �
+∞

−∞
�
+∞

−∞

H
[
d − FΦ

(
�;x, y

)]
p
�

1
�

2

(x, y)dxdy

(25)

fD(d;�) =
�FD(d;�)

�d
= ∫

+∞

−∞
∫
+∞

−∞

�
[
d − FΦ

(
�;x, y

)]
p
�1�2

(x, y)dxdy

(26)Pr = Pr(R > P),Pf = 1 − Pr

(27)

Pr = 1 − ∫
+∞

0

[
1 − FP(x)

]
fR(x)dx,Pf = ∫

+∞

0

[
1 − FP(x)

]
fR(x)dx

By observing Equation (12), it is evident that ω2 is the sum-
mation of squares of normal distribution. Thus, the marginal 
distribution of ω2 could be approximated by Gamma distribution 
as follows:

 

where the parameters (see Appendix 1):
 

According to the Appendix 1 followed, the values of φ1, φ2 can 
be calculated by:
 

Combining the stochastic damage evolution (11) with the joint 
probability density function (13), the statistical information of 
damage evolution could be determined by numerical integra-
tion. However, many random quantities could not be directly 
represented by Gaussian distribution. For example, the material 
strength of solid could not be accurately modelled by Gaussian 
distribution because their values always remain positive. 
Thus, it is necessary to take non-Gaussian random field into 
consideration.

3.3.  Non-Gaussian random field

Non-Gaussian random field is rather difficult for theoretical 
development because many good theoretical tools have been 
developed merely in case of Gaussian distribution. Nevertheless, 
the non-Gaussian random field can be transferred to Gaussian 
random field according to the classic structural reliability theory 
(Ditlevsen & Madsen, 2005). In the present work, the following 
transform between Gaussian and non-Gaussian distribution 
(Nataf transform) is considered:
 

where FΔ̃(⋅) is the cumulative distribution function of a 
non-Gaussian random field Δ̃. The stochastic damage evolution 
(2) governed by non-Gaussian random field can be expressed as:
 

Comparing Equations (11) and (19) yields the damage evolution 
function as follows:
 

It should be noted that the non-linear transformation (18) 
also changes the correlation structure of the random field. To 
address this issue, Der Kiureghian and Liu (1986) proposed a 

(15)p
𝜔2
(y) =

{
0 y < 0

xa−1e−x∕b

baΓ(a)
y ≥ 0

(16)

⎧
⎪⎨⎪⎩

a =
�2
�2

�2
�2

=
(1−�1)

2

2(�2−�
2
1)

b =
�2
�2

�
�2

=
2(�2−�

2
1)�

2
0

(1−�1)

(17)

{
�1 =

1

A2
Ω

∫
Ω
∫
Ω
R(|x2 − x1|)dAdA

�2 =
1

A2
Ω

∫
Ω
∫
Ω

[
R(|x2 − x1|)

]2
dAdA

(18)FΔ̃(y) = ΦΔ(x;𝜔1,𝜔2)

(19)

D(𝜀) =
1

AΩ
∫
Ω

H
[
𝜀 − Δ̃(x)

]
dA

=
1

AΩ
∫
Ω

H
{
Φ−1

Δ

[
FΔ̃(𝜀);𝜔1

,𝜔
2

]
− Δ(x)

}
dA

(20)D(𝜀) = ΦΔ

{
Φ−1

Δ

[
FΔ̃(𝜀);𝜔1,𝜔2

]
;𝜔1,𝜔2

} def
= FΦ

(
𝜀;𝜔1,𝜔2

)
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STRUCTURE AND INFRASTRUCTURE ENGINEERING﻿    5

first-order exponential autocorrelation function (Equation 10) 
is chosen (m = 1) and the correlation length is L0 = 0.1.

Substituting the values of μ0 and σ0 into Equation (21) yields 
ρ = 1.003. So, R

(||x2 − x1
||
)
≈ R0

(||x2 − x1
||
)
 is adopted without 

much loss of accuracy. The joint PDF p
�1�2

(x, y) can be calculated 
with Equations (13) to (17). The results are shown in Figure 3. 
Using Equations (22) and (23), the moments of damage evolu-
tion were calculated and shown in Figures 4 to 7. It can be seen 
that the results of stochastic functional method proposed here 
agree well with the corresponding analytical solutions. Moreover, 
high-order statistics could also be calculated, without much addi-
tional computational effort. The skewness (3rd central moment) 
and the kurtosis (4th central moment) curves are illustrated in 
Figures 6 and 7, respectively.

The probability density function was also calculated, as pre-
sented in Figures 8 and 9. It can be seen that the damage variable 
grows with the fibre strain and its PDF exhibits distinct patterns 
for different strain values. As mentioned by Chen and Li (2005), 
the subtle information provided by the probability density reveals 
the transmission of randomness throughout the loading process. 
From the information indicated here, it can be seen that the 
probability information will change during the loading process.

 

Based on the method mentioned in this paper, ω1 and ω2 were 
adopted as random variables to describe the stochastic damage 
of concrete material. Thus, Equation (28) could be rewritten as:
 

Then, the CDF of R is calculated by:
 

The corresponding PDF of R is:
 

which could be solved by numerical integration in 2-D. By sub-
stituting Equation (31) into Equation (27) and giving the CDF of 
load FP(x), the reliability of a structure Pr could be easily solved.

The numerical quadrature for double integration in Equations 
(30) and (31) needs the value of structure resistance at each 
quadrature point, which can be denoted by RI = R(sI, tI), where 
I  =  1,  2,  … … is the index of quadrature points. Each (sI,  tI) 
defines one sample of stress–strain law curves, and indicates one 
non-linear structural analysis, together with other determinis-
tic prescribed parameters. In this regard, RI = R(sI,  tI) can be 
obtained through deterministic structural simulation.

5.  Numerical verification and application

5.1.  Damage evolution comparison with analytical result

Consider a one-dimensional lognormal random field, with 
parameter domain x ∊ [0, 1]. The mean and variance of the ran-
dom field are taken as: μ0 = 4.5 and σ0 = 0.5. The corresponding 
stochastic damage evolution is shown by Equation (20). The 

(28)R = R(random variables;deterministic variables)

(29)R = R(�1,�2;deterministic variables)
def
= R(�1,�2)

(30)lFR(x) = Pr{R ≤ x} = Pr
{
R(�

1
,�

2
) ≤ x

}

= �
+∞

−∞
�
+∞

−∞

H[x − R(s, t)]p
�

1
�

2

(s, t)dsdt

(31)fR(x) =
d

dx
FR(x) = ∫

+∞

−∞
∫
+∞

−∞

�[x − R(s, t)]p
�1�2

(s, t)dsdt

Figure 3. Joint PDF of (ω1, ω2).

Figure 4. Mean value of damage evolution.

Figure 5. Standard derivation of damage evolution.
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6   ﻿ X. REN AND Q. YUE

5.2.  Non-linear reliability analysis of RC structure

The reliability of a five-story reinforced concrete (RC) frame 
structure was investigated as an example. Figure 10 shows the 
configuration of the RC frame. In this paper, the structure was 
simulated by the finite element package ABAQUS. The beams 

Figure 6. Skewness (m�
D
(3)) of damage evolution.

Figure 7. Kurtosis (m�
D
(4)) of damage evolution.

Figure 8. Probability density contour of damage evolution.

Figure 9. Probability density curves of damage at certain strain levels.
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Column section
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400mm
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Figure 10. RC frame structure.
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and columns were modelled as beam elements with steel rebar. 
And the fibre-based stochastic damage model of concrete was 
implemented in ABAQUS by UMAT and Python.

The non-linear behaviours of concrete were considered by 
the stochastic damage model with distributive parameters μ0 
and σ0. The exponential autocorrelation function is chosen to 
describe the spatial correlation with correlation length L0 = 0.1. 
And Young’s modulus of concrete is Ec = 28GPa. The steel rein-
forcements were considered as elasto-plastic materials, with 
Young’s modulus Es = 210GPa and yield stress fy = 360MPa. 
The structure is subjected to a uniform vertical force of intensity 
q = 6KN/m on each story, and thereafter a triangle distribution 
horizontal load with maximum value P is applied from one side 
of the frame.

The horizontal load P is expressed by the following equation:
 

(32)P = �G

(a) 0 6.5µ = , 0 =0.5σ , 0=0.1L

(b) 0 7.5µ = , 0 =0.5σ , 0=0.1L

(c) 0 8.0µ = , 0 =0.5σ , 0=0.1L

Figure 11. Simulated stress–strain curves and load–displacement curves with different values of μ0.

Figure 12.  PDFs of horizontal load vs. structural resistance with different values 
of μ0.
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8   ﻿ X. REN AND Q. YUE

A case study with different distributive parameters μ0, σ0was 
conducted to investigate the influences of different non-linear 
material properties on the structural behaviours. Figures 11 and 
12 display the influence of variable μ0, while Figures 13 and 14 
depict the influence of variable σ0.

Figures 11 and 13 show the stress–strain curves and load–dis-
placement curves with different values of μ0 and σ0. It is evident 
that most of the simulated pushover load–displacement curves 
exhibit typical patterns as RC structure. At the initial loading 
stage, the structural response is nearly linear elastic. After the 
cracking of concrete, the non-linearities become more apparent. 
As the deformation increased, the reinforcement yields and the 
whole load–displacement curve go up to the peak value. After 
the peak value, the structure enters into the softening period due 
to the crush of concrete, and the responses are more divergent, 

where G = 100 kN and the horizontal force factor η was assumed 
to be governed by the following extreme value distribution 
(Davenport, 1964).
 

while the corresponding PDF is:
 

where parameters A = 1000 and B = 0.2 were adopted in this 
study.

(33)F
�
(x) = exp

[
−A exp

(
−

x2

2B2

)]
, x ≥ 0

(34)f
�
(x) =

Ax

B2
exp

[
−A exp

(
−

x2

2B2

)
−

x2

2B2

]
, x ≥ 0

(a)

(c)

(a)

Figure 13. Simulated stress–strain curves and load–displacement curves with different values of σ0.
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STRUCTURE AND INFRASTRUCTURE ENGINEERING﻿    9

way. This is also reflected in the characterised PDFs of structural 
resistance, which are similar to Gaussian distribution. The above 
cases occur at a relatively higher mean value and lower variation. 
For the cases shown in Figures 11(a) and 13(b)–(c), the pushover 
curves show quite obvious branching. The corresponding PDF 
of structural resistance is multi-peaks in Figure 12 and skewness 
in Figure 14. The multi-peaks and branching in the stochastic 
behaviours of a structure usually indicate the change of failure 
modes. In this context, it may be envisioned that the failure 
modes of the structure change considering the random damage 
evolutions of concrete. Nevertheless, the failure mode changes 
due to the random material performance. This still an open field 
and deserves further explorations and efforts.

6.  Conclusions

Based on the theoretical analysis and the numerical example, 
several conclusions can be obtained as follows:

(1) � The fiber bundle model can simulate the random frac-
ture of concrete fibres, and a stochastic model is devel-
oped to describe the behaviour of concrete fibre at the 
micro-level.

(2) � A probabilistic relation between the damage variable 
and the fibre strain is established. The damage evolu-
tion can be quantified by two random variables.

(3) � The mean and standard deviation of damage evolu-
tion agree quite well with the corresponding analytical 
solutions. The probability density function of the dam-
age can also be obtained.

(4) � The proposed method is quite efficient for stochastic 
response determination and reliability evaluation of 
complex structures.
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especially with higher values of σ0. This could be explained 
because the randomness induced by the damage evolution in 
the material is suppressed by the structure at the elastic stage and 
will be more apparent as the damage of the concrete developed.

Additional interesting results could also be observed in Figure 
11 (a)~(c). The randomness of load–displacement responses is 
suppressed by increasing concrete strength. The reason may 
be that the structural failure is governed by the reinforcement, 
as the concrete strength becomes sufficiently high. Taking the 
peak value of each load–displacement curve as the structural 
resistance RI and substituting it into the numerical integration of 
Equation (31), the probability density function (PDF) of struc-
tural resistance, i.e. fR(x), could be obtained.

The simulated PDFs of structural resistance against the 
horizontal load P are plotted in Figures 12 and 14. Figure 12 
depicts the PDFs calculated for different values of μ0, which gov-
erns the absolute strength of concrete. It can be seen that the 
upper extreme values of the structural resistance for all cases 
are almost identical, which means the upper bound is governed 
by the reinforcement rather than concrete. Another interesting 
result is that as the concrete strength decreases, the mean value 
of structural resistance decreases, while its random deviation 
increases. Further, it can be seen that the PDF of structure resist-
ance exhibits substantial random deviation for the rather low 
strength concrete. From Figure 14, it can be noticed that as the 
material random derivation increases, the same phenomenon 
occurs as well.

The structural reliability, as well as the failure probability, for 
different cases is listed in Tables 1 and 2. From Table 1, it can 
be seen that the higher the strength of concrete, the higher the 
reliability of the structure. Table 2 gives the reliability and failure 
probability with same strength mean value and different random 
deviations. It can be seen that as the material random deviation 
increases, the reliability of structure decreases.

Other interesting aspects can also be observed from the sim-
ulation results: the response branching. From Figures 11 and 
13, it can be seen that under some conditions (Figures 11(a) 
and 13(b)–(c)), the branching is quite obvious, while in Figures 
11(b)–(c) and 13(a), the branching is not quite obvious, and the 
simulated pushover curves are distributed in a relatively regular 

Figure 14.  PDFs of horizontal load vs. structural resistance with different values 
of σ0.

Table 1. Simulated structural reliabilities for different values of μ0.

Case μ0 σ0 Structural reliability Probability of failure
1 6.5 0.5 0.6325 0.3675
2 6.75 0.5 0.8673 0.1327
3 7.0 0.5 0.9627 0.0373
4 7.5 0.5 0.9902 0.0098
5 8.0 0.5 0.9925 0.0075
6 8.5 0.5 0.9929 0.0071

Table 2. Simulated structural reliabilities for different values of σ0.

Case μ0 σ0 Structural reliability Probability of failure
7 7.0 0.2 0.9816 0.0184
8 7.0 0.5 0.9627 0.0373
9 7.0 1.0 0.9348 0.0652
10 7.0 1.5 0.9320 0.0680
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10   ﻿ X. REN AND Q. YUE

Defining the coefficient by:
 

where R(|x
2
− x

1
|) ≤ 1, gives:

 

Similarly, the marginal distribution for ω2 could also be expressed by its 
corresponding mean value and variance; thus, the mean of ω2 is given by:

 

The first term on the right-hand side (RHS) in Equation (A6) is deter-
mined as:

 

while the second term is:
 

Substituting Equations (A6) and (A7) into Equation (A4) yields:
 

and we consider the variance of ω2 as follows:
 

The second term on the RHS of Equation (A10) has been solved by 
Equation (A9). The first right term in Equation (A10) is derived by:

 

Recalling the properties of the fourth-order central moments of multivari-
ate normal distribution, Equation (A11) further converts to:

 

where:
 

Substituting Equations (A9) and (A12) into Equation (A11) yields the var-
iance of ω2 as follows:

 

The correlation between ω1 and ω2 could be estimated by the covariance 
as follows:

 

The first term on the RHS of Equation (A15) is formed as follows:
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Appendix 1. Derivation of first and second moments 
for ω1 and ω2

The marginal distribution of ω1 could be estimated by its mean value and 
variance. The mean value of ω1 is given by:
 

while the second-order moment is:
 

Then, the variance becomes:
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Substituting Equations (A1), (A11) and (A17) into (A15) yields:
 

which indicates that the correlation coefficient between ω1 and ω2 equals 
to zero. Therefore, it is reasonable to adopt that ω1 and ω2 are independent.
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Recalling the properties of the third-order central moments of multivariate 
normal distribution, Equation (A16) converts to:
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