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a b s t r a c t 

The paper presents a navigation system based on Elman Artificial Neural Network (ANN).

The task of data fusion from different sensors is realized by trained ANN. Determining po- 

sition in space is an issue of nonlinear hence. Not every type of ANN is used for such a

task. Choice of Elman ANN was dictated by its construction and successfully applications

to nonlinear problems requiring prediction. Elman network is composed of three layers.

Comprises a layer of hidden layer units context which is connected to the hidden layer.

Context-sensitive layer allows for store the values of previous hidden units. With this layer

prediction is possible in sequential order. This is the effect of contextual memory where

information is stored about what it was before. This kind of functionality is not able to

provide any other standard neural network unidirectional. The system consists of MEMS

(Micro Electro-Mechanical Systems) sensors, which are based on IMU (Inertial Measure- 

ment Unit). IMU is composed from gyroscopes, accelerometers and magnetometers which

provide three dimensional linear accelerations and angular rates. This is a classic set of

sensors for determining the position in space. The study presents the results of the imple- 

mentation of algorithms for determining the position in space using trained Elman ANN.

The data samples to train ANN were collected during the test flight of Quadrocopter. Pa- 

per presents the performance for different configurations of Elman ANN. Presented system

provides easy addition of other sensors e.g. GPS/GLONASS receiver.

© 2017 Elsevier Inc. All rights reserved.

 

 

 

 

 

 

 

 

 

1. Introduction

The precise location in space plays an important role in many fields such as robotics [1,2] , navigation [3,4] , human motion

analysis [5] and human-machine interface [6] . The sensors are used to accurately map the movement of the object in space.

However, the sensors are not universal and not each of them is suitable for every task. Often, multiple sensors are used

to measure various physical values such as: linear acceleration, angular acceleration and the magnetic field. Data collected

from these sensors must be combined in order to obtain complete information on the position of the object in space. 

Most of the values used in determining the position are expressed by a vector. The position is defined as a displacement

between the two coordinate systems. The first one can be the ground or the starting point of the sensor calibration. The

second one is the navigation object e.g. quadrocopter. Variables such as direction, speed, acceleration and movements can

be easily calculated from based on the change of position [7,8] . Such calculations are performed as multiplying the vector

representing the position of one coordinate system to another by a 3 ×3 rotation matrix. This representation is referred to
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as a representation of direction cosines or DCM (Direction Cosine Matrices). The conversion of the angular position between

the Euler angles and DCM representation given by the rotation Matrix R 

R = 

[ 

cos θ cos ψ sin φ sin θ cos ψ − cos φ sin ψ cos φ sin θ cos ψ + sin φ sin ψ 

cos θ sin ψ sin φ sin θ sin ψ + cos φ cos ψ cos φ sin θ sin ψ − sin φ cos ψ 

− sin θ sin φ cos θ cos φ cos θ

] 

(1) 

where: 

φ - Roll; θ - Pitch; ψ - Yaw. 

Another, often used method to define position of the object in space is to use a quaternion math. Quaternion is a four-

dimensional complex number that can be used to represent the orientation of a rigid body or coordinate frame in three-

dimensional space. 

Data connections are made by using mathematical transformations describing the position in space using quaternions.

Quaternion q can be written in the following form: 

q = q 0 + iq 1 + jq 2 + kq 3 = ( q 0 , q 1 , q 2 , q 3 ) (2) 

i = 

[
i 0 

0 −i 

]
j = 

[
0 1 

−1 0 

]
k = 

[
0 i 
i 0 

]
(3) 

where: 

i , j , k are special quaternion matrixes, q 0 , q 1 , q 2 are the vector components, q 3 is the scalar component of the quaternion,

and: 

q 0 = e x sin 

(
ϑ 

2 

)
q 1 = e y sin 

(
ϑ 

2 

)

q 2 = e z sin 

(
ϑ 

2 

)
q 3 = cos 

(
ϑ 

2 

)
(4) 

where: 

e x , e y , e z are the principal axis ϑ is the principal angle. 

Transforming the quaternion to the Euler representation of angles is simple and is done with the following formulas: 

φ = tan 

−1 

(
2 ( q 1 q 2 + q 0 q 3 ) 

q 2 
3 

− q 2 
2 

− q 2 
1 

+ q 2 
0 

)
(5) 

θ = sin 

−1 
( −2 ( q 0 q 2 + q 1 q 3 ) ) (6) 

ψ = tan 

−1 

(
2 ( q 0 q 1 + q 3 q 2 ) 

q 2 
3 

− q 2 
2 

− q 2 
1 

+ q 2 
0 

)
(7) 

2. Multisensor data fusion 

To train the ANN we used Euler angles calculated with the AHRS algorithm. Designed ANN has nine inputs representing

the various axes of each of the sensors, while at the output there are three signals corresponding to the description of the

position in space of Euler angles (Roll, Pitch, Yaw). 

To record samples from the sensors we have built a special equipment showed in Fig. 1 . We used Atmel IMU module

ATAVRSBIN1 features a three-axis accelerometer, three-axis gyroscope and three-axis magnetometer. To read and store the

data we used development board STM32F4-Discovery. 

The connections between components have been implemented using custom PCB containing an additional power block,

communication via Bluetooth and SD card slot. Samples from the accelerometer and gyro were recorded at a frequency of

50 Hz while frequency of magnetometer was 10 Hz. Collected data was recorded on SD Card, then ripped to a PC where all

data were processed with use MATLAB environment. 

Attitude Heading and Reference Systems are able to provide a complete measurement of orientation relatively to the

direction of gravity and the Earth’s magnetic field. An orientation estimation algorithm is a fundamental component of any

IMU system. It is required to join together the separate sensor data into a single, optimal estimation of orientation. 

Typical sensors used to form an AHRS are accelerometers to measure the proper acceleration along the three axes of the

UAV body coordinate, gyroscopes to provide the three-axis angular rates and magnetometers to capture the magnet values

of the three axes ( Fig. 2 ) [9,10] . 
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Fig. 1. Samples recorder device. 

Fig. 2. Scheme of AHRS [10] . 

Fig. 3. Block diagram of the system. 
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Fig. 4. Elman Neural Network. 
The AHRS algorithm can be evaluated according to the following steps: 

• Read samples 

a = ( a x , a y , a z ) 
ω = ( ω x , ω y , ω z ) 
H = ( H x , H y , H z ) 

(8) 

• Normalize measurements 

˜ H = ( 0 , H ) (9) 

b = ( 0 , ‖ ( h 2 , h 3 ) ‖ 

, 0 , h 4 ) (10) 

q = q / ‖ 

q ‖ 

(11) 

• Reference direction of Earth’s magnetic field 

h = q �

(
˜ H � q̄ 

)
(12) 

• Estimated direction of gravity and magnetic field 

v = 

( 

2 ( q 2 q 4 − q 1 q 3 ) 
2 ( q 1 q 2 + q 3 q 4 ) 

q 2 1 − q 2 2 − q 2 3 + q 2 4 

) T 

(13) 

w = 

⎛ 

⎝ 

2 b 2 
(
0 . 5 − q 2 3 − q 2 4 

)
+ 2 b 4 ( q 2 q 4 − q 1 q 3 ) 

2 b 2 ( q 2 q 3 − q 1 q 4 ) + 2 b 4 ( q 1 q 2 + q 3 q 4 ) (
2 2 

)
⎞ 

⎠ 

T 

(14) 
2 b 2 ( q 1 q 3 + q 2 q 4 ) + 2 b 4 0 . 5 − q 2 − q 3 
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• Compute error as sum of cross product between estimated direction and measured direction of fields

e = a × v + H × w (15)

• Apply feedback terms

ω = ω + K p · e (16)

• Compute rate of change of quaternion

˙ q = 0 . 5 ( q � ( 0 , ω ) ) (17)

• Integrate to yield quaternion

q = q + 

˙ q / 256 (18)

• Determine the position using the rotation matrix

R = 

(
2 q 2 1 + 2 q 2 2 − 1 

2 ( q 2 q 3 − q 1 q 4 ) 
2 ( q 2 q 4 + q 1 q 3 ) 2 ( q 3 q 4 − q 1 q 2 ) 2 q 2 1 + 2 q 2 4 − 1 

)
(19)

where: 

• a - linear acceleration,

• ω - angular acceleration,

• H - magnetic flux,

• q - quaternion,

• ˜ H - magnetic flux quaternion,

• h - reference direction of Earth’s magnetic field,

• b - normalized h ,

• v - direction of gravity,

• w - direction of magnetic field,

• e - error,

• ˙ q - rate of change of quaternion.

ANNs as a great nonlinear function approximator give a great perspective for determining the object’s position. The

advantage of ANN is not only the possibility of faster response but also avoiding a number of advanced trigonometric cal-

culations. 

3. Artificial Neural Network

Artificial Neural Network can be an alternative to complicated calculations which occur in the AHRS algorithm. ANN that

has good training data and appropriate achieves training algorithm positive results as the standard calculation in shorter

time to response. A large number of trigonometric operations and matrix operations are computationally and time expen-

sive. For implementation of AHRS we have chosen an Elman type of ANN. 

Elman ANN is a simple example of a recurrent neural network. Elman ANN is composed of three layers. Its structure

contains at least one hidden layer from which the feedback is led. Includes a layer of hidden layer units context which is

connected to the hidden layer. Context-sensitive layer allows for store the values of previous hidden units. With this layer

prediction is possible in sequential order. This is the effect of contextual memory where information is stored about what

it was before. This kind of functionality is not able to provide by any other standard unidirectional ANN. 

4. Experimental results

Fig. 5 shows the data collected from the three axes of three sensors. The samples were then analyzed with the help of

the algorithm described in Section 2 , so processed data is shown in Fig. 6 . That data was used to train ANN. 

In all experiments we used Levenberg–Marquardt algorithm of training for different number of neurons in the hidden

layer and different sizes of the feedback. In Table 1 we summarize some errors obtained during these experiments and

training time of ANN in MATLAB (Intel Core i5 M520 2.4 GHz, 8 GB RAM). 

Each of the configurations had nine inputs and three outputs. The shape of the neural network for last configurations is

shown in Fig. 7 . 

Each configuration has been checked by a test sequence to obtain samples from the output of Elman ANN to estimated

values of the Euler angles of the position in space. 

Comparison of the results obtained by direct calculation using the AHRS algorithm and by the implementation of the

ANN for Roll axis is shown in Fig. 8 . 

Comparing the output values obtained with the artificial neural network, and the value obtained from the calculation of

the angular position in space is presented in Fig. 9 . We can observe that the increased number of neurons in the hidden

layer has no significant effect on the accuracy of estimated values. Increasing the number of neurons in the feedback loop

allows the parameters noted improvement obtained by using of artificial neural network. 
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Fig. 5. Collected data samples.

Table 1

Error value depending on the configuration of an ANN.

No. No. of neurons in No. of neurons in Error (roll) Error (pitch) Error (yaw) Training time

the hidden layer the feedback (hh:mm:ss)

1 10 6 04206 03299 04256 00:04:10

2 20 8 17965 e- 4 20845 e- 4 17270 e- 4 01:59:11

3 30 12 14272 e- 4 11195 e- 4 14154 e- 4 22:45:29

4 40 16 16044 e- 4 19055 e- 4 18762 e- 4 38:41:32

5 50 20 20893 e- 4 27618 e- 4 27481 e- 4 62:14:20
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Fig. 6. Data after the fusion. 

Fig. 7. Visualization of the last configuration of ANN. 

Please cite this article as: K. Kolanowski et al., Multisensor data fusion using Elman neural networks, Applied Mathematics 

and Computation (2017), http://dx.doi.org/10.1016/j.amc.2017.02.031 

http://dx.doi.org/10.1016/j.amc.2017.02.031


8 K. Kolanowski et al. / Applied Mathematics and Computation 0 0 0 (2017) 1–9 

ARTICLE IN PRESS 

JID: AMC [m3Gsc; March 11, 2017;2:22 ] 

Fig. 8. Results of first configuration ANN vs calculated AHRS. 

Fig. 9. Error of last configuration. 
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5. Conclusions 

The obtained results allow to conclude that the assumptions were correct. Comparing the results it can be concluded

that the values obtained using the ANN do not differ significantly from these calculated using the AHRS algorithm. 

However, comparing the differences between the values of the ANN output and the calculated values can be seen a large

error values. This is caused by the high dynamics of the neural network input data. Future studies need to prepare more

data sets to learn the network. 

This shows that we can successfully use the ANN as an alternative to complicated calculations. However, one should

carry out a more thorough investigation of the selection of ANN parameters. 

Future research should be enriched with additional sensors such as GPS receiver and barometer. These sensors will im-

prove the positioning accuracy. And that will make the research will be more varied with more variables for analysis. It is

also planned to compare the results with the use of other types of artificial neural networks. 
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