
C
LO

U
D

-N
A

T
IV

E
 A

P
P

LI
C

A
T

IO
N

S

34	 I EEE CLO U D CO M P U T I N G P U B L I S H ED BY T H E I EEE CO M P U T ER S O CI E T Y � 2 3 2 5 - 6 0 9 5/ 1 7/$ 3 3 . 0 0 © 2 0 1 7 I EEE

CORNELIA DAVIS

Realizing Software
Reliability in the Face
of Infrastructure
Instability
Cornelia Davis, Pivotal Software

Cloud computing has brought with it the utilization

of off the shelf, commodity hardware that has higher

failure rates than the systems that have been used in

enterprises for the last several decades. Coupled with

increasingly complex, highly-distributed, constantly-

changing data center environments that can no longer

S EP T E M B ER /O C TO B ER 2 0 1 7 	 I EEE CLO U D CO M P U T I N G� 35

be treated as deterministic systems, this forces us to change

the way that we view the stability of that infrastructure. Our

aim is to provide digital solutions that remain stable in the

face of this infrastructure uncertainty and we achieve this by

utilizing specific design patterns and operational practices. At

the core of the new way of working is a philosophical view that

change is the rule rather than the exception. US entertainment

company Netflix has fully embraced this new mindset and this

served them well during a major outage experienced by their

cloud infrastructure provider, Amazon Web Services (AWS). In

this piece, we study how Netflix was able to avoid any

significant impact while many other well established,

technically savvy AWS users were not.

n the 1980s the computer industry experi-
enced a massive transformation when core
software system architectures changed from
being mainframe-based to client-server. This
shift changed virtually everything in software
from the hardware, to software designs, to

the practices for development and operation of that
software.

Today we are in the midst of the next radical
change as the industry moves from client-server to
cloud-native. Sometimes called the third platform,
cloud-native is characterized by highly dynamic
systems, where every element, from the hardware
and operating system, to networks and software
deployments, are in constant flux. Whereas for sec-
ond platform systems (client-server), software was
written with an expectation that the systems that
it executed on were quite stable, in the new world
software must be written, deployed, and managed
in a manner that anticipates change. That is, the
software that runs on a highly distributed, con-
stantly changing infrastructure must have zero
downtime even while the lower layers are shifting
about. In fact, applications must have zero down-
time even while the application itself is changing,
due either to an upgrade being performed, or to
the application itself experiencing trouble (there’s
a bug!).

Just as the shift from first platform (mainframe)
to second (client-server) changed everything about
the way that software is constructed and managed,
so does the shift to third platform. Software prac-
titioners must learn a whole new set of design pat-
terns as well as master new software engineering
and management tools and methodologies to remain
effective. Ultimately our aim is to provide reliable
digital solutions even while the infrastructure they
are running on is unstable.

It’s not Amazon’s Fault
On Sunday, September 20, 2015 Amazon Web Ser-
vice (AWS) experienced a significant outage. With
an increasing number of companies running mis-
sion critical workloads, even their core customer
facing services on AWS, such an outage can subse-
quently result in far reaching system outages. In this
instance, Netflix, Airbnb, Nest, IMDb, and more
all experienced down time, impacting their cus-
tomers and ultimately their business’s bottom lines.
The core outage lasted more than 5 hours (or even
beyond, depending on how you count), with even
longer AWS customer downtimes before they had
their systems fully functional.

If you are Nest, you are paying AWS because
you want to focus on creating value for your custom-
ers, not on infrastructure concerns. As a part of the

36	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

C
LO

U
D

-N
A

T
IV

E
 A

P
P

LI
C

A
T

IO
N

S

deal, AWS is responsible for keeping their systems
up, enabling you to keep yours functioning just as
well. So, if AWS experiences downtime, it would be
very easy to blame Amazon for your resulting outage.

But then you would be wrong. Amazon is not to
blame for your outage.

Wait! Please hear me out. My assertion gets
right to the heart of the matter and will explain one
of the key characteristics of cloud-native.

First, let me clear up one thing. I am not sug-
gesting that Amazon and other cloud providers have
no responsibility for keeping their systems function-
ing well—they obviously do. And if a provider does
not meet certain service levels, their customers can
and will find alternatives.

What I am asserting is that the applications you
have running on a cloud-based infrastructure can
be more stable than the infrastructure itself. How
is that possible? By employing certain architectural
patterns in your software designs and by follow-
ing particular operational practices. At the core of
both of these things is a mindset that failure, and
more generally, change, is not an exceptional cir-
cumstance, but rather something that should be
anticipated.

Let’s look at an exemplar. Netflix was one of
the many companies affected by the AWS outage of
September 2015 and with it being, by one measure
(the amount of internet bandwidth consumed—36%!),
the top Internet site in the US, Netflix downtime
affects a lot of people. But Netflix had this to say
about the outage:1

Netflix did experience a brief availability
blip in the affected Region, but we side-
stepped any significant impact because
Chaos Kong exercises prepare us for
incidents like this. By running experi-
ments on a regular basis that simulate a
Regional outage, we were able to iden-
tify any systemic weaknesses early and fix
them. When US-EAST-1 actually became
unavailable, our system was already
strong enough to handle a traffic failover.

That’s right, they were able to very quickly recover
from the AWS outage, being fully functional only
minutes after the incident began. That is, Netflix, still
running on AWS, was fully functional even as the
AWS outage continued.

The above quote holds many hints as to what
they’ve done to achieve this quality of service, and
I’d like to study those here. I will start at the end
and work back to the start.

Where the Responsibility Lies
In the above passage, Netflix is describing a num-
ber of practices that allowed them to “identify any
systemic weaknesses”. What is most interesting about
this specific phrase is that the “system” they are
referring to is not that of Amazon, but rather their
own, and it reflects acknowledgement of something
foundational in the cloud—that things are always
changing and their software must account for that
constant change.

Over the last several decades we’ve seen ample
evidence that an operational model that is predi-
cated on a belief that our environment changes
only when we intentionally and knowingly initi-
ate such changes simply doesn’t work. Reacting to
unexpected changes dominates time spent by IT and
traditional software development lifecycle (SDLC)
processes that depend on estimates and predictions
have proven problematic.

But what, exactly, does it mean to design for fail-
ure, or design for change? Comprehensive coverage
is beyond the scope of this article, but the following
are some of the most foundational ideas:

•	 Digital solutions are formed as a composition of
independent, loosely coupled software compo-
nents, often called microservices. The software
design intentionally builds bulkheads between
the components so that a failure in one part
does not cascade through the entire system. If
there is a problem with displaying images on
your ecommerce site, your users should still be
able to complete their purchase by providing
payment information.

•	 All apps, or microservices, have many instances
deployed so that functionality is maintained,
albeit with reduced capacity, when one or
more of the instances goes down for any rea-
son (unplanned or planned). Even if the root
cause of failure is a very slow memory leak in
the app itself, the likelihood that all of 100
deployed instances should crash at the same
time is almost zero, so with multiple instances
some application capacity is always available. Of
course, as soon as we have multiple instances
we need a load balancer to distribute traffic
across them; there are several different deploy-
ment configurations for these, with different
tradeoffs.

•	 State is very deliberately separated from com-
pute by keeping it out of the apps and bind-
ing those to stateful backing services. Patterns
for redundancy are relatively easy for stateless
apps—essentially the aforementioned multiple

S EP T E M B ER /O C TO B ER 2 0 1 7 	 I EEE CLO U D CO M P U T I N G� 37

instances—and when apps are stateless, plat-
forms such as Kubernetes and Cloud Foundry
can auto-recover failed instances. Implement-
ing redundancy in data services is far more
complex and solutions are very specific to the
unique characteristics of the store. The deliber-
ate separation allows for software developers to
leverage common redundancy patterns through
large portions of their software, and depend on
specialists in the data services to implement the
needed redundancy patterns there.

•	 Cloud-native software is highly distributed and
components that might, in the past, have run
within the same process now require a network
hop when one calls the other. As we know, one
of the fallacies of distributed computing is that
the network is always stable; to compensate for
the instability:

•	 A consuming service implements retries,
so that when it receives no response from a
call it’s made to a service, it tries again. If
the network was only momentarily unstable,
the subsequent retry stands a good chance of
succeeding.

•	 Because a consumer might fail to receive
a response even though the called service
received and executed on the request, and will
therefore retry the invocation, a producing
service must be implemented in such a man-
ner that multiple invocations from the same
consumer are not harmful—that is, they must
be idemponent.

•	 Retries can be dangerous, however; a momen-
tary network outage can cause a retry storm
and inadvertent denial of service attack
(which ironically was the root cause of the
Amazon outage of September 2015).2 To avoid
this, the system overall must also implement
things such as circuit breakers.

Reflecting back on these design-for-failure pat-
terns we see that redundancy is key—redundant
app instances, redundant copies of data, redundant
invocations. But that redundancy must be carefully
applied, and that brings us to another excerpt from
the Netflix quote.

Understand Where the Failure Domains Are
Turning back to the quote above, in it Netflix men-
tioned that they had performed activities that “simu-
late a Regional outage”—the word I want to hone in on
in this phrase is “Regional”. No single system can be
guaranteed to be functional 100% of the time and as

we’ve just concluded, redundancy is essential to surviv-
ing the inevitable failures. When deploying into these
cloud environments, the trick, however, is to ensure
that your redundancy spans failure boundaries—if all
of your redundant app instances are running on the
same host and that host goes down, the redundancy
serves no purpose.

The cloud providers themselves (public or pri-
vate) recognize this and as a result have provided
abstractions that map to failure domains. For exam-
ple, the availability zone (AZ) is an all but ubiqui-
tous concept that usually maps to physical entities
such as hardware racks or perhaps a network subnet.
The largest cloud providers extend the model fur-
ther with a concept of “region,” which usually corre-
sponds to a data center. Notice that these providers
themselves recognize the value of redundancy, even
at the infrastructure level, giving their users access
to multiple AZs and multiple regions. When infra-
structure experiences problems, failures are usually
constrained within these abstractions. If a bad fire-
wall rule cuts an entire subnet off from the rest of
the data center, other subnets will still be available.
If hurricane wipes out all power sources to a data
center, it takes that region off line but other regions
will be unaffected. And the infrastructure software
itself is carefully deployed so that any failures within
it will stay within those bounds.

Amazon surfaces both of these abstractions to
their users, and this played prominently in the mini-
mal disruption that Netflix experienced in September
2015. Figure 1 depicts both abstractions—AZs and
regions—and theorizes how redundant (or not) soft-
ware deployments might have been made against
them before the outage. (Note: I have no knowledge
of how any of these companies’ digital offerings were
deployed into the AWS infrastructure—I show this
only as an educational illustration.)

When “When US-EAST-1 actually became
unavailable,” (Figure 2) it is easy to see how Netflix
might have fared far better than other AWS users.
This is far from accidental—Netflix deliberately
took on the responsibility of building and operating
their software to leverage the abstractions available
to them. Both their developers and their operators
have a deep understanding of what these abstrac-
tions are and how to leverage them to achieve the
outcomes they seek (usually resilience).

The reason that many other web properties suf-
fered long outages when US-East-1 went down in
this particular instance, however, is that despite
having access to multiple regions, users hadn’t taken
advantage of them. Building solutions that lever-
age more than one region, and establishing the

38	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

C
LO

U
D

-N
A

T
IV

E
 A

P
P

LI
C

A
T

IO
N

S

appropriate management practices thereof, is harder
than doing so for a single region, and it is therefore
work that is often deferred—with dire consequences.
But there is a different approach that can take the
burden off the application developer and operator.

The most sophisticated platforms can hide what
are effectively infrastructure abstractions, AZs, and
regions, and implement the required distribution
patterns on behalf of their users. Cloud Foundry, for
example, can be deployed and configured so that any
application deployed into it will have its instances
evenly distributed across all availability zones. Of
course, the individuals responsible for establish-
ing the platform must be aware of the specific fail-
ure domains so that the automatic distribution is
done right, but that responsibility is then limited
to a small team and empowers many application
teams to achieve the resilience they need with no
additional cognitive load.

Let me now turn to another word in this excerpt:
“simulate.”

Regularly Experiment (in Production!)
Use of automated testing as a part of the SDLC
is becoming fairly pervasive in the industry, with
many organizations going so far as to practice
test-driven development where they write the tests
even before the implementation. And while there
is no debate as to the value of a test suite that

primarily focuses on expected inputs and outputs,
a new practice has emerged in the last few years,
and it not a coincidence that the heroes of our
story have been at the forefront of innovation in
this space.

They said: “Chaos Kong exercises prepare us for
incidents like this. By running experiments on a reg-
ular basis that simulate a Regional outage, we were
able to identify any systemic weaknesses early and
fix them.” Chaos Kong is one part of a suite of tools
Netflix has built to test their software’s operation
in the event of outages of the infrastructure that it
runs on. Harkening back to the main point of the
previous section, different testing tools that make
up the Netflix Simian Army are cast against differ-
ent failure domains.3 Chaos Kong simulates region
outages. Chaos Gorilla simulates availability zone
failures. Chaos Monkey actually kills servers.

Intuitively, it seems rather obvious that regularly
exercising tools such as these will help teams find
weaknesses in their implementations. But when we
begin to put these things in practice we’ll be faced
with many questions, the most basic being: when
will we execute these tests and where? Let’s look at
the latter first.

Over the last several decades, most IT organi-
zations have established extensive preproduction
environments in which they run their tests. The
theory is that these “exact” replicas of production

Region: us-east-1 (N. Virginia) Region: us-west-1 (N. California) Region: us-west-2 (Oregon)

AZ: us-east-1a AZ: us-east-1b

AZ: us-east-1c AZ: us-east-1d

AZ: us-west-1a AZ: us-west-1b

AZ: us-west-1c AZ: us-west-1d

AZ: us-west-2a AZ: us-west-2b

AZ: us-west-2c AZ: us-west-2d

FIGURE 1. Applications deployed onto Amazon Web Services may be deployed into a single availability zone (AZ) (IMDb), multiple

AZs (Nest) but only a single region, or in multiple AZs and multiple regions (Netflix). This will provide very different resiliency

profiles.

S EP T E M B ER /O C TO B ER 2 0 1 7 	 I EEE CLO U D CO M P U T I N G� 39

will allow us to sufficiently test our software so
that the unknowns are minimized in production
environments. The effectiveness of this approach
is debatable however, even in systems of the past—
establishing a replica that is sufficiently close to the
production environment is difficult and very expen-
sive. But when we move to the cloud the number of
moving parts and the frequency with which they
experience change has grown by several orders of
magnitude making it completely impossible to cre-
ate that “exact replica of production.” In fact, some
researchers are formalizing models showing that we
can no longer treat software running in cloud and
on prem data centers as deterministic systems.4

The conclusion we then reach is that in order for
the results of Simian Army like tests to be meaning-
ful, we must run them in production environments.
Yes, I am suggesting that you experiment in produc-
tion. Twenty years ago, this would have been con-
sidered insane, but the born-in-the-cloud software
companies like Facebook, Twitter, Google, and Netflix
have shown that it works. We hear stories of a devel-
oper who deploys code into production on her first day
on the job. There are a number of factors that make
this possible, but one is that production environments
have safety nets that allow for safe experimentation.

Take, for example, the case we’ve been study-
ing here. Obviously, Netflix is not actually taking an
AWS region down when they run their Chaos Kong
exercises; rather they simulate it by intercepting

requests routed to an application running in a spe-
cific region and returning an error. This is done in
software of course, and the safety net allows them to
immediately flip a switch and disable the intercep-
tor if things go wrong. Sure, for a matter of seconds
or maybe a few minutes some of their users may be
disrupted, but a few minutes of downtime during a
predicable moment is a good tradeoff for a long out-
age when totally unprepared. I’ll draw your attention
to one more word in the above excerpt from the Net-
flix quote: “early.” They see the value in finding any
“systemic weakness” well before they result in unan-
ticipated and difficult to remediate outages.

When is a good time to run experiments then?
While my recommendation is not specific to cloud-
based software, it is provocative enough that it bears
mention in this context. Simulations of catastrophic
events should be done during normal working hours.
Running tests during off hours, if there even are
such periods anymore, will likely miss failure sce-
narios that only exist when your system is under
full load. And, quite pragmatically, you want the
many teams responsible for building and operating
the software solutions that could be impacted to be
readily available in the event of failure.

Conclusion
The events of September 20, 2015 were quite cata-
strophic for quite a number of well-established,
highly trafficked web sites, yet Netflix viewed it as

Region: us-west-1 (N. California) Region: us-west-2 (Oregon)

AZ: us-west-1a AZ: us-west-1b

AZ: us-west-1c AZ: us-west-1d

AZ: us-west-2a AZ: us-west-2b

AZ: us-west-2c AZ: us-west-2d

Region: us-east-1 (N. Virginia)

FIGURE 2. If applications are properly architected and deployed, digital solutions can survive even a broad outage such as an

entire region.

40	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

C
LO

U
D

-N
A

T
IV

E
 A

P
P

LI
C

A
T

IO
N

S

“a brief availability blip”. For them the recovery was
rapid and low ceremony and their users experienced
little disruption. This is not attributed to luck, rather,
Netflix deeply understands what it means to run
software in the cloud.

They recognize that the software architectures
of the last decades do not work well in the cloud,
an environment that is constantly changing and is
more distributed than ever before. They’ve invested
in understanding and even defining new cloud
patterns and have implemented frameworks and
toolsets that allow them to manage the added com-
plexity and even exploit the advantages that extreme
distribution can bring.

Moving to the cloud is not merely a matter of
deploying existing software into Internet accessible
data centers. Cloud-native software is defined by
how you compute, not about where you compute.

Writing software for the cloud demands that we
treat change as the rule, rather than the exception.
It is this that allows us to produce software that
runs more reliably than the infrastructure that it is
deployed to.

References
1.	 A. Basiri et al., “Chaos Engineering Upgraded,”

Sep. 2015; http://techblog.netflix.com/2015/09/
chaos-engineering-upgraded.html.

2.	 C. Babcock, “Amazon Disruption Produces
Cloud Outage Spiral,” Sep. 2015; http://www.

informationweek.com/cloud/infrastructure-as-
a-service/amazon-disruption-produces-cloud-
outage-spiral/d/d-id/1322279.

3.	 Y. Izrailevsky and A. Tseitlin, “The Netflix
Simian Army,” Jul. 2011; https://medium.com/
netf l i x-techblog /the-netf l i x-simian-army-
16e57fbab116.

4.	 S. Dhanagopal, “Converged Virtualized Data
Center Networks—Reasons for Non-Deterministic
Nature and Possible Solutions,” Proc. IEEE 5th
International Conference on Advanced Networks
and Telecommunication Systems (ANTS), 2011.

CORNELIA DAVIS is sr. director of technology at Piv-
otal, where she works on the technology strategy for both
Pivotal and for Pivotal customers. Through engagement
across Pivotal’s broad customer base, she develops core
cloud platform strategies that drive significant change in
enterprise organizations, and influence the Pivotal Cloud
Foundry evolution. Currently she is working on ways to
bring the various cloud-computing models of Infrastruc-
ture as a Service, Application as a Service, Container as
a Service, and Function as a Service together into a com-
prehensive offering that allows IT organizations to func-
tion at the highest levels. She is the author of the book
Cloud Native: Designing Change-tolerant Software by
Manning Publications (https://www.manning.com/books
/cloud-native). An industry veteran with almost three
decades of experience in image processing, scientific
visualization, distributed systems and web applica-
tion architectures, and cloud-native platforms, she
holds the BS and MS in computer science from Cali-
fornia State University, Northridge and further stud-
ied theory of computing and programming languages
at Indiana University. Contact her at cornelia@
corneliadavis.com or cdavis@pivotal.io.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

stay connected.stay connected.

| IEEE Computer Society
| Computing Now

| youtube.com/ieeecomputersociety

| facebook.com/IEEE ComputerSociety
| facebook.com/ComputingNow

| @ComputerSociety
| @ComputingNow

