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The analysis of electroencephalography (EEG) recordings has attracted increasing interest in recent
decades and provides the pivotal scientific tool for researchers to quantitatively study brain activity
during sleep, and has extended our knowledge of the fundamental mechanisms of sleep physiology.
Conventional EEG analyses are mostly based on Fourier transform technique which assumes linearity and
stationarity of the signal being analyzed. However, due to the complex and dynamical characteristics of
EEG, nonlinear approaches are more appropriate for assessing the intrinsic dynamics of EEG and
exploring the physiological mechanisms of brain activity during sleep. Therefore, this article introduces
the most commonly used nonlinear methods based on the concepts of fractals and entropy, and we
review the novel findings from their clinical applications. We propose that nonlinear measures may
provide extensive insights into brain activities during sleep. Further studies are proposed to mitigate the
limitations and to expand the applications of nonlinear EEG analysis for a more comprehensive under-
standing of sleep dynamics.
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Background Real sleep stages are dynamic transitions between multiple phys-

Sleep, in contrast to wakefulness, is characterized by reduced
awareness and responsiveness. A basic model of sleep homeostasis
is based on the concept of sleep-wake transition [1]. Convention-
ally, sleep stages in humans are classified as wake, rapid eye
movement (REM) sleep, and an approximate continuum of depth
during non-REM (NREM) sleep based on electroencephalographic
patterns, which comprises about 80% of the entire sleep [2]. This
cycling model of wake/NREM/REM sleep switches has been the
primary focus of sleep research for decades. However, this reduc-
tionist type of approach is over-simplified and has limitation in
understanding pathophysiological mechanisms in sleep disorders.

Sleep is not simply a succession of human invented stages, but a
delicate and sophisticated nonlinear symphony played by the brain
in a democratic and mutual interaction with the rest of the body [2].
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iological states swinging between the dual condition of stability
and instability to warrant environmental adaptations and achieve
physical and mental restoration [3].

Quantification of sleep stages via the analysis of electroen-
cephalography (EEG) signal has been a challenge for years. Con-
ventional visual sleep stage scoring is arbitrary and does not fully
capture intrinsic EEG activity [4]. Fourier-based spectral analysis
can quantify frequency compositions in EEG signals and is the most
commonly used EEG analysis; however, it has intrinsic limitations
to capturing underlying dynamics of the brain oscillations. First,
fast Fourier transform (FFT)-based analysis assumes that complex
oscillations embedded in the EEG signal are comprised of sine
waves with different frequencies [5]. In this context, EEG signal can
be decomposed into frequency components such as beta, alpha,
theta, or delta frequency bands. However, it has long been known
that brain oscillation is not a linear combination of these arbitrary
frequency components, a property called “nonlinearity” [G]. Sec-
ond, FFT-based spectral analysis assumes that none of these fre-
quency components change in amplitude or shape as time evolves,
which is clearly against what has been observed in complex brain
oscillations, a property called “nonstationarity” [5].
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Abbreviations

ApEn approximate entropy

AS active sleep

CAP cyclic alternating pattern
cDh correlation dimension

DFA detrended fluctuation analysis
ECG electrocardiography
EEG electroencephalography

ESES electrical status epilepticus during slow-wave sleep
FD fractal dimension

FFT fast Fourier transform

fMRI functional magnetic resonance imaging

H Hurst exponent

MSE multiscale entropy

N1 nonrapid eye movement sleep stage 1
N2 nonrapid eye movement sleep stage 2
N3 nonrapid eye movement sleep stage 3
NREM  nonrapid eye movement

OSA obstructive sleep apnea

PD Parkinson disease

PSG polysomnography

Qs quiet sleep

REM rapid eye movement

SampEn sample entropy

SWS slow-wave sleep

It has long been observed that physiologic output of human
body is nonstationary and nonlinear. Controls of physiological
systems and outputs such as heartbeat, respiration, and brain wave
oscillations are extraordinary complex [7]. Such complexity is
believed to arise from nonlinear interactions among multiple
control nodes in different physiological body systems that operate
at multiple time scales. It has been hypothesized that the
complexity of a biological system should be related to the system's
capacity to adapt and function in an ever changing environment [ 7].
Conventionally, scientists employ a reductionist approach to
disassemble the complex system into constituent pieces, examine
each component, and, finally, reassemble them to recreate the
original entity. However, this approach is often unrealistic. In most
circumstances, we can observe only the macroscopic output of
physiological functions, such as an EEG, heart rate, or respiration. In
the language of complex systems, the composite behavior cannot
be fully understood by “adding up” the components. Instead, one
needs new approaches to measuring a system's integrative
behavior. Thus, the understanding of the complex dynamics of the
physiologic output, such as changes in EEG dynamics observed
across different sleep stages, will be improved by applying
nonlinear dynamical approaches to the analysis of EEG signal.

Nonlinear analysis of sleep EEG

The term nonlinear applies to systems in which components
interact non-additively [8]. One example of the non-additivity is
brain electrical activity that reflects combinations of excitatory and
inhibitory postsynaptic potentials in apical dendrites of pyramidal
neurons in the superficial layers of the cortex [9]. To understand the
nonlinear feature of the EEG signal, in 1985, Rapp et al. pioneeringly
performed a chaos analysis of spontaneous neural activity in
monkeys [10], and Babloyantz et al. examined the correlation
dimension (CD) of human sleep EEG [11]. At the early stages
(1985—1990) and since 1990, nonlinear EEG analysis was mainly
referred to low-dimensional chaotic dynamics and surrogate data
testing, respectively [3]. In the late 1990s, phase synchronization
and generalized synchronization became widely used. Recently, the
concepts and methods originated from the chaos theory or
complexity science has attracted considerable attention. Nonlinear
approaches are suggested to be superior to traditional linear
methods in understanding EEG dynamics [12]. In addition, the
nonlinear approaches provide clearer insights into dynamical na-
ture and variability of the brain signal and have shown their ability
to surpass traditional spectral techniques, such as tracing epileptic
changes in the EEG signal [13].

Quantification of the nonlinear features of sleep physiology is
very important in two aspects: 1) for evaluating dynamical models

of sleep homeostasis and 2) for clinically monitoring alteration/
degradation of normal sleep physiology with aging and pathological
conditions [8]. In the last two decades, novel approaches derived
from concepts of nonlinear dynamics and statistical physics theories
have been developed and applied to probe generic features of
complex systems. These approaches revealed that the fluctuations
in the outputs of these systems contain important information
about the underlying mechanisms of system controls. For instance,
robust fractal/scale-invariant, multifractal, and time irreversibility
were observed in healthy physiologic systems (indicating complex
physiological control) and the alterations of these nonlinear statis-
tical properties are associated with aging and pathological states
[8,14]. Moreover, certain generic features exist in a various number
of physiological systems (e.g., similar scale-invariant correlations in
heartbeat fluctuations, motor activity, gait, respiration, and brain
wave oscillations), indicating a universal “rule” in the underlying
mechanisms of nonlinear interactions in physiological systems.
These universal features of different physiological systems provide
an important guidance for building physiologically meaningful
models of integrative physiological systems.

Nonlinear dynamics theory provides new opportunities for the
understanding of sleep EEG behavior [15], and increasing amount
of studies have used nonlinear methods to investigate the charac-
teristics of brain activities during sleep. In this article, we therefore
present the most commonly used nonlinear analyses of sleep EEG
signal, such as fractal or entropy methods, and review their appli-
cations to sleep studies. This review intends to inspire future sleep
studies to understand the complex nature of sleep physiology,
particular the dynamical changes in brain activity during sleep.

Fractal-based methods

Mandelbrot [16] introduced the fractal theory, which can be
expressed by two phenomenon: self-similarity and fractional
dimensionality. Fractal theory has been used for explaining natural
landscapes, modeling temporal dynamics of a time series, and pre-
dicting extreme events or human behavior [17]. Therefore, fractal
analysis has potential to describing the dynamics of brain electrical
activities under physiological and pathological conditions. To quan-
tify fractal scaling behavior in a time series, several methods have
been developed to quantify the fractal dimension, including the CD,
Hurst exponent (H), and detrended fluctuation analysis (DFA).

Correlation dimension

The correlation dimension (CD, or D, in certain literature) [18]
describes the fractional dimensionality of an underlying process
in relation to its geometrical reconstruction in embedded phase
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space. The values of the CD range between zero and the value of
embedding dimension and can be used to quantify the complex
dynamics of the brain activity [19]. In a chaotic system, the CD
usually shows a non-integer value larger than 1, indicating an
increased complexity of system dimensionality.

In the analysis of sleep EEG recorded from healthy adults, the CD
has been consistently reported to decrease from wake to sleep
stages N1-N3 and increase during REM [11,15,20—24]. Further-
more, studies of neonatal EEG suggested that CD during active sleep
tends to be higher than that during quiet sleep, whereas CD during
indeterminate sleep is at the midpoint of the range between active
and quiet sleep states [25]. This trend of changes in the values of the
CD between different sleep stages may be associated with the sleep
depth [15,20]. Studies have reported that the CD of the sleep EEG in
N2 stages was significantly lower in the first half of the night than
that in the second half of the night, indicating an association of
sleep EEG complexity with the restoration effect of the sleep
[26,27]. For healthy subjects under total sleep deprivation, EEG in
sleep-deprived states yields lower CD values than that in normal
states, suggesting that sleep deprivation results in the decrease of
the brain signal complexity [28].

Compared to healthy subjects, CD was lower during stage 2 and
REM sleep in unmedicated schizophrenic patients [29] while CD was
found to be decreased during slow-wave sleep (SWS) in depression
[30]. In contrast, CD derived from resting-state awake EEG of
schizophrenic patients was not distinguishable from healthy vol-
unteers while CD was found to be lower in schizophrenic patients
under arithmetic test [31]. These alterations in the nonlinear
dynamical properties of EEG in sleep/wake and task conditions
indicate that brain's ability to process information may be disturbed
in depression and schizophrenia [29,30]. In the studies of neuro-
logical disorders, CD in SWS was lower in narcoleptic patients than
that in healthy subjects, indicating a lower degree of complexity in
the sleep-wake regulation among narcoleptic patients [32].

Hurst exponent

The Hurst analysis is an important method derived from chaos
theory to quantify the long-term memory processes of a time series
[33]. The biological time series often exhibits long-range depen-
dence which refers to dependence structures that decay slowly with
increasing distance, such as a power-law decay [34]. The value of the
Hurstexponent (H) ranges between 0 and 1. Based on H, a time series
can be classified into three categories: a) H = 0.5, indicating the
presence of uncorrelated randomness; b) 0 < H < 0.5, indicating an
anticorrelated process; and c) 0.5 < H < 1, indicating a long-range
correlation process with characteristics of 1/f power spectrum.

Although H has been applied in many studies to distinguish brain
signal dynamics from different states or pathological conditions
[35], it was less frequently used in sleep EEG studies compared with
other nonlinear approaches. Results reported from existing studies
are inconsistent. In Acharya's et al. study, H values were higher in
wake and REM sleep, but lowest in stage 3 and 4 [15]. While in
Weiss's et al. studies, H was higher in NREM stage 4 than stage 2 and
REM period [36,37], suggesting that sleep EEG signals may be less
fractal during SWS [36]. However, the discrepancy in studies using
Hurst exponent indicates a need for a comprehensive comparison of
different approaches and careful evaluation of the fractal property.

Detrended fluctuation analysis

DFA, originally introduced by Peng et al. [38], is a widely used
method for quantifying the long-range correlation of the physio-
logical time series, such as heart beat time series, respiratory sig-
nals, and EEG recordings [39—41]. The scaling exponent («) derived

from the DFA method represents the long-range correlation prop-
erties of the signal: « = 0.5 indicates the presence of uncorrelated
randomness; a < 0.5 suggests the presence of anti-correlated pro-
cess; 0.5 < « < 1 represents the existence of long-range correlations
in the time series and « = 1 resembles 1/f noise. When « > 1 and
approaches to 1.5, a Brownian noise is indicated, which is the
integration of the white noise.

In healthy subjects, the values of DFA scaling exponent increase
beyond 1 with increased depth of sleep stages [39,42], suggesting
that the dynamics of the sleep EEG is more like a Brownian noise
process in deeper sleep stages [39]. Studies of obstructive sleep
apnea (OSA) [39,43] have reported that patients with OSA exhibited
a similar trend of the DFA exponent in different stages of NREM
sleep, but their DFA exponent values were lower than those from
healthy subjects [39].

In depression-related sleep disturbance, a study reported that
the DFA scaling exponents were lower in patients with major
depression during stage 2 and SWS; the authors suggested that
these findings might be related to the sleep fragmentation and
instability observed in major depressive disorders. Another study
found that DFA exponents of sleep EEG in depressed patients were
higher than those from healthy controls [37]. This study also iden-
tified a significant correlation between the severity of depression
and DFA exponent [40], suggesting that the sleep EEG under the
depressive state exhibits a slower decay of long-range temporal
correlations which is associated with the severity of depression [40].

Implications of fractal-based methods

Based on aforementioned literature (Table 1), both the values of
the CD and DFA exponent change in accordance with the
advancement of NREM sleep stages (Fig. 1a). Consistent across
three different fractal-based methods, sleep EEG in awake status is
more compatible with 1/f noise, an important characteristic of
nonlinear dynamics, and EEG signals in NREM stages become more
ordered with reduced fractal dimensional complexity. There has
been increasing evidence that the activity of brain circuit becomes
more coherent and ordered as sleep stage goes deeper [44,45],
which may contribute to the reduced complexity found in EEG
signals during NREM sleep. Collectively, this evidence suggests that
fractal-based EEG markers may be of use to track sleep stages, and
the degree of changes in fractal-based EEG markers between awake
and NREM stages may be of help to distinguish between healthy
sleep and pathologic sleep conditions, such as insomnia. In addi-
tion, fractal-based EEG markers show a significant difference be-
tween wake and REM period [46], despite these two conditions
involve intense brain activities, the importance of this finding re-
mains elusive but worth further studies.

Future studies with incorporation of latest neuroimaging tech-
niques, such as functional magnetic resonance imaging (fMRI), may
also help address several unsolved questions, including: which
brain circuit or network (i.e., measured by brain connectivity) is
associated with loss of fractal complexity of the sleep EEG in NREM
stage? Is loss of sleep EEG fractal complexity associated with
memory or cognitive functions? Is brain circuit involved in REM
sleep different with those in awake period? Importantly, findings in
these fractal-based literature may be useful in developing and
testing mathematical models of sleep wake regulations [39].

Entropy-based methods

In information theory, entropy measures the uncertainty about
the information source and the probability distribution of the
samples drawn from it, thus the estimates of entropy can be an
indicator of a system's complexity. Complexity analysis of the
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Table 1
Applications of fractal-based methods*.

Citations

Study subjects

Main finding(s)

Correlation Dimension
Roschke, et al. 1992 [21]

Roschke, et al. 1994 [30]

Achermann, et al. 1994 [24]

Fell, et al. 1996 [22]

Pereda, et al. 1998 [20]

Ferri, et al. 1999 [32]
Kobayashi, et al. 2000 [27]

Kobayashi, et al. 2000 [26]

Jeong, et al. 2001 [28]

Kobayashi, et al. 2001 [90]

Ferri, et al. 2001 [89]

Acharya, et al. 2005 [15]

Scher, et al. 2005 [91]

Janjarasjitt, et al. 2008 [25]

Bell, et al. 2012 [88]

Hurst Exponent
Acharya, et al. 2005 [15]

Weiss, et al. 2009 [36]

Weiss, et al. 2011 [37]

Detrended Fluctuation Analysis
Lee, et al. 2002 [43]

Lee, et al. 2004 [39]

Ferri, et al. 2005 [95]

12 healthy males, 20-31 y; sleep under lorazepam
versus placebo

9 depressive and 11 schizophrenic inpatients compared
to healthy controls

11 healthy males, 23-32 y

12 healthy males, 23-36 y

9 healthy males and females, mean age 27.3 y

9 narcoleptic patients, male and female, 20—55 y

1 healthy male, 22 y

10 healthy males, mean age 23.6 y

20 healthy male volunteers, 23.4+1.9 y. A 24-hour
schedule of sleep deprivation began on morning
awakening following a normal sleep night.

9 male subjects, 21—24 y, in good health and with no
history of alcoholism. PSG was recorded on baseline
night (no ethanol) and on study night when ethanol (0.8
g/kg) was given 15 minutes prior to sleep study.

5 children with ESES, males and female, 6.5-10 y

8 healthy Caucasian, males and females, 21-35 y

116 EEG recordings in 55 neonatal subjects (28-43 wk
gestational age)

50 healthy neonates (22 male) with postmenstrual age
of 28-42 wk.

54 subjects with histories of coffee-induced insomnia,
male and female, mean age 20 y

8 healthy Caucasian, males and females, 21-35 y

10 healthy subjects, male and female, 17-53 y

22 healthy subjects

17 PSG data in MIT/BIH database

The sleep EEGs of six healthy males (30—35 y) and six
sleep apnea EEGs (slp02a, slp14, slp16, slp37, slp61, and
slp66; aged 32—39 years; all of them were males) from
MIT/BIH PSG database.

5 healthy subjects, male and female, 20—32 y

SWS depicts a much smaller dimensionality than light or REM sleep;
lorazepam does not alter the EEG's dimensionality except in stage 2
and REM sleep.

Altered nonlinear brain dynamics mainly during slow wave sleep in
depression and during REM sleep in schizophrenia.

CD was high in REM sleep, declined progressively within each
NREM sleep episode, and reached a low level at times when SWS
was dominant.

Nonlinear measures yield additional information, which improves
the ability to discriminate sleep stages and which may in general
improve the ability to distinguish different psychophysiological
states.

EEG exhibits random fractal structure with 1/f P (1 < p<3)and a
negative linear correlation between CD and fractal exponent (B) in
all states except during SWS.

CD was higher in normal controls than in narcoleptic patients.

CD decreased from wake to sleep stage 1 to 3, and increased for REM
sleep.

CD significantly decreased from wake to sleep stage 1, 2, 3 and
increased during REM sleep. The mean CD of the sleep EEG in the
second half of the night was significantly higher than those in the
first half of the night.

The sleep-deprived states had lower CD values at three channels
(P4, 02, and C3) than normal states.

The mean CD of EEG during sleep stage 2 and those for the second
sleep cycle on the ethanol night were significantly higher than those
on the baseline night (no ethanol). The changes in CD between sleep
cycles were reduced on ethanol night as compared to baseline night.

In NREM sleep, the possible presence of low-dimensional chaos
could be suspected. EEG without ESES could not be distinguished
from linearly filtered noise.

CD decreases from wake to sleep stages 1-4 and then increases
during REM sleep.

For full-term infants, CD between AS and QS was significantly
different. A positive correlation between CD and increasing
conceptional age was noted.

CD during AS is higher than during QS, and CD during indeterminate
sleep is virtually at the midpoint between them. The birth status
(preterm or full-term) of the neonate has an influence on CD.

Both Coffea cruda 30c and Nux vomic 30c increased CD in SWS in the
post-remedy night.

H values were higher in wake and REM sleep, indicating higher self-
similarity, but were lowest in stage 3 and 4.

Higher H values during stage 4 compared to stage 2 and REM sleep
in all electrodes.

Highest H values emerged frontally during all sleep stages, while the
minimum was found during REM in the central zone.

The mean scaling exponents of EEG is discriminated according to
NREM, REM and wake, and gradually increased from stage 1 to stage
2,3 and 4.

The mean scaling exponents increased from wake to sleep stage 1, 2,
3 and 4, but decreased during REM sleep. The scaling exponents of
the apnea were lower than those of the healthy subjects for all the
stages.

Higher levels of interregional synchronization during CAP sleep
than during non-CAP with a small but significant difference
between its A and B phases. Only the first DFA exponent showed
different values during the different sleep stages.
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Citations

Study subjects

Main finding(s)

Lee, et al. 2007 [40]

Leistedt, et al. 2007 [41]

Leistedt, et al. 2007 [94]

Dumont, et al. 2007 [93]

D'Rozario, et al. 2013 [92]

11 unmedicated unipolar depressed patients and 11
non-depressed, age-matched controls.

10 unmedicated inpatients with acute major
depression, and 14 normal controls

10 untreated depressed men in full to partial remission
(42.43+/-5.62 y) and 14 healthy subjects (42.8+/-8.55 y)

24 patients with sleep apnea-hypopnea syndrome (12
moderate-to-severe and 12 severe subjects
respectively), and 12 normal controls; mean age 44 y

8 untreated OSA patients and 13 non-OSA controls

All the scaling exponents in depressed patients and healthy controls
were between 0.5 and 1.0. The scaling exponents of depressed
patients have relatively higher values in whole brain regions
compared to healthy controls, with significant differences at F3, C3,
T3, T4 and O1 channels. A significant linear correlation was
observed between the severity of depression and the scaling
exponent over most of the channels, except 02.

The median values of alpha were lower in patients during sleep
stage 2 and SWS.

Significant difference and deviation of the scaling exponents
between the two groups were not observed during targeted three
sleep stages (stage 2, SWS and REM).

For all sleep bands, the fluctuations of the synchronization between
sleep EEG and heart activity appear scale free and the scaling
exponent is close to one as for 1/f noise. We could not detect any
effect due to sleep apnea-hypopnea syndrome.

DFA scaling exponent and power spectra biomarkers significantly

correlated with simultaneously tested performance and self-rated
sleepiness across the testing period in OSA patients and controls.
Baseline DFA scaling exponent were markers of impaired simulated
driving after 24-h extended wakefulness in OSA. OSA patients had a
higher scaling exponent and delta power during wakefulness than
controls.

* Only methods introduced in the review are listed in the table. Some studies included more than one method.

Abbreviations: AS, active sleep; BIH, Beth Israel Hospital; CAP, cyclic alternating pattern; CD, correlation dimension; DFA, detrended fluctuation analysis; EEG, electroen-
cephalography; ESES, electrical status epilepticus in sleep; H, Hurst exponent; MIT, Massachusetts institute of technology; NREM, non-rapid eye movement; OSA, obstructive
sleep apnea; PSG, polysomnography; QS, quiet sleep; REM, rapid eye movement; SWS, slow wave sleep.

a

Fractal based outcomes

Entropy

Entropy based outcomes

w N1 N2 N3 R

Fig. 1. Reported trends of fractal- and entropy-based outcomes for different sleep
stages.

physiological time series has revealed the fundamental mecha-
nisms of the human physiologic system [47]. Aging and illness have
been shown to exhibit a progressive loss of physiologic complexity
[8,14], reflecting the reduced adaptability of physiologic system to

intrinsic or extrinsic stimuli. Several entropy analyses have been
introduced in sleep literature, including Shannon entropy [48],
permutation entropy [49], spectrum entropy [50], approximate
entropy (ApEn) [51], sample entropy (SampEn) [52], and multiscale
entropy (MSE) [53,54]. Three of commonly used analyses (ApEn,
SampEn, and MSE) are detailed below. In contrast with fractal-
based measures, these entropic-based analyses tend to measure
similar physical properties (e.g., irregularity), thus we outline their
applications to sleep EEG signals in a single section “Applications of
entropy-based methods”.

Approximate entropy

ApEn was introduced to assess the irregularity of the time
sequence data [51]. Two input parameters, a pattern length m and
tolerance factor r, are specified to compute ApEn. Increased value of
ApEn indicates increased irregularity of the time series data and has
been used extensively to characterize the degree of randomness in
studies of physiologic time series [55,56].

Sample entropy

SampEn was developed to solve the shortcomings of ApEn, in
which the precise estimate of ApEn requires substantial lengths of
the data and lack of relative consistency (e.g., if the ApEn of one
data set is higher than that of another, then it should, but often does
not, remain higher under all parameters tested) [52]. Similar to
ApEn, a higher value of SampEn indicates increased irregularity in
the time series. SampEn has been found to be more consistent and
less vulnerable to the constraint of time series length than the ApEn
algorithm [57].

Multiscale entropy

MSE analysis was introduced based on SampEn to quantify the
entropy over different time scales [53,54]. The motivation of MSE is
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that increased entropy is not always associated with increased
dynamical complexity. For example, an uncorrelated randomness
(such as irregular heart rate seen in atrial fibrillation) has high
entropy but did not convey physiologically meaningful complexity
[8]. MSE method measures the entropy of a time series over
different time scales, enabling a dimensional view of complexity
that differentiates true complex dynamics from regularity and
uncorrelated randomness. For example, a regular time series would
exhibit low entropy in all time scales, whereas a random time series
could show a high entropy in short time scale and the entropy
decades as scale factor increases [53].

Applications of entropy-based methods

For healthy adults, the entropy of sleep EEG signals gradually
decreases from wake to sleep stages N1, N2, to N3 (or stage 3 + 4),
and increases during REM [50,58—62] (Fig. 1b). The results are
consistent regardless of the different entropic methods used in the
literature. Nonetheless, inconsistency was found in the comparison
between the entropy of REM and other sleep stages. Some studies
found entropy of REM EEG was between that of wake and N1
[50,59], whereas others reported to be between N1 and N2
[50,58,61,62]. The similar trend of entropy change is also present in
children (wake > REM sleep > NREM sleep) [60] and in newborns
(active sleep > quiet sleep) [63].

The entropy of sleep EEG signals may be of help to assess the
trajectory of brain maturation in newborns. For example, a study in
newborns (age 25—60 wk) reported that entropy of EEG increased
during both active sleep and quiet sleep before approximately
42 wk in age but ceased to increase in quiet sleep and even
decreased in active sleep after newborns reached term age [63].

In pathological conditions such as Parkinson's disease (PD),
sleep stage-specific increased MSE was observed during NREM
sleep in PD patients, compared with non-PD controls, and the dif-
ference was significant at high time-scale factors, which might
reflect a compensatory mechanism for early defects in neuronal
network control machinery in PD [64].

Implications of entropy-based methods

In general, findings from the sleep EEG studies using entropy-
based methods are relatively consistent (Table 2), compared to
those using fractal-based analyses. Although entropy and fractal-
based methods have very different physical definitions, the ubiq-
uitous principle among different complexity analyses is to quantify
how the variability (or temporal dynamics) of the time series
changes with different time scales [65], and the properties of reg-
ularity and randomness captured by these methods is inter-
changeable. Using methods of nonlinear dynamics, sleep EEG
signals become less complex (i.e., toward regularity) as sleep stage
advances, suggesting that brain activity during sleep becomes more
coherent and periodic compared to the wake or REM period.

One limitation of the most existing studies is that complexity
was not measured at multiple time scales. The EEG signal appar-
ently contains multiple frequency components; each operates at
distinct time scales [66]. Thus, investigation of complexity changes
across different time scales in EEG signals may be of help to identify
specific mode of brain activity that is related to sleep-wake
regulation.

Discussion
Our review of recent studies deduced that the findings of

nonlinear approaches are somehow related and consistent
regardless of the particular methods. From a fractal perspective, a

fractal component decreases from wake to sleep stages N1—N3 and
increases during REM sleep, and DFA scaling exponents increase
from wake to stages N1—N3 and decrease during REM sleep. From
the entropy perspective, the complexity of sleep EEG decreases
from wake to sleep stages N1—N3 and increases during REM.

Efficient sleep is supposed to be restful and restorative [2].
Nonlinear features exhibit a pattern of gradual change through
sleep stages, which is consistent with NREM sleep stages approxi-
mately paralleling a depth-of-sleep continuum, with arousal
thresholds generally lowest in N1 and highest in N3.

Sleep and wakefulness are influenced by different neurotrans-
mitter signals in the brain. Neurons in the brainstem produce neu-
rotransmitters such as serotonin and norepinephrine that keep
some parts of the brain active while we are awake. Other neurons,
which begin signaling when we fall asleep, appear to “switch off” the
signals that keep us awake [67]. Neural models of information
processing have suggested that both the degree of synchrony and
time scale determine the maximum information transfer between
neurons [68]. Overall, the cortex may become more inactive as a
person proceeds through one stage to the next deeper stage until N3
[44]. As sleep is getting deeper, the reason why entropy, CD, and H
decrease, could be that fewer neurons are available for processing
information, or that the neurons are better synchronized to generate
brain waves with less complexity [45]. In REM sleep, the brain be-
comes highly active again and can nearly attain the level of someone
who is awake. In addition, cerebral blood flow and metabolism de-
creases in deep sleep, and remains about the same during REM sleep
as in wakefulness, which reflects that cerebral synaptic activity
levels are lower in deep sleep but higher in REM as in wake [69]. The
cortex becomes more active and it is possible that additional neu-
rons are available or neurons are desynchronized for processing
information [70]; consequently, entropy, the CD, and H increase.

Both conventional spectral analyses and nonlinear measures
have certain advantages. For example, nonlinear measures more
effectively discriminated between N1 and N2, whereas the spectral
measures were superior in separating N2 and SWS [22]. We believe
that the dynamic complexity of sleep EEG is influenced by both
linear and nonlinear features and can be effectively interpreted
using comprehensive approaches including nonlinear measures of
brain activity; furthermore, studies have proven that using
nonlinear measures can yield valuable information compared to
conventional linear measures such as Fourier transforms [71,72].

In recent years, progresses have been made in advancing
nonlinear methods. Examples of latest developments include 1)
substituting a fuzzy membership function for the Heaviside function
in SampEn to improve the consistency [73], 2) using symbolic series
instead of the continuous variables to improve the robustness to
outliers [74], and 3) measuring the distribution of inter-vector dis-
tances in order to mitigate the dependence on input parameters
[75]. Other than the above reviewed fractal and entropy based
methods, another widely-used methods, such as recurrence quan-
tification analysis [76], are also capable of measuring complexity for
non-stationary data including sleep EEG [77]. Of note, this review
focuses mainly on the analysis of brain signal in temporal dimension
using fractal or entropy methods. In recent years, there has been an
increasing interest in applying graph theory to study the complexity
of brain networks in spatial dimension [78—80] using various
correlative methods to assess inter-dependency of brain signal
among different brain regions [72,81—-86].

Nonlinear analysis of EEG signal can serve in the understanding
or as consistent descriptors of sleep dynamics and potentially assist
in automatic sleep classification. All existing findings encourage
using nonlinear approaches as additional aids to visual or auto-
mated sleep staging. Furthermore, they may help in assessing
pathologic conditions [87].
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Table 2
Applications of entropy-based methods*.

Citations Study subjects

Main finding(s)

Approximate Entropy
Acharya, et al. 2005 [15] 8 healthy Caucasian, males and females,

21-35y

He, et al. 2005 [50] 8 healthy subjects, 21-35 y

Burioka, et al. 2005 [59] 8 healthy males, 23-26 y

Lee, et al. 2013 [60] 6 adults, 19-25 y; 6 children, 11-13 y.

Sample Entropy
Zhang, et al. 2009 [63] 168 newborns with postmenstrual age

ranging from 25 to 60 wk

Chouvarda, et al. 2010 [62] 10 healthy subjects, male and female,

25-45y

Chouvarda, et al. 2011 [58] 10 healthy subjects, male and female,

25-45y

Chouvarda, et al. 2012 [97] 11 healthy subjects, male and female,

25-45y

Chouvarda, et al. 2012 [98] 11 healthy subjects, mean age 32.7 y,
and 10 subjects diagnosed with primary
insomnia, mean age 32.5 y, male and

female

Mendez, et al. 2015 [96] 10 healthy adult subjects (5 males), 25-

45y, mean age 32.7 y

Multiscale Entropy
Bell, et al. 2012 [88] 54 college students with histories of
coffee-induced insomnia, male and

female, mean age 20 y

Chung, et al. 2013 [64] 9 patients with PD, (mean age 78.2 y)
and 11 non-PD controls (mean age 61.2

y); male and female

Shi, et al. 2016 [66] 4 healthy male subjects (27-38 yrs with

mean age 32.0 +4.6yrs)

In sleep stage 4, the ApEn was the lowest due to the very low variation in the
EEG signal. In REM sleep, the variation is slightly more and as a result the ApEn
increases.

ApEn declined from wake to each NREM sleep episode progressively, and
reached a low level at times when SWS was dominant. ApEn in REM sleep is
higher than in than SWS.

ApEn of EEG was significantly lower during sleep stage 4 and higher during
wake and REM sleep.

ApEn trends for both age groups: wake > REM sleep > NREM sleep. Adults had
significantly larger ApEn values than children during wakefulness.

SampEn of EEG during AS is higher than that during QS. SampEn increases
during both AS and QS before about 42 wk in PMA while it ceases its increase
in QS and even decreases in AS after newborns reaching term age. A distinct
decrease in the interquartile range of SampEn is found with increasing PMA
(25-50 wk), followed by maintenance of low fluctuation in SampEn curves.

SampEn values are related to both the sleep stages and the subtype of CAP.
Complexity features can serve as consistent descriptors of sleep dynamics and
can potentially assist in the classification of sleep stages

SampEn declined from wake to each NREM sleep episode. SampEn in REM
sleep is higher than in SWS. For CAP sleep, A3 presented a quite similar
complexity independently of the sleep stage, while A1 and A2 showed higher
complexity in light sleep than during deep sleep.

Based on the nonlinear properties of the EEG at transition points of the
sequences that build the CAPs, EEG signal present significant differences
between activations and non-activations in the SampEn.

As regards the deep sleep building phases defined by CAP, more irregular
activation-deactivation patterns, with larger deactivation time, i.e., distance
between consecutive activation events, and appearing with higher EEG
complexity in deactivation. A longer duration of desynchronization phases,
with increased EEG complexity and more irregular patterns.

When define an onset window containing the first two seconds of the A-phase
of CAP, SampEn showed statistical differences between the two consecutive
no overlapped windows with duration of 2 seconds before the onset window,
as well as between two windows after the onset window. On the other hand,
the SampEn measure shows a different behavior during the onset.

MSE results indicate significant, remedy-specific directional effects, especially
later in the night (Coffea cruda: remedy night increases and post-remedy night
decreases in MSE at multiple sites for both stage 3 and 4 in both REM cycles;
Nux vomica: remedy night decreases and post-remedy night increases).

Sleep stage-specific increased MSE was observed in patients with PD during
NREM sleep. The difference was more marked and significant at higher time
scale factors.

Entropy is higher during wakefulness and increasing time scales at small
scales (<0.04s). In contrast, entropy is higher during deep sleep and lower
with increasing time scales at large scales (0.25—2 s).

* Only methods introduced in the review are listed in the table. Some studies included more than one method.
Abbreviations: ApEn, approximate entropy; AS, active sleep; CAP, cyclic alternating pattern; EEG, electroencephalography; MSE, multiscale entropy; NREM, non-rapid eye
movement; PD, Parkinson’s disease; PMA, postmenstrual age; QS, quiet sleep; REM, rapid eye movement; SampEn, sample entropy; SWS, slow wave sleep.

Nonlinear approaches are promising and worth further inves-
tigation; however, some limitations must be mentioned. First, high-
quality studies with well-designed experimental conditions and
large samples are scant. Nearly all existing studies are based on the
conventional definition of sleep stages. Therefore, the full advan-
tages of nonlinear approaches have yet to be determined.
Regarding the clinical use, it seems difficult to define the norm for
sleep EEG by using nonlinear methods, because these methods
themselves involve signal pre-processing and multiple parameters
to be defined within the algorithm. In addition, the neurophysio-
logic mechanisms behind the complex oscillations of brain signals
remain poorly understood. We suggest to evaluate a wide range of

nonlinear measures in the large-scale sleep database, and to
develop practical applications of nonlinear approaches to under-
standing the sleep EEG dynamics in healthy and pathological
conditions.

Conclusion

EEG is critical for extending the knowledge of sleep and
revealing its fundamental mechanisms. Studies have shown that
nonlinear analyses of sleep EEG signal can distinguish sleep stages
as well as normal and pathological conditions. Both nonlinear and
linear measures have certain advantages and disadvantages that
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Bedard C, Kroger H, Destexhe A. Does the 1/f frequency scaling of brain
signals reflect self-organized critical states? Phys Rev Lett 2006;97:
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