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Abstract
Mitochondria are double-membrane-bound organelles that are present in all nucleated eukaryotic cells and are
responsible for the production of cellular energy in the form of ATP. Mitochondrial function is under dual genetic
control – the 16.6-kb mitochondrial genome, with only 37 genes, and the nuclear genome, which encodes the
remaining ∼1300 proteins of the mitoproteome. Mitochondrial dysfunction can arise because of defects in either
mitochondrial DNA or nuclear mitochondrial genes, and can present in childhood or adulthood in association with
vast clinical heterogeneity, with symptoms affecting a single organ or tissue, or multisystem involvement. There is
no cure for mitochondrial disease for the vast majority of mitochondrial disease patients, and a genetic diagnosis is
therefore crucial for genetic counselling and recurrence risk calculation, and can impact on the clinical management
of affected patients. Next-generation sequencing strategies are proving pivotal in the discovery of new disease
genes and the diagnosis of clinically affected patients; mutations in >250 genes have now been shown to cause
mitochondrial disease, and the biochemical, histochemical, immunocytochemical and neuropathological charac-
terization of these patients has led to improved diagnostic testing strategies and novel diagnostic techniques. This
review focuses on the current genetic landscape associated with mitochondrial disease, before focusing on advances
in studying associated mitochondrial pathology in two, clinically relevant organs – skeletal muscle and brain.
© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Mitochondria are double-membrane-bound organelles
present in all nucleated eukaryotic cells, and are respon-
sible for numerous cellular processes, including calcium
homeostasis, iron–sulphur cluster biogenesis, apopto-
sis, and the production of cellular energy (ATP) by
oxidative phosphorylation (OXPHOS) [1,2]. With bac-
terial origins, a historical symbiotic relationship evolved
during which mitochondria became normal constituents
of eukaryotic cells [3]. Their ancestry remains apparent
from their own multicopy genetic material [mitochon-
drial DNA (mtDNA)], with copy number varying greatly
between individuals and across different tissues from the
same individual. The 16.6-kb circular mtDNA molecule
encodes 13 subunits of the OXPHOS components, 22
mitochondrial tRNAs, and two subunits of the mitori-
bosomes [4]. Additionally, the mitoproteome requires a
further ∼1300 nuclear-encoded proteins for producing,
assembling or supporting the five multimeric OXPHOS
complexes (I–V) and ancillary mitochondrial processes
[5]. It stands to reason that mitochondrial dysfunction
can result from either mtDNA or nuclear gene defects,

and can occur as a primary, congenital condition or a
secondary, age-associated effect attributable to somatic
mutation [6].

The umbrella term ‘mitochondrial disease’ refers
to a clinically heterogeneous group of primary mito-
chondrial disorders in which the tissues and organs
that are most often affected are those with the high-
est energy demands. Clinical symptoms can arise in
childhood or later in life, and can affect one organ in
isolation or be multisystemic [7]; the minimum dis-
ease prevalence in adults is ∼12.5 per 100 000 [8], and
∼4.7 per 100 000 in children [9]. There is a general
lack of genotype–phenotype correlations in many mito-
chondrial disorders, which means that establishing a
genetic diagnosis can be a complicated process, and
remains elusive for many patients. This review pro-
vides a concise update on three areas where there have
been major advances in our understanding in recent
years [10], i.e. the molecular genetics, muscle pathology
and neuropathology associated with mitochondrial dis-
ease, highlighting the range of new techniques that are
improving the diagnosis of patients with suspected mito-
chondrial disease, with the aim of providing options to
families at risk of an otherwise incurable condition.

© 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
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The genetics of mitochondrial disease

Mitochondrial disease caused by mtDNA
Unlike nuclear DNA, which is diploid and follows
Mendelian laws of inheritance, mtDNA is exclusively
maternally inherited [11]. The multicopy nature of
mtDNA gives rise to heteroplasmy, a unique aspect of
mtDNA-associated genetics that occurs when there is
coexistence of a mix of mutant and wild-type mtDNA
molecules (heteroplasmy). In contrast, homoplasmy
occurs when all of the mtDNA molecules have the
same genotype. Heteroplasmic mutations often have
a variable threshold, i.e. a level to which the cell can
tolerate defective mtDNA molecules [12]. When the
mutation load exceeds this threshold, metabolic dys-
function and associated clinical symptoms occur. Point
mutations and large-scale mtDNA deletions represent
the two most common causes of primary mtDNA dis-
ease, the former usually being maternally inherited, and
the latter typically arising de novo during embryonic
development.

mtDNA point mutations

mtDNA point mutations (including small indel muta-
tions) constitute a significant cause of human disease,
with an estimated population prevalence of one in 200
[13]. Mutations have been reported in every mtDNA
gene, and have been associated with clinical symp-
toms ranging from non-syndromic sensorineural deaf-
ness to MELAS, a devastating syndromic neurological
condition whose predominant features, i.e. mitochon-
drial encephalopathy, lactic acidosis, and stroke-like
episodes, give rise to the acronym. Clinical symptoms
can present in child or adulthood, and mutations can
be inherited (∼75% cases) or occur de novo (∼25%
cases) [14]. Maternally transmitted mtDNA defects may
involve a clinically unaffected mother who harbours the
familial mtDNA mutation below the threshold required
for cellular dysfunction, although her oocytes harbour
varying mutation loads, owing to the selection pres-
sures of the mitochondrial bottleneck [15]. It is there-
fore almost impossible to predict the recurrence risk
for subsequent pregnancies, although prenatal testing of
embryonic tissues by the use of chorionic villus biopsy
or amniocentesis can provide an accurate measure of
mtDNA heteroplasmy in the fetus, which can inform
reproductive choices [16]. The recurrence risk of de
novo mtDNA point mutations is very low, except for the
risk of germline mosaicism in maternal oocytes [14].

Single, large-scale mtDNA deletions

Single, large-scale mtDNA deletions have a population
frequency of 1.5/100 000 [8], with three main associated
phenotypes: chronic progressive external ophthalmople-
gia (PEO) (∼65% of cases), Kearns–Sayre syndrome
(KSS) (∼30% of cases), and Pearson syndrome (<5%
of cases) [17]. Pearson syndrome is the most severe

presentation associated with single, large-scale mtDNA
deletions; patients present early in life with sideroblastic
anaemia and pancreatic dysfunction, and the condition
is often fatal in infancy [18]. KSS patients present
before the of age 20 years with ptosis and/or PEO and
pigmentary retinopathy, and may have multisystem
involvement, including myopathy, ataxia, or cardiac
conduction defects [17]. PEO is the more benign pre-
sentation attributable to single mtDNA deletions, and
is associated with ophthalmoplegia, ptosis, and myopa-
thy [19]. Unlike nuclear gene rearrangements, single,
large-scale mtDNA deletions often arise sporadically
during embryonic development and have a low recur-
rence risk [20]. Clinically affected women who harbour
a large-scale mtDNA deletion have a low (<10%) risk
of transmission [20], and prenatal testing is informative
for at-risk pregnancies [16].

Secondary mtDNA mutations

Large-scale mtDNA deletions and point mutations rep-
resent primary mtDNA defects, but secondary defects
are other common causes of mitochondrial disease.
Defective mtDNA maintenance, transcription, or protein
translation, or a defective ancillary process such as mito-
chondrial import, can cause either quantitative (deple-
tion of mtDNA copy number) or qualitative (affecting
mtDNA genome integrity, resulting in multiple large
mtDNA deletions) effects. These result from mutations
affecting nuclear genes, and inheritance occurs in a
Mendelian (or de novo) fashion.

Mitochondrial disease caused by nuclear
mitochondrial genes
The majority of the genes encoding the mitoproteome
are in the nuclear genome [5] and follow Mendelian
inheritance patterns. De novo, X-linked, dominant and
recessive inheritance cases have been reported in the lit-
erature [21–24]. The first nuclear mitochondrial gene
mutation was identified in 1995 in SDHA, encoding a
structural subunit of complex II [25], and there has been
monumental progress in the discovery of mitochondrial
disease candidate genes since then. New proteomic and
transcriptomic approaches are being applied to models
of human disease to uncover new candidates [26,27],
and patient analyses are validating their involvement in
human pathology [28]. The traditional approach of link-
age analysis by the use of multiple affected family mem-
bers has given way to massively parallel sequencing
strategies, including whole exome sequencing (WES),
either of affected singletons or of proband–parent trios,
and new disease genes are still emerging over 20 years
later. Of the ∼1300 proteins in the mitoproteome, muta-
tions have been reported in >250 genes [29], and both
new genes and new mechanisms involving genes already
implicated in human disease through alternative path-
ways are being reported [30]. It is apparent that more
severe clinical phenotypes are often associated with
recessive defects, presumably because of varying het-
eroplasmy levels in clinically affected tissues and the
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Figure 1. Schematic of the OXPHOS complexes, their component subunits, and associated ancillary factors. Multimeric protein complexes
I–IV shuttle electrons along the respiratory chain, facilitated by the reduction of the cofactors coenzyme Q10 (Q) and cytochrome c (cyt c).
Electron transfer is coupled to the transfer of protons (H+) across the inner mitochondrial membrane to generate a proton motive force,
which is used by complex V (ATP synthase) to synthesize ATP. Characterization of OXPHOS complexes has identified the constitutive subunits
that are either mtDNA-encoded or nuclear-encoded, and many of the nuclear-encoded proteins involved in complex assembly, biogenesis,
or ancillary function; genes in which mutations have been identified are shown in bold, and the first report of disease-causing mutations
is shown in blue.

dichotomous effect of recessive mutations; therefore,
mtDNA mutations are more common in adults, whereas
nuclear gene defects are overrepresented in paediatric
cases [31].

In this review, we delineate the nuclear mitochondrial
disease genes into those that cause isolated and those
that cause multiple respiratory chain complex deficien-
cies, for simplicity and brevity.

Mitochondrial disease caused by nuclear
mitochondrial genes: isolated respiratory chain
complex deficiencies
Histochemical and biochemical evidence of an isolated
respiratory chain complex deficiency can be suggestive
of a mutation affecting either a structural subunit or an
assembly/ancillary factor of one of the five OXPHOS
complexes. Our current knowledge of the structural sub-
units and ancillary factors for each complex is summa-
rized in Figure 1.

Isolated complex I deficiency

Complex I (NADH dehydrogenase) is composed
of 44 structural subunits (seven of which are
mtDNA-encoded) with at least 14 ancillary/assembly
factors [32,33]. Isolated complex I deficiency represents
the biochemical phenotype for ∼30% of paediatric
patients [34], of whom 70–80% have a nuclear gene
defect [35]. The clinical symptoms associated with
complex I deficiency are heterogeneous, although
the prognosis is typically poor, with rapid progres-
sion. Lactic acidosis is a common feature, although
it is often present with other symptoms, such as car-
diomyopathy or leukodystrophy. Mutations have been
identified in 19 of the 37 structural subunits, and in 10
of 14 identified assembly factors. Although there are
a few exceptions, such as the p.Trp22Arg NDUFB3
[36] and p.Gly212Val TMEM126B European founder
mutations [28,37], and the p.Cys115Tyr NDUFS6
Caucasus Jewish founder mutation [38], studies have
revealed the majority of complex I deficiency mutations
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to be private and non-recurrent [39]. NDUFS2 and
ACAD9 mutations account for a significant proportion
of diagnoses, although it is likely that clearer genetic
diagnostic trends will emerge from large diagnostic
next-generation sequencing (NGS) datasets [40].

Isolated complex II deficiency

Succinate dehydrogenase (SDH), unlike any of the other
complexes of the mitochondrial OXPHOS system, is
entirely nuclear-encoded, and is involved in both the tri-
carboxylic acid cycle (where it metabolizes succinate to
fumarate) and the respiratory chain (transferring elec-
trons from FADH2 to reduce ubiquinone to ubiquinol).
Complex II deficiency is rare (2–8% of mitochon-
drial disease cases [41,42]), with <50 patients having
been reported. Biallelic mutations have been associ-
ated with congenital metabolic presentations, predomi-
nantly affecting either the central nervous system (CNS)
or heart (hypertrophic cardiomyopathy, leukodystrophy,
Leigh syndrome, and encephalopathy) [43], whereas
heterozygous mutations are associated with cancer sus-
ceptibility, particularly pheochromocytoma and para-
ganglioma [44]. Although SDH was initially believed to
have distinct genotype–phenotype relationships (SDHA
and SDHAF1 being linked to mitochondrial disease, and
SDHB/SDHC/SDHD/SDHAF2 being linked with cancer
susceptibility), it is emerging that there is phenotypic
overlap, prompting tumour surveillance of unaffected
relatives heterozygous for SDHx mutations [45,46].

Isolated complex III deficiency

Ubiquinol–cytochrome c oxidoreductase, complex III
of the respiratory chain, functions as a homodimer to
transfer electrons from ubiquinol to cytochrome b, and
then to cytochrome c. Complex III is composed of 11
structural subunits plus two heme groups and the Rieske
iron–sulphur protein. Exercise intolerance is the clini-
cal phenotype reported for >50% of patients with muta-
tions in the mtDNA MTCYB gene, but cardiomyopa-
thy and encephalomyopathy have also been noted [47].
Pathogenic mutations have been reported in four of
the nuclear-encoded structural subunits plus five assem-
bly/ancillary factors [48], with presentations including
developmental delay, encephalopathy, lactic acidosis,
liver dysfunction, renal tubulopathy, and muscle weak-
ness [48,49].

Isolated complex IV deficiency

Cytochrome c oxidase (COX), complex IV of the res-
piratory chain, is embedded in the inner mitochon-
drial membrane, and functions as a dimer, with two
copper-binding sites, two heme groups, one magnesium
ion, and one zinc ion [50]. Complex IV pumps protons
across the inner mitochondrial membrane, contributing
to the proton motive force for ATP synthase exploitation,
and donates electrons to oxygen at the respiratory chain
termini to form water. Complex IV has 13 structural

subunits, and at least 26 additional proteins involved in
assembly and biogenesis [51]. NDUFA4 was originally
described as a complex I subunit gene, but has since been
reassigned to complex IV, following functional studies
[52] supported by the presence of NDUFA4 defects in
a patient with severe COX deficiency [53]. Mutations
have been reported in structural COX subunits, but most
defects affect biogenesis/assembly proteins. Some pro-
teins are linked tightly with specific aspects of COX
biogenesis (e.g. COA6, involved in copper-dependent
COX2 biogenesis [54]), and others have more diverse
roles [55]. Clinically, presentations are often early onset
and devastating, predominantly affecting the heart and
CNS (e.g. SURF1, in which >80 different mutations
have been reported to cause Leigh syndrome [56]),
although a milder Charcot–Marie–Tooth phenotype has
been associated with biallelic COX6A1 variants [57].

Isolated complex V deficiency

ATP synthase, complex V, is the multimeric molec-
ular motor that drives ATP production through phos-
phorylation of ADP. Utilizing the proton motive force
generated by electron transport and proton pumping
by the respiratory chain, the 600-kDa complex con-
sists of 13 different subunits (some of which have dif-
ferent isoforms; for example, ATP5G1, ATP5G2 and
ATP5G3 encode subunit c isoforms), and involves at
least three ancillary factors. Defects have been reported
in only four nuclear complex V genes to date, with
varied clinical phenotypes. The most common defects
involve TMEM70, including a Roma TMEM70 founder
mutation causing lactic acidosis and cardiomyopathy
[58], although encephalopathy and cataracts have been
reported in other populations [59].

Mitochondrial disease caused by nuclear
mitochondrial genes: multiple respiratory chain
defects
Mitochondrial function is regulated and maintained by
∼1300 nuclear genes; these nuclear genes are trans-
lated by cytosolic translational machinery, and the 5′

mitochondrial targeting sequence directs transport of the
translated proteins into the mitochondrion, where they
are required for diverse functions. These include the
transcription of mitochondrial mRNA (e.g. POLRMT
[60]), mitochondrial DNA maintenance (e.g. POLG
[61]), regulation of mitochondrial dNTP pools (e.g.
RRM2B [62]), cellular signalling (e.g. SIRT1 [63]), and
the translation of mtDNA-derived proteins. Numerous
subgroups of proteins are involved in mitochondrial
gene translation: mitochondrial aminoacyl tRNA syn-
thetases, which are responsible for charging each mito-
chondrial tRNA molecule with the appropriate amino
acid (e.g. AARS2 [64]), proteins involved in RNA pro-
cessing (e.g. MTPAP [65]), mitoribosomal proteins (e.g.
MRPL44 [66]), and proteins involved in mitochondrial
tRNA modification (e.g. TRMU [67]). Defects in ≥250
nuclear mitochondrial genes have now been reported in
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association with multiple respiratory chain defects and
clinical mitochondrial disease [29]. The genetic diag-
nostic pathway for these disorders is complex, and WES
is often the most successful strategy [68].

Non-OXPHOS mitochondrial disease
Not all mitochondrial disease patients have evidence of
respiratory chain enzyme dysfunction, but have other
evidence of mitochondrial disease, such as elevated
lactate levels, suggestive magnetic resonance imgaing
brain changes, and multisystem involvement. Genetic
causes include defective enzymes of the Krebs cycle
(e.g. aconitase/ACO2 [69]) or cofactor transport (e.g.
thiamine transporter/SLC19A3 [70]).

Molecular genetic analysis of mitochondrial
disease

In the absence of effective treatments, provision of a
firm genetic diagnosis facilitates genetic counselling
and access to reproductive options for patients and
their families. Given the small size of the mtDNA
genome, this is often sequenced in suspected mito-
chondrial disease patients to exclude a primary mtDNA
defect before nuclear genes are scrutinized. NGS-based
testing is becoming more prevalent [71], and also pro-
vides an accurate measure of mtDNA heteroplasmy.
NGS technologies are revolutionizing the genetic test-
ing pipeline in the diagnostic genetic laboratory, with
Sanger sequencing of candidate genes on a sequen-
tial basis being replaced with powerful, high-throughput
analysis. A variety of options are currently being imple-
mented – targeted panels of candidate genes [36], unbi-
ased WES [72], and whole genome sequencing (WGS)
[73] (Figure 2). Custom, panel-based NGS strategies can
be very successful in providing a rapid genetic diagno-
sis in the clinical setting, but this success depends on the
degree of characterization to ensure that the appropri-
ate candidate genes are targeted. Stratification accord-
ing to respiratory chain defect can be appropriate for
many patients in whom muscle biopsy is available, but
even then it may be misleading – a number of patients
with an isolated complex I deficiency have, in fact, a
defect of mitochondrial translation [40]; moreover, this
strategy can be ineffective for genes that show inconsis-
tent biochemical profiles [74]. Stratification according
to clinical phenotype is similarly complicated by genetic
heterogeneity [75].

Despite a proven track record in a research set-
ting and the increasing availability of affordable NGS
options to diagnostic laboratories, the case has yet to be
made regarding the clinical validity of unrestricted WES
within a diagnostic setting. One solution to the strat-
ification dilemma, and one that has been successfully
implemented for the analysis of other heterogeneous
Mendelian disorders, is a combination of unbiased WES
with targeted analysis of ‘virtual’ gene panels [76,77];

this allows informative reporting of negative results, and
removes the possibility of incidental findings. Further
analysis of the WES data for patients lacking a diagnosis
following virtual panel analysis could be subsequently
undertaken in a research setting. Indeed, most of the can-
didate genes included in diagnostic virtual panels have
their origins in research. WES has been incredibly fruit-
ful in elucidating genes involved in human pathology,
including heterogeneous mitochondrial clinical pheno-
types such as cardiomyopathy, with mutations identified
in AARS2 [78], MRPL3 [79], MTO1 [80], and ACAD9
[72]. New candidate genes continue to be discovered in
a research setting, and are then included in diagnostic
screening; one success is exemplified by the report of
patients harbouring mutations in TMEM126B, a candi-
date gene identified by research-based complexome pro-
filing [27,28,37]. Similarly, characterization of predicted
mitochondrial proteins of unknown function is another
critical strategy for identifying novel disease candidate
genes [26].

Investigating muscle pathology associated
with mitochondrial disease

As discussed above, the laboratory investigation of
suspected mitochondrial disease is complex, and algo-
rithms employ a multidisciplinary approach using
clinical and functional studies to guide genetic analysis
[81]. Although mitochondrial disorders are character-
ized by a wide spectrum of clinical presentations, owing
to the high metabolic requirements, muscle is frequently
affected – either exclusively (e.g. myopathy and chronic
progressive external ophthalmoplegia) or as a predomi-
nant feature in multisystem phenotypes [81,82]. In both
scenarios, muscle involvement can arise from mutations
in nuclear or mtDNA genes, and the association with
distinctive histopathological hallmarks makes muscle
an excellent postmitotic surrogate for the study of
many multisystem mitochondrial disorders. Diagnostic
centres specializing in mitochondrial disorders employ
numerous techniques to assess mitochondrial function,
including the assessment of individual mitochondrial
OXPHOS activities in vitro [83]. Although useful for
identifying widespread mitochondrial defects, this tech-
nique has some limitations; it requires large quantities
of muscle (typically 50–100 mg of tissue) and may fail
to detect subtle OXPHOS deficiencies, especially when
only a few muscle fibres are affected (e.g. mild mosaic
deficiencies). Furthermore, only complexes I–IV can
be reliably assessed in frozen muscle.

The histological and histochemical examination of
serially-sectioned muscle can provide crucial evidence
of mitochondrial pathology. Haematoxylin and eosin
(H&E) and modified Gomori trichrome stains assess
basic muscle morphology, providing information on
fibre size and the presence of any abnormal inclusions
or central nuclei which are indicative of muscle dener-
vation (Figure 3). The modified Gomori trichrome stain
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Figure 2. NGS strategies employed in the genetic diagnosis of mitochondrial disease. (A) WGS analyses all coding and non-coding regions
of the genome. (B) WES targets only the coding exons plus immediate intron–exon boundaries. (C) Target capture facilitates sequencing of
a predetermined genomic region or list of candidate disease genes. Non-coding/intronic regions are shaded grey, exons of candidate genes
are shaded blue, and exons of non-candidate genes are shaded pink.

Figure 3. Histological, histochemical and immunohistochemical hallmarks of mitochondrial pathology in primary mtDNA-related disease.
(A) Serial skeletal muscle (vastus lateralis) sections from a patient with a single, large-scale mtDNA deletion were stained with H&E
and modified Gomori trichrome to assess basic muscle morphology and the presence of RRFs, respectively. The individual COX, SDH and
sequential COX/SDH histochemical reactions show fibres manifesting mitochondrial accumulation and focal COX deficiency. (B) The lack
of histochemical assays to assess other OXPHOS complex activities prompted the development of a quadruple immunofluorescence assay
that can quantify the levels of complex I (NDUFB8 subunit), complex IV (COX1 subunit), laminin, and a mitochondrial mass marker (porin),
all within a single 10-μm section. A highlighted COX-deficient fibre (*) shows focal accumulation of sarcolemmal mitochondria around the
periphery of the fibre, and downregulated expression of both complex I and IV proteins. (All images taken at ×20 objective magnification.)

[84,85] specifically highlights connective tissue (light
blue), muscle fibres (blue), and mitochondria (red), and
allows the detection of ragged-red fibres (RRFs) [86].
RRFs are characterized by a ‘fibre cracking’ appearance
and abnormal subsarcolemmal proliferation of mito-
chondria, resulting from a compensatory response to
a respiratory chain biochemical defect [87]. RRFs can
show either normal oxidative enzyme activities (often
reported in association with the m.3243A>G mutation
or some sporadic MTCYB mutations) or COX defi-
ciency associated with a wide range of mtDNA-related
genetic disorders [88]. They represent a characteristic
histopathological feature of mitochondrial disorders,
however, they are not entirely diagnostic, as they are
also seen with normal ageing [6] and other muscle
conditions [89,90].

Sequential COX/SDH histochemistry is the standard
method used to assess mitochondrial respiratory chain
function in muscle cryosections [91,92], the activities
of the partially mtDNA-encoded complex IV (COX),
and the fully nuclear-encoded complex II (SDH). By

combining both reactions in a single slide (Figure 3A,
COX/SDH panel), fibres or cells with mitochondrial
dysfunction are easily identifiable, and are seen as a
mosaic reduction or loss of COX activity with preserved
SDH activity (blue fibres), indicative of an underly-
ing mtDNA-related abnormality [93,94]. The absence of
routine histochemical assays to evaluate other OXPHOS
complexes, such as complex I, which is the largest and
most commonly affected OXPHOS complex in mito-
chondrial disorders [95], has prompted the recent devel-
opment of a novel high-throughput immunofluorescence
assay to fill the gap in the diagnostic repertoire [96].
This technique enables accurate quantification of the
two most commonly affected OXPHOS components,
namely complexes I and IV [97], together with a mito-
chondrial mass marker (porin) in individual muscle
fibres on a single 10-μm tissue section (Figure 3B). The
semi-automatic quantification of a large number of mus-
cle fibres is facilitated by labelling laminin to define
fibre boundaries. Image analysis is exclusively based
on intensity measurements, increasing its accuracy and
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Figure 4. Current and future applications of a quantitative, quadruple OXPHOS immunofluorescence assay. Given its capacity to interrogate
levels of both complex I and IV – and additional OXPHOS components – at a single muscle fibre level, we believe that the quadruple
immunofluorescence assay can be applied to several areas of diagnostic and research activity in the laboratory to help investigate the role
of mitochondrial biochemical defects [96]. We are already implementing this methodology in a diagnostic setting, validating the assay with
biopsies from patients showing a range of mtDNA-related and nuclear genetic diagnoses of mitochondrial disease. The assay also shows
promise as a powerful tool with which to investigate the mitochondrial pathological changes observed in ageing and other myopathies (e.g.
myofibrillar myopathies [90]), to investigate molecular disease mechanisms and mitochondrial disease progression, as well as providing
an extremely sensitive outcome measure in clinical therapeutic intervention studies (e.g. pharmacological agents or exercise) aimed at
improving muscle oxidative capacity in patients with mitochondrial disease.

reliability, and is automated (http://iah-rdevext.ncl.ac
.uk/immuno/). We are currently optimizing the immun-
odetection of antibodies to assess complex III and com-
plex V, in order to better quantify the full extent of
mitochondrial respiratory deficiency in patient mus-
cle sections, but the opportunity to assess this at a
single-fibre level shows great potential for both diagnos-
tic and research applications (Figure 4).

Neuropathology associated with mitochondrial
disease

Neurological symptoms are particularly common, and
may be devastating in patients with mitochondrial

disease, including sensorineural deafness, cerebellar
ataxia, peripheral neuropathy, dementia, and epilepsy
[81]. In recent years, a number of neuropathological
studies have documented the characteristic features
of neurodegeneration in patients with mitochondrial
disease, and these have spurred the development of
novel tools with which to understand the mechanisms
underlying neural dysfunction and cell death.

New insights into mechanisms
of neurodegeneration
Upon neuropathological investigation, the brains from
patients with mitochondrial disease often show atro-
phy, cortical lesions, evidence of neuronal cell loss, and
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mitochondrial OXPHOS abnormalities in the remain-
ing cells. Patients with the heteroplasmic m.3243A>G
mutation and a MELAS phenotype often develop foci of
cortical necrosis on the surface of the brain (Figure 5A).
These are often referred to as ischaemic-like lesions,
as they resemble stroke penumbra but do not conform
to a particular vascular territory. It is proposed that
these lesions evolve during stroke-like episodes, and
may be initiated by mitochondrial respiratory abnor-
malities in neurons that act to alter the balance of
excitation and inhibition in neural networks, promot-
ing neuronal hyperexcitability [98]. This is important, as
seizures are frequently detected by electroencephalog-
raphy in patients who have had a stroke-like episode
[99]. Although focal necrotic changes associated with
the m.3243A>G mutation have been commonly doc-
umented, it is important to note that patients harbour-
ing other genetic defects (e.g. the m.8344A>G muta-
tion [100] and autosomal recessive POLG mutations
[101,102]) also develop cortical lesions, suggesting
shared mechanisms underpinning their formation. These
lesions typically affect posterior brain regions, includ-
ing the occipital, parietal and temporal lobes, and feature
microvacuolation and neuronal cell dropout (Figure 5B,
C), neuronal eosinophilia, astrogliosis, and secondary
myelin loss. Recent studies have proposed that vul-
nerability of GABAergic interneurons could underpin
neuronal hyperexcitability, as dramatic downregulation
of OXPHOS subunits constituting complexes I and IV
has been observed within interneurons (Figure 5D)
[103]; other theories suggest that aggregation of abnor-
mally enlarged mitochondria and the presence of mito-
chondrial respiratory chain abnormalities in the cere-
bral microvasculature may contribute to impaired cere-
bral perfusion [104,105]. Although the precise mech-
anisms are not known, the emergence of lesions in
the brain reflect an acute process leading to rapid
neuronal loss that can occur on the background of
more chronic and protracted cell loss throughout the
brain.

The cerebellum is frequently involved in mitochon-
drial disease, with many patients developing cerebel-
lar ataxia. Neuropathologically, the cerebellum reveals
signs of lesions (Figure 6A) similar to those observed
in the cortex, global Purkinje cell dropout (Figure 6B),
and loss of dentate nucleus neurons [106]. Recent
work has shown downregulation of protein subunits
constituting complex I in remaining Purkinje cells,
their GABAergic synapses, and dentate nucleus neu-
rons (Figure 6C). In conjunction, there is evidence of
neuronal network remodelling with thickened dendritic
arborizations, axonal torpedoes, and altered synaptic
density [107–109]. There is a distinct lack of correlation
between the severity of cell loss and the heteroplasmy
level of mutated mtDNA in surviving neurons, suggest-
ing that other factors must be important in determining
cell loss [110].

Patients harbouring a single large-scale mtDNA dele-
tion may develop KSS, which is associated with severe
demyelination and spongiosis of the white matter tracts

of the brain, including the cerebrum, cerebellum, spinal
cord, and brainstem [111]. The loss of myelin is pro-
posed to be attributable to specific vulnerability of
mature oligodendrocytes, the myelin-producing glia,
where a loss of respiratory chain activity resulting from
the mtDNA deletion causes a distal oligodendrogliopa-
thy and subsequent loss of myelin products [112]. It
is not known why the mtDNA deletion preferentially
affects oligodendrocytes.

In summary, neuropathological studies have shown
that neuronal cell loss can occur via two different pro-
cesses: an acute event, such as in stroke-like lesions, or
a global, protracted loss of cells. There is no evidence of
protein accumulation within neurons, surviving neurons
frequently show respiratory chain deficiency, including
downregulation of complex I subunits, and there is a lack
of correlation of cell loss and mtDNA heteroplasmy in
remaining neurons.

Tools to aid the study of mitochondrial
neuropathology

Recently, a number of novel methods have been
developed to provide further insights into potential
mechanisms of neurodegeneration, particularly for
understanding the early events leading to irreversible
neuronal cell loss. Clear lipid-exchanged acrylamide-
hybridized rigid imaging/immunostaining/in situ-
hybridization-compatible tissue hydrogel has paved the
way for large volumes of archived, postmortem material
to be investigated with three-dimensional analysis of
the neuronal networks [113]. This will enable a greater
understanding of neuronal vulnerability in mitochon-
drial disease [114]. The recent development of induced
pluripotent stem cell technology allows the cellular
transfection of human patient fibroblasts with four
key transcription factors to confer pluripotency. These
pluripotent cells can subsequently be differentiated
into neurons and glial cells, and the effects of both
the nuclear genome and mitochondrial genome can be
investigated to determine disease mechanisms, effi-
cacy of drug treatment, and cell replacement therapies
[115,116]. Additionally, a number of transgenic mouse
models utilizing Cre/Lox technology to selectively
knock out nuclear mitochondrial genes within specific
populations of neurons and glial cells are promising
for the understanding of specific disease mechanisms
[117–119].

Challenges for the future

Developing an effective treatment for mitochondrial dis-
ease is an enormous challenge that is dependent on the
integration of clinical understanding of disease progres-
sion, molecular genetic mechanisms, and neuropatho-
logical features in mitochondrial disease. Patient-based
clinical, molecular genetic and histopathology studies
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Figure 5. Neuropathological changes associated with stroke-like episodes in patients with mitochondrial disease. (A) Extensive cortical
necrosis affecting the occipital, temporal and parietal lobes in a brain from a patient harbouring the m.3243A>G mutation. (B, C)
Microscopic analysis reveals atrophy, microvacuolation and severe neuronal loss in the frontal cortex of a patient with the m.3243A>G
mutation [(B) Cresyl fast violet staining] and in the temporal cortex of a patient with the m.8344A>G mutation [(C) Cresyl fast violet
staining]. (D) Respiratory chain abnormalities include downregulation of subunits constituting complex I (red; NDUFB8 subunit) and complex
IV (green; COXI) relative to intact mitochondrial mass (magenta; porin) in inhibitory interneurons (blue; GAD 65–67) in a patient harbouring
autosomal recessive POLG mutations. Scale bar: 10 μm.
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Figure 6. Cerebellar pathology in patients with the m.3243A>G mutation. (A) Numerous areas of necrosis are evident throughout the
cerebellar cortex of a patient in comparison with control cerebellum (H&E staining). (B) Extreme neuronal loss is seen microscopically,
affecting Purkinje cells and granule cells in the cortex (Cresyl fast violet staining). Scale bar: 100 μm). (C) In dentate nucleus neurons
and in GABAergic (blue; GAD 65–67) synapses (magenta; synaptophysin) from Purkinje cells, there is downregulation of complex I (green;
NDUFA13) relative to mitochondrial mass (red; COX4I2). Scale bar: 10 μm).

can then inform the development of appropriate disease
model systems to determine mechanisms and treatment
to ultimately improve the lives of patients with mito-
chondrial disease.
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