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Abstract 

This paper reports a semi-analytical model (SAM) for simulating the dynamic contact 

of a rigid sphere and the surface of a multiferroic magnetoelectroelastic (MEE) film under an 

increasing applied force. The frequency response functions (FRFs) and their conversion into 

influence coefficients (ICs) for the MEE film are analytically derived, incorporating the 

loading velocity in a dynamic process. Fast numerical techniques, including the conjugate 

gradient method (CGM) and the fast Fourier transform (FFT), are employed for efficient 

numerical solutions to the dynamic contact behaviors, including the distributions and 

variations of contact pressure and electric/magnetic potentials, as well as subsurface 

stresses. The proposed model is implemented to analyze the influences of loading velocity, 

film thickness, and sphere radius on the dynamic MEE responses, including 

pressure/stresses and electric/magnetic potentials. An energy conversion factor is selected 

to evaluate the performance of MEE energy conversion. Furthermore, a sensitivity analysis is 

conducted to evaluate the influence of material properties and their coupling on the 

efficiency of mechanical-electric/magnetic energy conversion. 

 

Key words: Multiferroic film, energy conversion, semi-analytical modeling, dynamic contact. 
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Nomenclature 

at       acceleration of the rigid sphere at time t 

a0       contact radius in multiferroic half-space, m 

𝐴𝑘, 𝐴̅𝑘    unknowns in potential functions 

𝐴𝑖𝑗      cofactors of matrix ,𝐷- 

Bi           magnetic induction along the xi direction, N/(Am)  

c        relative moving velocity of the rigid sphere 

csw       shear wave velocity in the MEE film 

cijkl       elastic stiffness tensor, 109N/m2 

Cu, Cφ, Cψ, C     influence coefficients 

dkij      piezomagnetic stiffness tensor, N/(Am) 

[D]      a matrix 

Di       electric displacement, C/m2 

ekij      piezoelectric stiffness tensor, C/m2 

f        selected material constant  

f0       reference value for f 

F        displacement function 

g        surface magnetic charge, 

gz       gap between two surfaces, m 

gij       electromagnetic coefficient, C/(Am) 

Gu, Gφ, Gψ    frequency response functions 

G       displacement function 

h0      initial separation between two surfaces, m 

ht      film thickness, m 

H      displacement function 

i       imaginary unit 

m, n    Fourier-transformed variables with respect to x1, x2 directions, respectively 

M, N    mesh numbers along the x1, x2 directions 

Me, Ne   refined mesh numbers 

Ms      mass of the sphere 

q       surface electric charge, 

p       pressure, Pa 

P       applied force, N  

P0         referenced force, N 

R       radius of a spherical punch, m 

R0        referenced sphere radius, m 

sj       variables relating to material properties 

t       loading time 

Ttotal    total time for one loading cycle  
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𝑢𝑖       displacements along the xi direction, m 

V0      maximum value of the loading velocity 

V       loading velocity of the sphere, m/s 

WP      work by the applied force   

xj, Xj     Cartesian coordinates in the spatial domain 

Fs       shape function 

 

Greek letters 

α       distance of a node, (m, n), to the origin of the frequency domain 

γ       refinement level 

𝜅𝛼𝛽     surface curvature tensor with 𝜅𝛼𝛽 = −𝑢𝑖,𝛼𝛽 

𝛿𝑡      indentation depth at time t 

εij      dielectric permittivity, 10-9C2/(Nm2) 

μij      magnetic permeability, 10-6Ns2/C2 

σij      stress components, Pa 

σs      von Mises stress, Pa 

𝜌       mass density 

𝜂𝑃      energy conversion factor  

ϕ       electric potential, V 

φ       magnetic potential, A 

𝜓𝑖       harmonic functions 

Гc       contact zone 

Γ        surface energy density 

Π𝑆       strain energy 

Π𝐸        electric energy 

Π𝑀      magnetic energy 

Π𝑃𝐸       piezoelectric energy 

Π𝑃𝑀      piezomagnetic energy 

Π𝑀𝐸       magnetoelectric energy 

Δxi       grid size in the xi directions, m 

 

Special marks 

≈       double continuous Fourier transform   

^       discrete Fourier transform 

|∙|       determinant of a matrix 

IFFT     inverse fast Fourier transform 
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1. Introduction 

Multiferroic materials are noteworthy for their strong coupling of ferroelectricity, 

ferromagnetism, and ferroelasticity (Eerenstein et al., 2006; Wang et al., 2010). A large 

amount of research has been conducted to explore methods for synthesizing and 

characterizing multiferroics, aiming to achieve a larger magnetoelectroelastic (MEE) coupling 

effect (Liu et al., 2010; Ramesh and Spaldin, 2007). Most recent studies on multiferroics 

reported truly remarkable MEE coupling effects (Kirchhof et al., 2013; Kulkarni et al., 2014), 

which promote the applications of these materials in AC/DC magnetic field sensors, 

photovoltaic multiferroic solar cells, multiferroic gyrators, and energy harvesting 

multiferroics (Vopson, 2015). Among these applications, the devices capable of harvesting 

energy from environmental sources (e.g. air flow, body movements, hydraulic pressure, and 

ambient vibrations) are of huge commercial values due to their suitability to self-powered 

systems in portable electronics, environmental condition monitors, structural health 

monitors, and medical implants (Vopson, 2015; Zhou et al., 2016). Although current energy 

harvesting devices are mainly based on piezoelectric semiconductors, known as piezoelectric 

nanogenerators (NGs) (Hu and Wang, 2015; Kim et al., 2014; Wang et al., 2014; Wang and 

Song, 2006), other approaches for energy harvest based on magnetostrictive materials have 

been reported in (Erturk et al., 2009; Wang and Yuan, 2008; Zucca et al., 2011). Foreseeably, 

multiferroic devices combining the piezoelectric and magnetostrictive advantages could 

result in promising energy harvesters with ultra-high efficiency, as reported in (Challa et al., 

2009; Lafont et al., 2012; Li et al., 2015a; Shan et al., 2013). 

 

Device development requires systematic optimization for the efficiency of energy 

conversion and durability of operation, which should be built on deep understanding of the 

material performance. Recently, a great deal of research on the piezoelectric and 

magnetostrictive energy harvesters has been conducted for the energy conversion 

maximization. Several examples are the work by Gu et al. (2012) on structural optimization 

for flexible fiber energy harvesters, the study by Xu and Qin (2017) about the external force 

optimization for piezoelectric energy harvesters, the research by Sun and Kim (2010) on the 

topology optimization for MEE laminate composites, and the optimization by Loja et al. 

(2014) for several MEE composite structures utilizing differential evolution. However, these 

works were mainly focused on a static analysis of the piezoelectric or MEE materials, as well 

as a simplified treatment of the fully coupled piezoelectric/MEE problems. A comprehensive 

investigation of the dynamic behaviors of multiferroic materials is the first step towards 

in-depth understanding of the overall responses of the MEE energy conversion. Considering 

multiferroic materials, mainly in the form of a thin film bonded to a substrate, a 

thin-film-based model is a natural choice for MEE dynamics, where the MEE film can be 

described as a voltage source for utilizing the electric potential to drive the electron flow 
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through the circuit. In order to determine the dynamic characteristics of a MEE film, the 

voltage source’s voltage dependence on the applied force and loading velocity should be 

analyzed firstly, for which several key issues should be addressed: (a) what are the key 

dynamic characteristics of a MEE thin-film subjected to dynamic contact loading? (b) How 

does the loading velocity affect the mechanical and electric/magnetic responses? (c) What is 

the general role of MEE coupling in a contact process for energy conversion? However, the 

dynamic analysis of a contact process involves complicated field coupling and strong 

nonlinearity; it requires a huge amount of computation; therefore, an efficient method is 

highly demanded. 

 

Many researchers have investigated the static contact behaviors of MEE coupling. 

Several examples are the analytical works by Hou et al. (2003) and Chen et al. (2010) on the 

frictionless contact involving a MEE half-space, the analytical study and numerical 

implementation by Zhou and Lee (2013) on the frictional contact involving a MEE half-plane, 

the numerical modeling by Michopoulos et al. (2015) on the contact behaviors of MEE 

half-space based on the finite element method (FEM), the investigation of 

Rodríguez-Tembleque et al. (2016a) on the frictional contact of a MEE half-space using the 

boundary element method (BEM), and the simulation by Zhang et al. (2018) on the frictional 

contact of two MEE bodies using the semi-analytical modeling (SAM) approach. However, 

little work has been done for MEE films, although many investigated the static indentation 

responses of piezoelectric films by analytical approaches (Wang and Chen, 2011; Wang et al., 

2008), by using the FEM (Liu and Yang, 2012) and the BEM (Rodríguez-Tembleque et al., 

2016b), and MEE films by using SAM (Zhang et al., 2017). Furthermore, the dynamic contact 

analysis of MEE films is largely missing due to the complexity of MEE coupling in a 

multiferroic film, which makes it difficult to obtain exact analytical solutions. The work 

reported in this paper intends to develop the solution for dynamic contact of MEE films and 

explore an efficient model for tackling the dynamic contact responses of MEE films. 

 

Semi-analytical modeling (SAM) (Liu et al., 2000; Polonsky and Keer, 1999; Webster 

and Sayles, 1986), built upon core analytical solutions and supported by fast numerical 

techniques, has been proven to be efficient for solving three-dimensional (3D) contact 

problems involving layered materials (Wang et al., 2011; Wang et al., 2015; Yu et al., 2014), 

or materials with contact elastic–plasticity (Liu et al., 2012; Wang et al., 2013), even 

subjected to fretting (Zhang et al., 2015; Zhou et al., 2017). The core analytical solutions to 

displacements, electric/magnetic potentials, stresses, electric displacements, and magnetic 

inductions of the MEE film should be derived first pertaining to a set of generalized normal 

force, surface electric charge, and surface magnetic charge, together with incorporation of 

the loading velocity in a dynamic process. Recently, Zhou and Lee (2012a), and Zhou and Kim 
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(2015) studied the exact contact problem between the MEE half-plane and a moving punch, 

which inspired our current study on deriving the core analytical solutions of 3D dynamic 

contacts of MEE films. Then fast numerical techniques, such as the conjugate gradient 

method (CGM) and the fast Fourier transform (FFT), can be incorporated for efficient 

numerical results to the dynamic contact behaviors, including the distributions of contact 

pressure and electric/magnetic potentials, as well as subsurface stresses. The proposed 

model is verified by comparing the results from its degenerated forms with analytical 

solutions for a MEE half-space and the corresponding numerical results for selected static 

contact of MEE films. The model is further used to study general MEE transient behaviors. 

Thus, the general role of the MEE coupling in a dynamic contact process is explored and the 

dynamic contact mechanism in multiferroic energy conversion can be revealed. 

 

2. Formulation  

2.1 Problem description 

Figure 1 (a) shows the working mechanism of a magnetoelectroelastic (MEE) energy 

converter, where the rigid sphere of radius R represents any indenter whose tip geometry 

can be modeled by its local curvature, which is on the top surface of a transversely isotropic 

multiferroic MEE film under an increasing applied force 𝑃(𝑡) along the 𝑧 axis. The lower 

surface of the film of finite thickness ℎ𝑡 is perfectly bonded to a rigid grounded substrate. 

The rectangular coordinates (x, y, z) are introduced here with the x-y plane parallel to the 

plane of isotropy of the multiferroic film. There are two solution routes for the presented 

problem: a) the applied force 𝑃(𝑡) on the rigid sphere is given as a function of time 𝑡. 

Based on 𝑃(𝑡) at each time step t, the contact problem can be solved to obtain the 

indentation depth, 𝛿, contact pressure, and surface electric/magnetic potential, etc.; b) the 

loading velocity 𝑉(𝑡) of the rigid sphere is given at each time step 𝑡 as a given input, 

which can be employed to further determine the indentation depth 𝛿. Then the contact 

problem is naturally solved to obtain the applied force, contact pressure, and surface 

electric/magnetic potentials, etc. In route a), the increasing applied force 𝑃(𝑡) is generally 

assumed as a harmonic excitation. The influence of the applied force, in different variation 

shapes, on the piezoelectric behavior has been studied in (Xu and Qin, 2017). However, the 

loading velocity also affected the piezoelectric/MEE behaviors. In route b), the shape of the 

loading velocity variation appears as an input in the current study, instead of the force 

variation shape, which offers a convenient way to further study the dynamic coupling 

behaviors of MEE films in multiferroic energy conversion. 

 

The dynamic loading velocity, 𝑉(𝑡), of the rigid sphere can be prescribed in two 

typical forms: (i) a triangular shape and (ii) a sinusoidal shape, as shown in insets (i) and (ii) 

of Fig. 1 (a). The electrical characteristics of the velocity-induced MEE converter can be 

described as a simple resistor-capacitor (RC) equivalent circuit, as shown in Fig. 1 (b), where 
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REx is an external load resistor, RIn is the internal resistance of the MEE converter, CMEE is the 

capacitance of the converter. The performance of the MEE film can be described as voltage 

source VMEE, and capacitance CMEE together with an internal resistance RIn, which utilizes the 

electric potential to drive the electron flow through the circuit. 

 

At time step 𝑡, the dynamic contact between the sphere and the MEE film can be 

subjected to an increasing applied force 𝑃 and a certain velocity 𝑉. Contact modeling is 

required to obtain the output parameters based on the input information, as shown in Fig. 1 

(c). To this end, the theoretical expressions for dynamic MEE coupling can be derived by 

incorporating velocity 𝑉 in a dynamic process, which are then employed for developing 

efficient numerical solutions to the dynamic contact problem. 

 

 

Fig. 1. Illustration of the working mechanism of a transversely isotropic multiferroic MEE 

energy converter. 

 

2.2 Basic equations and boundary conditions 

The constitutive relations for MEE films are given by (Hou et al. 2003; Chen et al. 2010) 
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where σij, Di and Bi are the elastic stress tensor, electric displacement vector, and magnetic 
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induction vector; cij, eij and dij denote the elastic moduli, piezoelectric coefficients, and 

piezomagnetic coefficients; εij, gij and µij 
represent the dielectric permittivity, 

electromagnetic coefficients, and magnetic permeability, respectively; 𝛾𝑖𝑗, Ei and Hi are the 

elastic strain tensor, electric field vector, and magnetic field vector; ui, ϕ and φ are the 

elastic displacement vector, electric potential, and magnetic potential. Here and throughout 

this paper, the standard index notation is used, where comma represents differentiation 

with respect to the suffix coordinate. For clarity, the Einstein summation convention for 

repeated indices is used. 

 

For typical MEE materials, the characteristic frequencies for elastic and 

electromagnetic processes are about 104 Hz and 107 Hz, respectively. In the presence of 

transient loadings, the changes in the electromagnetic fields in the MEE body are assumed 

to be immediate, in which the electromagnetic field can be regarded as a quasi-static state 

(Bonaldi et al., 2015; Parton and Kudryavtsev, 1988; Sladek et al., 2010). Therefore in 

absence of body sources, the equilibrium equations and the Maxwell equations are 
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  (3) 

where 𝜌 is the mass density and t represents time. 

 

The boundary conditions at the upper surface of the MEE film can be written as 
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，

  (4) 

where p, q and g represent pressure, surface electric charge, and surface magnetic charge, 

respectively. 

 

Because the lower surface of the film is perfectly bonded to a rigid grounded substrate, 

the boundary conditions at the lower surface are  
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In the context of transversely isotropic MEE media, substituting Eq. (3) into Eq. (1) 

leads to the following governing equations, 
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The Galilean transform is introduced to connect coordinates systems (x, y, z) and (X, Y, 

Z) (Zhou and Lee, 2012a), shown as follows 
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Denote 𝑐 = 𝑉/𝑐𝑠𝑤  as the relative moving velocity of the rigid sphere, where 

𝑐𝑠𝑤 = √𝑐44/𝜌 is the shear wave velocity in the MEE film. Substituting Eq. (11) into Eqs. 

(6-10) leads to the following, 
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2.3 General solutions 

Following the way in (Chen et al., 2004; Hu, 1953), two displacement functions, 𝐻 

and 𝐺, are introduced to express displacements 𝑢𝑥 and 𝑢𝑦, namely, 

 , .x y

H G H G
u u

Y X X Y

   
    
   

 (18) 

 

Substituting Eq. (18) into Eqs. (13-17) results in the governing equations in terms of 

the displacement functions, 𝐻 and 𝐺,  
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2

2

66 44 2
[ (1 ) ] 0,c c c H

Z


  


 (19) 

 [ ][ ] 0,T

zD G u     (20) 

where ,𝐷- is a differential operator matrix given by, 

 

2
2

11 44 13 44 15 31 15 312

2 2 2
2

13 44 44 33 44 15 33 15 332 2 2

2 2 2

15 31 15 33 11 33 11 332 2 2

15 31 15 3

(1 ) ( ) ( ) ( )

( ) ( )

[ ]

( ) ( )

( ) (

c c c c c e e d d
Z Z Z Z

c c c c c c e e d d
Z Z Z Z

D

e e e e g g
Z Z Z Z

d d d d
Z

 

   
        

   

   
         

   


   
        

   


    



2 2 2

3 11 33 11 332 2 2

,

) g g
Z Z Z

 

 
 
 
 
 
 
 
 
 

   
   

    

 (21) 

with 
2 2

2 2X Y

 
  

 
. 

 

Another new displacement function, 𝐹, is introduced; it satisfies the relation of 

|𝐷|𝐹 = 0. The determinant of matrix ,𝐷- can be calculated, which leads to the following, 

 
8 6 4 2

2 3 4

0 1 2 3 48 6 4 2
( ) 0n n n n n F

Z Z Z Z

   
        

   
 (22) 

where 
0 1 4, ,...,n n n  are given in Appendix A. 

 

Therefore, displacement function 𝐺 , displacement 𝑢𝑧 , electric potential 𝜙  and 

magnetic potential 𝜑 in Eq. (20) can be rewritten in terms of function 𝐹, 

 
1 2 3 4, , , ( 1,2,3,4).i z i i iG A F u A F A F A F i     ，  (23) 

where 𝐴𝑖𝑗 are the cofactors of matrix ,𝐷-. Substituting Eq. (23) into Eq. (18) results in the 

following, 

 1 1, .x i y i

H F H F
u A u A

Y X X Y

   
    
   

 (24) 

 

Furthermore, substituting Eqs. (23) and (24) into Eq. (2) and then substituting the 

results into Eq. (1), the stresses, electric displacements and magnetic inductions can be 

expressed in terms of displacement functions 𝐻 and 𝐹.  
  

On the other hand, Eq. (22) can be simplified with the assistance of the Vieta theorem 

for the property of roots, the results are  
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2 2 2 2

2 2 2 2

1 2 3 4

( )( )( )( ) 0,F
Z Z Z Z

   
    

   
 (25) 

where 𝑍𝑖
2 = 𝑠𝑖

2𝑍2, (𝑖 = 1, 2, 3, and 4), and 𝑠𝑖 are deterimined by four of the roots of the 

following equation, whose real portions are positive: 

 
8 6 4 2

0 1 2 3 4 0.n s n s n s n s n      (26) 

 

Turning attention to Eq. (19), it can be rewritten as 

 

2

2

0

[ ] 0,H
Z


  


 (27) 

where 𝑍0
2 = 𝑠0

2𝑍2 with 𝑠0
2 = 𝑐66/,𝑐44(1 − 𝑐2)-. 

 

By utilizing the generalized Almansi’s theorem (Ding, 1996), the displacement function 

𝐹 in Eq. (25) can be expressed in terms of four quasi-harmonic functions, given as follows, 

 

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

2

1 2 3 4 1 2 3 4

3

1 2 2 3 4 1 2 3 4

Case1: , ,;

Case 2 : , ;

Case 3: , ;

Case 4 : , ,

F F F F F s s s s

F F F F ZF s s s s

F F F ZF Z F s s s s

F F ZF Z F Z F s s s s

      

      

      

      

 (28) 

where Eq. (25) can be rewritten as  

 

2

2
( ) 0, ( 1,2,3,4).i

i

F i
Z


   


 (29) 

 

Considering a large amount of MEE materials belonging to Case 1 of Eq. (28) (Chen et 

al., 2010; Li et al., 2015b; Li et al., 2014; Pan, 2001), the present work is only confined to 

study Case 1, which is with distinct 𝑠𝑖. As suggested by Ding et al. (Ding, 1996), five 

harmonic functions 𝜓𝑖  , which can be expressed as 𝛼𝑖𝑠𝑖𝜕
3𝐹𝑖/𝜕𝑍𝑖

3 = 𝜓𝑖  (𝑖 = 1,2,3,4, and 

𝐻 is written as 𝜓0), are introduced to further simplify the expressions (23, 24). Thus the 

general solutions in the case of distinct 𝑠𝑖 can be expressed in terms of 𝜓𝑖  as, 

  

0

4 4

0 ,

1 1

4 4
2 2

1 66 1 , 2 66 0

1 1

4 4

, , 0 0,

1 1

i , ,

2 , 2 i ,

, i , ( 1,2,3),

j

j j

j j j

j m j mj j Z

j j

j j j Z Z j

j j

zm mj j Z Z zm j mj j Z m Z

j j

U w s k

c s c

s s m

  

     

       

 

 

 

 
    

 

 
     

 

 
     

 

 

 

 

 (30) 

where  
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1 2 3

1 2

1 2 3

1 2 3

i , , , ,

, 2i ,

, , ,

i , i , i .

x y z

xx yy xx yy xy

z zz z z z z

z xz yz z x y z x y

U u u w u w w

D B

D D B B

 

      

   

    

    

    

  

     

 (31) 

 

Note that the Einstein summation convention is not used for repeated index here; and 

∇= ∂/ ∂X + i𝜕/𝜕𝑌. Harmonic functions 𝜓𝑖  satisfy the quasi-Laplace equation as follows, 

 

2

2
( ) 0, ( 0,1,..., 4).i

i

i
Z




  


 (32) 

 

2.4 Frequency response functions and Influence coefficients 

Because 𝛹𝑖  in Eq. (32) are harmonic functions, double Fourier transforms of these 

functions can be expressed in terms of exponential functions with unknown coefficients, as 

suggested in (Wang et al., 2015; Yu et al., 2014). Hence, the following direct double Fourier 

transform and its inverse are introduced, 

 

i( )

i( )

2

( , , ) ( , , ) ,

1
( , , ) ( , , ) ,

4

mX nY

mX nY

f m n Z f X Y Z e dXdY

f X Y Z f m n Z e dmdn


 

 

 

 



 





 

 

  (33) 

where hat “≈” denotes the double Fourier transform; 𝑚 and 𝑛 represent the transform 

variables with respect to the 𝑋  and 𝑌  directions, respectively, but in the frequency 

domain. 

 

Applying Fourier transforms to Eq. (32) results in the following,  

 ( , ) ( , ) ( 0,...4),i iZ Z

i i iA m n e A m n e i
  

     (34) 

where α = √𝑚2 + 𝑛2; 𝐴𝑖(𝑚, 𝑛) and 𝐴̅𝑖(𝑚, 𝑛) are ten unknowns to be determined from 

the boundary conditions. 

 

Applying Fourier transforms to Eq. (30) and substituting Eq. (34) into the results lead to 

the transformed displacements, electric potentials, magnetic potentials, stresses, electric 

displacements, and magnetic inductions, expressed as 
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0 0

0 0

4 4

0 0

1 1

4 4

0 0

1 1

4 4

1 1

1 1

4

2 2

1

i i i i ,

i i i i ,

,

j j

j j

j j

j j

s Z s Zs Z s Z

x j j

j j

s Z s Zs Z s Z

y j j

j j

s Z s Z

z j j j j j j

j j

s Z s Z

j j j j j j

j j

u nA e nA e mA e mA e

u mA e mA e nA e nA e

u s k A e s k A e

s k A e s k A e

  

  

 

 

 

  



 



 



 



 

    

   

  

  

 

 

 


4

1

4 4

3 3

1 1

,

,j js Z s Z

j j j j j j

j j

s k A e s k A e
 

  


 

  



 

    (35) 

          

0

0

0

0

4
2 2 2 2

6 6 0 6 6 1 6 6

1

4
2 2 2 2

6 6 0 6 6 1 6 6

1

4
2 2 2 2

6 6 0 6 6 1 6 6

1

6 6 0 6 6

2 [ ( ) ( ) ]

2 [ ( ) ( ) ] ,

2 [ ( ) ( ) ]

2 [ (

j

j

j

s Zs Z

xx j j j

j

s Zs Z

j j j

j

s Zs Z

yy j j j

j

s Z

c mnA e c s c n m A e

c mnA e c s c n m A e

c mnA e c s c n m A e

c mnA e c s









  

 

  











    

    

     

  







0

0

0

4
2 2 2 2

1 66

1

4 4
2 2

1 1

1 1

4
2 2

66 0 66

1

4
2 2

66 0 66

1

4

0 1 0 1

1

) ( )] ,

,

( ) 2

( ) 2 ,

i i

j

j j

j

j

j

s Z

j j j

j

s Z s Z

zz j j j j

j j

s Zs Z

xy j

j

s Zs Z

j

j

s Zs Z

xz j j j

j

c n m A e

A e A e

c n m A e c mnA e

c n m A e c mnA e

ns A e ms A e



 







 

    



    





 











 

 

  

  

 



 





0

0

0

4

0 1 0 1

1

4

0 1 0 1

1

4

0 1 0 1

1

i i ,

i i

i i ,

j

j

j

s Zs Z

j j j

j

s Zs Z

yz j j j

j

s Zs Z

j j j

j

ns A e ms A e

ms A e ns A e

ms A e ns A e







   

    

   









 

  

 









  (36) 
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0

0

0

0

4

0 2 0 2

1

4

0 2 0 2

1

4

0 2 0 2

1

4

0 2 0 2

1

4 4
2 2

2 2

1 1

i i

i i ,

i i

i i ,

j

j

j

j

j j

s Zs Z

x j j j

j

s Zs Z

j j j

j

s Zs Z

y j j j

j

s Zs Z

j j j

j

s Z s Z

z j j j j

j j

D ns A e ms A e

ns A e ms A e

D ms A e ns A e

ms A e ns A e

D A e A e









 

   

   

   

   

   















 

 

 

  

 

 









  ,

 (37) 

 

0

0

0

0

4

0 3 0 3

1

4

0 3 0 3

1

4

0 3 0 3

1

4

0 3 0 3

1

4 4
2 2

3 3

1 1

i i

i i ,

i i

i i ,

j

j

j

j

j j

s Zs Z

x j j j

j

s Zs Z

j j j

j

s Zs Z

y j j j

j

s Zs Z

j j j

j

s Z s Z

z j j j j

j j

B ns A e ms A e

ns A e ms A e

B ms A e ns A e

ms A e ns A e

B A e A e









 

   

   

   

   

   















 

 

 

  

 

 









  .

 (38) 

 

Then applying the Fourier transform to Eqs. (4, 5) and substituting Eqs. (35-38) into the 

results lead to a series of boundary conditions in the Fourier transform domain,  

 
4 4

0 1 0 0 1 0 1 1

1 1

0,j j j j j j

j j

ns A ns A m s A m s A   
 

       (39) 

 
4 4

0 1 0 0 1 0 1 1

1 1

0,j j j j j j

j j

ms A ms A n s A n s A   
 

        (40) 

 
4 4

2

1 1

1 1

/ ,j j j j

j j

A A p  
 

      (41) 

 
4 4

2

2 2

1 1

/ ,j j j j

j j

A A q  
 

      (42) 

 
4 4

2

3 3

1 1

/ ,j j j j

j j

A A g  
 

      (43) 
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 0 0

4 4

0 0

1 1

0,j t j tt t
s h s hs h s h

j j

j j

ne A ne A me A me A
   

 

       (44) 

 0 0

4 4

0 0

1 1

0,j t j tt t
s h s hs h s h

j j

j j

me A me A ne A ne A
   

 

       (45) 

 
4 4

1 1

1 1

0,j t j ts h s h

j j j j j j

j j

s k e A s k e A
 

 

     (46) 

 
4 4

2 2

1 1

0,j t j ts h s h

j j j j j j

j j

s k e A s k e A
 

 

     (47) 

 
4 4

3 3

1 1

0.j t j ts h s h

j j j j j j

j j

s k e A s k e A
 

 

     (48) 

 

Solving the above equation set results in the following, 

 

2 1 2

(1) (2) (2) (1) (1) (2) (1) (2)

1 2 2 1 2 2 1

(2) (2) (2)

2 1 1 2

2
(3) (3) (3)

3 3

1

3
(4) (4)

4 4

1

4
(5) (5)

1 1

1

4
( ) ( )(1) (1)

2 2 21 1

1

[ ] / [ ],

[ ] / ,

[ ] / ,

[ ] / ,

/ ,

[ ] /j t

j j

j

j j

j

j j

j

s s s s h

j j

j

A q h q h h h h h

A q h A h

A p l A l

A k A k

A s A s

A t e A t e A
 







  



  

 

 

 

 

  









3 3

4 4

4 4 0 4 0 4

(1)

22

4 2
( ) ( )

3 3

1 1

4 3
( ) ( )

4

1 1

4

0 0

1

4
( ) ( ) ( ) ( )

0 0

1

,

[ ] / ,

,

( ) / ( ),

[ ( ) ] / (

j t j t

j t j t

j t j t t

s s h s s h

j j j j

j j

s s h s s h

j j

j j

j j j j

j

s s h s s h s s h s s

j j

j

t

A k e A k e A k

A e A e A

A n r A r A mr

A n e A e A me A me

 

 

   

  

 

  

 



     



  

  
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
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  (49) 

The constants, 𝑝, 𝑞, ℎ, 𝑙, 𝑘, 𝑡 and 𝑟, in Eq. (49) are listed in Appendix B. 

 

Accordingly, substituting coefficients {𝐴0, … , 𝐴4, 𝐴̅0, … , 𝐴̅4 } back into Eqs. (35-38) 

establishes the Fourier transformed solutions for the corresponding elastic displacements, 
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electric/magnetic potentials, stresses, electric displacements, and magnetic inductions. 

 

The frequency response functions (FRFs) are related to material properties and a 

certain velocity, 𝑉, can be described as the responses to unit point loads. The components 

of the FRFs can be analytically obtained by letting 𝑝 = 1, 𝑞̃̃ = 1 or 𝑔̃̃ = 1 in Eq. (35-38), 

which are denoted by 
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  (50) 

where 𝐺̃̃𝑝
𝑢  denotes the FRFs of u excited by load p, and 𝐺̃̃𝑝

𝜑
 represents the FRFs of 

magnetic potential φ caused by pressure p and so on. 

 

Once the FRFs are obtained, the continuous Fourier transforms of influence 

coefficients (ICs) can be solved by multiplying the FRFs and the Fourier transformed shape 

functions (Liu and Wang, 2002), 

 ,ij iji i i i i i

T T
u D B u D B

sC C C C C C G G G G G G F
        

      
  (51) 

where Fs is the shape function given as follows 
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 and (52) 

 

Then the discrete Fourier transforms of ICs can be further calculated from the 

continuous ICs with the following aliasing treatments (Liu and Wang, 2002; Wang et al., 

2015), 
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 
  (53) 

where ΔX and ΔY are the mesh sizes along the X and Y directions, respectively; AL represents 

the level of the aliasing control; 𝑀𝑒 = 2𝛾𝑀 and 𝑁𝑒 = 2𝛾𝑁 denote the refinement mesh 

numbers of the original mesh numbers M and N; C is the ICs in the form of the discrete 
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Fourier transform.   

 

Furthermore, the displacement, stress, electric/magnetic potential, electric 

displacement, and magnetic induction can be obtained by utilizing the same discrete 

convolution-fast Fourier transform (DC-FFT) algorithm for pressure, surface electric charge, 

and surface magnetic charge by means of the corresponding components of ICs (Liu et al., 

2007; Liu and Wang, 2002) with IFFT being the inverse fast Fourier transform: 
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2.5 Numerical modeling 

Now the working progress of the MEE energy converter system shown in Fig. 1(a), 

under an varying applied force P(t) along the z axis can be solved. The loading velocity of the 

rigid sphere is assumed to be a function of loading time t, which can be expresses as either  
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  (60) 

or 

 
0 sin( / ),totalV V t T   (61) 

for the triangular and sinusoidal variations, respectively, where V0 denotes the maximum 

value of the loading velocity; Ttotal represents the total time during one loading cycle.  

 

The working progress of the MEE system depends on the loading history, for which the 

dynamic contact problem is solved first. For a certain time t, the following contact conditions 

for displacement, pressure, and load are applicable to such a dynamic contact problem, 

 0 ,t t t

z zu g h    (62) 

 
0 & 0 ( , ) ,

0 & 0 ( , ) ,

t t

z c

t t

z c

p g x y

p g x y

   

   
  (63) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19 
 

 + ,
c

t
t t

sp dxdy P M a


   (64) 

where 𝑢̅𝑧
𝑡  is the surface normal displacement for the MEE film; 𝑔𝑧

𝑡 is the gap between the 

surfaces of the rigid sphere and the MEE film; Гc is the contact zone; ℎ0
𝑡  is the initial vertical 

separation; Ms is the mass of the sphere; at is the acceleration of the rigid sphere at time t; 

and Pt represents the applied force at time t. For the velocity type given by Eq (60), at equals  

2V0/Ttotal for 0<t<Ttotal/2 and equals -2V0/Ttotal for Ttotal/2<t<Ttotal. For the velocity type given 

by Eq. (61), at = *sin ,2π(t + Δt)/𝑇𝑡𝑜𝑡𝑎𝑙- − sin (2πt/𝑇𝑡𝑜𝑡𝑎𝑙)+/Δ𝑡. It should be mentioned that 

the applied force Pt gradually increases with indentation depth. Thus for a given indentation 

depth 𝛿𝑡 at time t, Pt should be determined in an iteration process, as described below. 

 

In the numerical process, the DC-FFT algorithm described in (Liu et al., 2007; Zhang et 

al., 2018) is applied to solve Eqs. (54-59) in order to obtain the displacement component ui, 

electric potential ϕ, magnetic potential φ, elastic stress tensor 𝜍𝑖𝑗, electric displacement 

vector 𝐷𝑖 , and magnetic induction vector 𝐵𝑖 . Once the surface displacement 𝑢̅𝑧
𝑡  is 

obtained, gap gt in Eq. (62) can be solved. Pressure pt in Eq. (63) is calculated with the 

conjugate gradient method (CGM) described in (Polonsky and Keer, 1999). Figure 2 shows 

the flow diagram for the numerical approach, in which, 

(1) Initial parameters are input, including material properties, mesh size and geometry 

information, etc. The initial surface electric/magnetic charges, applied force, loading 

time are set to zero. 

(2) The loading time, t, is increased step by step. In each increment step Δt, the accumulated 

time is updated. 

(3) At time t, the velocity of the rigid sphere is calculated based on Eqs. (60, 61). Moreover, 

the ICs should be prepared in advance based on the material properties and the current 

velocity. 

(4) The accumulated indentation depth is calculated based on 𝛿𝑡 = 𝛿𝑡−1 + 𝑉(𝑡) ∙ ∆𝑡. 

(5) In current indentation depth, 𝛿𝑡, the total force, Pt, is applied step by step. In each 

increment step ∆𝑃, pressure pt is calculated using the CGM. 

The CGM implementation and the iteration procedure involve: 1) estimation of 

pressure distribution pt; 2) calculation of surface normal displacement 𝑢̅𝑧
𝑡  in Eq. (54) by 

means of the DC-FFT algorithm; 3) acquisition of gap 𝑔𝑧
𝑡 by Eq. (62); 4) updates of 

pressure pt in step t based on the descent direction, dcgm, and the step length, acgm; 5) 

implementation of Eq. (64) to confirm that the applied force has been enforced; and 6) 

convergence tests in the iteration steps, 2-5, until the required convergence condition is 

satisfied. 

(6) Once the new value of pt is obtained, the surface normal displacement, uz0, at the 

contact center, namely the calculated indentation depth, can be solved by Eq. (54). 

(7) Iteration steps (5, 6) are continued until the calculated uz0 at time t approaches 𝛿𝑡. At 
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this point, the applied force Pt at time t for the current indentation depth 𝛿𝑡 is obtained. 

Moreover, the current pressure distribution pt can be solved. 

(8) The accumulated surface electric charge qt and magnetic charge gt, which equal the 

normal electric displacement Dz and magnetic induction Bz at the contact surface, 

respectively, can be solved based on pressure pt, surface electric charge qt-1, and surface 

magnetic charge gt-1 by Eqs. (58, 59). Furthermore, loading velocity V, applied force P, 

pressure p, surface electric charge q, surface magnetic charge g, surface electric 

potential ϕ, and surface magnetic potential φ are recorded at time t. 

(9) Iteration steps (2)-(8) are continued until the total loading time, Ttotal, is reached. At this 

point, the working progress of the MEE energy conversion during one loading cycle is 

completed, in which the electric potential generated at the top surface of the MEE film 

should drive the electron flow through the circuit. 

 

 

Fig. 2. Flow diagram for modeling the working progress of the MEE energy conversion. 

 

3. Results and discussion 

The working progress of the MEE conversion of the dynamic contact energy the rigid 

sphere on the top surface of the transversely isotropic multiferroic MEE film, described as 

the system in Fig. 1(a) under an increasing applied force P(t) along the z axis, was solved 

based on the efficient SAM approach derived in the previous section. A fixed computational 

domain of 4𝑎0 × 4𝑎0 × ℎ𝑡 with 256 × 256 × 64 grids in the X, Y and Z directions was 

used, where 𝑎0 is the contact radius, to be discussed later. The multiferroic MEE film is 

made of the magnetostrictive (CoFe2O4) and piezoelectric (BaTiO3) phases whose material 

properties were from (Chen et al., 2010; Pan, 2001) with distinct sk, as given in Table 1. The 
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rigid sphere is made of steel whose mass density ρs equals 7.85g/cm3, which leads to the 

mass of the sphere, 𝑀𝑠 = 4𝜋𝜌𝑠𝑅3/3 = 3.29 × 10−8g. 

 

In one loading cycle of the velocity-induced MEE energy conversion, the loading 

velocity of the sphere increases from zero to the maximum, V0, then decreases to zero 

following two loading types given in Eqs. (60) and (61). At the end of a loading cycle, the 

electric potential generated at the film surface was calculated. The working conditions of the 

MEE energy conversion are given in Table 2, showing that the term 𝑀𝑠𝑎𝑡 in Eq. (64) is much 

smaller than 𝑃0; Hence in the following numerical calculation, the effect of acceleration 𝑎𝑡 

on the contact behaviors are ignored. 

 

Table 1. Material properties of the transversely isotropic multiferroic BaTiO3-CoFe2O4 (Chen et al., 

2010; Pan, 2001). (cij in 109N/m2, eij in C/m2, dij in N/(Am), εij in 10-9C2/(Nm2), µij in 10-6Ns2/C2). 

c11 c12 c13 c33 c44 c66 

226 125 124.25 216 44.15 50.5 

e31 e33 e15 d31 d33 d15 

-2.2 9.3 5.8 290.15 350 275 

ε11 ε33   µ11 µ33 

5.64 6.35   297.5 83.5 

 

Table 2. Working conditions of the MEE energy conversion (𝜉11 = 2.03552 × 10−12m2/𝑁, 

𝜉12 = 1.77480 × 10−3m2/𝐶, and 𝜉13 = 1.93900 × 10−6mA/N are calculated from current 

material properties (Chen et al., 2010); an applied force of 𝑃0 = 1.8 × 10−4𝑁 is selected as a 

reference value). 

Loading velocity c0 

(𝑐0 = 𝑉0/√𝑐44/𝜌 ) 
0.4, 0.6, 0.8 Sphere radius R0 1 × 10−6m 

Sphere radius R 1.0R0, 2.0R0, 3.0R0 Contact radius a0  3
0 11 0 00.75a R P  

Film thickness ht 1.0a0, 2.0a0, 5.0a0 Indentation depth δ0 𝑎0
2/𝑅0 

Loading time at one cycle 

Ttotal 
0.8δ0/csw Contact pressure p0 

2

0 11 02 /(a R  )  

Magnetic potential φ0 13 0 11/    Electric potential ϕ0 12 0 11/    

 

 

3.1 Model verification and general MEE transient behaviors 

3.1.1 Model verification 

The model is verified through the comparison of the solutions from the present model 

at  ℎ𝑡 → ∞ & 𝑉 = 0 with the corresponding analytical solutions from Chen et al. (2010), 

for the problem of a MEE half-space indented by a rigid insulating sphere of radius 

R=110-6m under applied force P=210-4N. The results are normalized by the maximum 
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pressure, p0, the maximum electric potential, ϕ0, the maximum magnetic potential, φ0, and 

the contact radius, a0, from the framework of solutions by Chen et al. (2010). The results in 

Fig. 3 (a-c) clearly reveal that the normalized contact pressure, surface electric potential, and 

surface magnetic potential well agree with those from reference (Chen et al., 2010). 

  

                     (a)                                      (b)              

                                  

 
   (c) 

Fig. 3. Verification of the present model through degeneration to a half space and the comparison of 

the numerical results with the corresponding analytical solutions from Chen et al. (2010), for the problem 

of a MEE half-space indented by a rigid insulating sphere of radius R=110-6m under applied force 

P=210-4N: (a) normalized contact pressure p/p0; (b) normalized surface electric potential ϕ/ϕ0; (c) 

normalized surface magnetic potential φ/φ0. 

 

The model is further verified through the comparison of the present numerical results 

by letting 𝑉 = 0 with the corresponding numerical results from our previous work (Zhang 

et al., 2017), for the problem of a MEE film indented by a rigid insulating sphere of radius 

R=110-6m under applied force P=210-4N. Three film thicknesses, ht=1.0a0, 2.0a0, and 5.0a0, 

are selected as examples. Figure 4 (a) shows the normalized contact pressure distributions, 

p/p0, with respect to ht, while (b) and (c) plot the surface electric potential distributions, 

ϕ/ϕ0, and surface magnetic potential distributions, φ/φ0. Clearly, p/p0, ϕ/ϕ0, and φ/φ0 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

23 
 

from the present method well agree with those from reference (Zhang et al., 2017). 

 

  

                  (a)                                 (b) 

 

 
     (c) 

Fig. 4. Verification of the present model through degeneration with V=0 and the comparison of the 

numerical results with those from (Zhang et al., 2017), for the problem of a MEE film indented by a 

rigid insulating sphere of radius R=110-6m under applied force P=210-4N: (a) normalized contact 

pressure p/p0; (b) normalized surface electric potential ϕ/ϕ0; (c) normalized surface magnetic 

potential φ/φ0. 

 

3.1.2 General MEE transient behaviors 

The model is first implemented to study the general MEE transient behaviors for the 

problem of a MEE film of ht=1.0a0 indented by a rigid insulating sphere of radius R=110-6m 

under the applied force of P=210-4N. Four constant velocities, c=0, 0.4, 0.6 and 0.8, are 

selected as examples. Figure 5 shows the effects of the loading velocity c on the general MEE 

transient behaviors, where (a), (b) and (c) are for the normalized contact pressure 

distributions, p/p0, the surface electric potential distributions, ϕ/ϕ0, and surface magnetic 

potential distributions, φ/φ0, respectively. The contact pressure is relieved with the 
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increasing loading velocity of the sphere, which is also observed in (Zhou and Lee, 2012b) for 

the contact of a MEE half-plane indented by a moving cylindrical punch. The results show 

that a larger c leads to higher surface electric potentials ϕ/ϕ0 and surface magnetic 

potentials, φ/φ0.  

 

 

 
Fig. 5. General MEE transient behaviors, for the MEE film of ht=1.0a0 indented by a rigid insulating 

sphere of radius R=110-6m under the applied force of P=210-4N, for different velocity values of c=0, 

0.4, 0.6 and 0.8: (a) normalized contact pressure p/p0; (b) normalized surface electric potential ϕ/ϕ0; 

and (c) normalized surface magnetic potential φ/φ0.   

 

3.2 Dynamic characterization of surface MEE contact behaviors  

3.2.1 Effects of loading velocity on contact behaviors 

The dynamic contact behaviors of the multiferroic film can be characterized by a 

transient indentation of a rigid insulating sphere under an increasing applied force ( )P t  

along the z axis. Figure 6 shows the types of loading velocity, where (a) and (b) are for the 

velocities of triangular and sinusoidal shapes, respectively. The influence of loading velocity 

on the dynamic contact behaviors is explored, while the film thickness is ht=1.0a0 and the 

sphere radius is R=1.0R0 without losing generality. The total loading time Ttotal and 

indentation depth δ are fixed, for which c0 should be carefully selected to satisfy the same 

indentation depth δ. Hence, for the velocity of triangular shape, maximum value c0=0.4, 0.6 
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and 0.8 are selected while maximum value c0=0.4·π/4, 0.6·π/4 and 0.8·π/4 are chosen for 

the velocities in sinusoidal variations. Figure 7 shows the dynamic contact behaviors with 

respect to increasing loading time for different c0 and velocity types, where (a), (b), (c) and 

(d) plot the applied force P, normalized pressure p/p0 at the contact center, maximum values 

of normalized electric potential ϕ/ϕ0 and magnetic potential φ/φ0, respectively. In general, 

a larger c0 leads to larger contact characteristic values. Furthermore, these characteristic 

items under the triangular contact variation are slightly smaller than those under the 

sinusoidal contact variation in the early stage of the loading cycle, while the trend reverses 

in the later stage.  

 

 

                  (a)                               (b) 

Fig. 6. Types of loading velocity: (a) velocity of triangular shape; (b) velocity of sinusoidal shape. c0 is 

the maximum value of the velocity. Note that the areas under corresponding curves are the same 

 

 

(a)                                (b)  
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                    (c)                                 (d) 

Fig. 7. Dynamic contact behaviors for different values of maximum velocity c0: (a) applied force P; (b) 

normalized pressure p/p0 at the contact center; (c) maximum values of normalized electric potential 

ϕ/ϕ0; (d) maximum values of normalized magnetic potential φ/φ0.  

 

3.2.2 Effects of the MEE film thickness on contact behaviors 

The same problem is investigated for the MEE film with different thicknesses ht=1.0a0, 

2.0a0, 5.0a0, and the sphere radius of R=1.0R0. Because Fig. 7 confirms that the loading 

velocity types have negligible influences on contact behaviors, the triangular velocity with 

maximum value c0=0.8 is selected for these analyses. Figure 8 shows the results with respect 

to increasing loading time for different film thickness ht, where (a), (b), (c) and (d) plot the 

applied force P, normalized pressure p/p0 at the contact center, and the maximum values of 

normalized electric potential ϕ/ϕ0 and magnetic potential φ/φ0, respectively. Obviously, the 

applied force and the maximum values of the contact pressure decrease with increasing film 

thickness ht. On the other hand, a thicker film thickness leads to a larger electric/magnetic 

potential at the contact center. 

 

 

 (a)                              (b)                              
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                      (c)                              (d)   

Fig. 8. Dynamic contact behaviors of the MEE films with different thicknesses, ht: (a) applied force P; 

(b) normalized pressure p/p0 at the contact center; (c) maximum values of normalized electric 

potential ϕ/ϕ0; (d) maximum values of normalized magnetic potential φ/φ0. Results are obtained 

from the velocity of the triangular shape.  

 

3.2.3 Effects of sphere radius on the contact behaviors 

In this section, the dynamic contacts of the MEE film thickness of ht=1.0a0 with the 

rigid insulating spheres of different sizes, R=1.0R0, 2.0R0 and 3.0R0, are analyzed under the 

same triangular velocity with c0=0.8 mentioned before. Figure 9 shows the dynamic contact 

behaviors of the MEE thin film with respect to increasing loading time for different sphere 

radius R, where sets (a), (b), (c) and (d) plot the applied force P, normalized pressure p/p0 at 

the contact center, maximum values of normalized electric potential ϕ/ϕ0 and magnetic 

potential φ/φ0, respectively. Clearly, increasing sphere radius R causes the applied force to 

increase, but the maximum values of the contact pressure decreases. On the other hand, a 

larger sphere radius leads to a higher electric/magnetic potential at the contact center.  

 

 

 (a)                              (b)    
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                    (c)                                 (d) 

                                                 

Fig. 9. Dynamic contact behaviors influenced by sphere radius R: (a) applied force P; (b) normalized 

pressure p/p0 at the contact center; (c) maximum values of normalized electric potential ϕ/ϕ0; (d) 

maximum values of normalized magnetic potential φ/φ0. Results are obtained from the triangular 

velocity.. 

 

3.3 Sub-surface stress analysis 

The von Mises stress is important to understand the plastic behaviors of the materials 

under dynamic contact, which is defined by 

2 2 2 2 2 2[( ) ( ) ( ) 6( )] / 2.s xx yy yy zz zz xx xy xz yz                      (65) 

 

Figure 10(a) plots the distributions of the von Mises stress along the z-axis in the MEE 

film, for the problem of triangular velocity with c0=0.6, film thickness ht=1.0a0, and sphere 

radius R=1.0R0. The insets display the contours of the von Mises stress 𝜍𝑠/𝑝0 in the x-z 

section for time t=7.2532. As loading time t increases, the values of the stress become larger, 

and the location of the maximum von Mises stress departs further away from the contact 

surface. It is found that t=3.6266, corresponding to peak velocity c0=0.6, leads to a 

significant sudden change in the von Mises stress, as shown in Fig. 10(a). In order to 

understand this phenomenon, the distributions of the von Mises stress caused by the 

sinusoidal loading velocity with c0=0.6 are plotted in Fig. 10(b) for comparison, in which 

similar sudden changes are found in the curves for velocity c=0.5543 at t=2.7200, for velocity 

c=0.6 at t=3.6266, and for velocity c=0.5543 at t=4.5332. Besides, the distributions of the 

von Mises stress for the problem of triangular velocity with c0=0.4 is plotted in Fig. 10(c), 

where the sudden change vanishes. Furthermore, the distributions of the von Mises stress at 

t=3.6266 for the problem of triangular-shape loading velocity with different peak velocity 

c0=0.4, 0.45, 0.5, 0.55 and 0.6 are plotted in Fig. 10(d), revealing that the loading velocity is 

responsible of sudden change in the von Mises stress along the z direction, and that this 

sudden change becomes more significant if the peak velocity c0 is higher. 
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                   (a)                                  (b) 

    
(c)                                  (d) 

Fig. 10. Distributions of the von Mises stress along the z-axis in the MEE film: (a) c0=0.6 for the 

triangular-shape loading velocity, (b) c0=0.6 for the sinusoidal-shape loading velocity, (c) c0=0.4 for 

the triangular-shape loading velocity, (d) at t=3.6266 under the triangular-shape loading velocity with 

different peak velocities c0=0.4, 0.45, 0.5, 0.55 and 0.6. Film thickness ht=1.0a0, and sphere radius 

R=1.0R0. The insets display the contours of the von Mises stress 𝜍𝑠/𝑝0 in the x-z section for time 

t=7.2532.  

 

The variations of the maximum values of 𝜍𝑠/𝑝0 with loading time t are plotted in Fig. 

11 for clarity. The insets display the contours of the von Mises stress 𝜍𝑠/𝑝0 in the x-z 

section at different loading time t. The maximum value of 𝜍𝑠/𝑝0 increases with time. A 

thicker film results in a smaller value of 𝜍𝑠/𝑝0, as shown in Fig. 11 (a). On the other hand, a 

smaller sphere radius R induces a larger value of 𝜍𝑠/𝑝0, as shown in Fig. 11 (b). 
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                    (a)                                  (b) 

Fig. 11. Variations of the maximum values of 𝜍𝑠/𝑝0 with loading time t due to the triangular-shape 

loading velocity: (a) for the MEE film of different thickness ht=1.0a0, 2.0a0 and 5.0a0; (b) for different 

sphere radius R=1.0R0, 2.0R0 and 3.0R0. Loading velocity c0=0.6, sphere radius R=1.0R0. The insets 

display the contours of the von Mises stress 𝜍𝑠/𝑝0 in the x-z section for time t=0.9067, 3.6266 and 

7.2532. 

 

3.4 Energy conversion performance 

Sun and Kim (2010) proposed an energy conversion factor to evaluate the 

performance of MEE energy conversion as a natural extension of the work by Zheng et al. 

(2009) on piezoelectric energy harvest. Inspired by their study, the work WP done by the 

applied force P is stored in the forms of strain energy Π𝑆, electric energy Π𝐸 , magnetic 

energy Π𝑀, piezoelectric energy Π𝑃𝐸 , piezomagnetic energy Π𝑃𝑀, and magnetoelectric 

energy Π𝑀𝐸 , which can be expressed as follows without considering thermal and plastic 

losses: 

 

1 1 1
d , d , d ,

2 2 2

1 1 1
d , d , d .

2 2 2

S T E T M T

ij ijkl kl i ij j i ij j

PE T PM T ME T

ij ijk k ij ijk k i ij j

c V E E V H H V

e E V d H V E g H V

   

 

     

     

  

  

  (65) 

 

Furthermore, the work, WP, done by the applied force, P, can be written as 

 ,PW P     (66) 

where 𝛿 denotes the indentation depth of the rigid sphere on the MEE film by the applied 

force P. 

 

Therefore, the energy conversion factor 𝜂𝐸  from mechanical energy to electric energy 

(we call it electric energy conversion factor later) can be defined as 

 .
E

E PW



   (67) 
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In this study, we are focusing on the evaluation of the performance of the MEE 

film-based energy converter, in which the MEE film can be described as an energy converter 

to utilize the electric potential to drive the electron flow through the circuit, rather than 

exactly determining the amount of the generated electric energy. The finite element analysis 

by Xu and Qin (2017) shows the electric potential linearly varies along the length direction of 

the nanowires. Reasonably, assuming the electric potential linearly varies along the z axis of 

the MEE film, and the electric energy Π𝐸  can be approximately calculated by, 

          
33

1
d ,

2

E

c

t

A
h

                                  (68) 

where 𝜙̅ represents the electric potential at the top surface of the MEE film, 𝐴𝑐 is the 

in-plane (x-y section) area of the interaction domain. The electric potential in the lower 

surface of the MEE film is zero due to its grounding. 

 

Figure 12 shows the electric energy conversion factor 𝜂𝐸  with respect to varying film 

thickness and sphere radius, for the problem of triangular loading velocity with c0=0.6. 

Clearly, a thicker film ht results in a smaller value of 𝜂𝑃. On the other hand, a smaller sphere 

radius R induces a larger value of 𝜂𝐸 .   

 

Fig. 12. Variation of the electric energy conversion factor 𝜂𝐸 with respect to film thickness 

and sphere radius, for the problem of triangular loading velocity of c0=0.6. 

 

Figure 12 offers an optimization design scheme for the overall electric energy 

conversion efficiency with respect to film thickness and indenter size. Another critical issue 

is how the efficiency can be improved from material design. The material properties listed in 

Table 1 has 16 independent constituent constants, including six elastic stiffnesses cij, three 

piezoelectric coefficients eij, three piezomagnetic coefficients dij, two dielectric permittivities 
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εij, and two magnetic permeabilities μij. It is important to evaluate coupling effects and 

dependence of the electric energy conversion factor 𝜂𝐸  on those material properties. 

Furthermore, the magnetic energy conversion factor 𝜂𝑀 = Π𝑀/𝑊𝑃 is also calculated for 

the connection between the electric and magnetic energies. The sensitivity function 

suggested by Makagon et al. (2007), (2009) is employed to evaluate the coupling effects of 

those material properties on the energy conversion rate. The dimensionless sensitivity 

below is numerically calculated with the step length of 0.01f 0:  

                         

0 0

0

1.01 0.99
( )

0.02

f f f f

f f

S f
 



 




                   (69) 

where f is a selected material constant with f0 being its reference value. 𝜂 is an energy 

conversion factor, which can be electric energy conversion factor 𝜂𝐸 , and magnetic energy 

conversion factor 𝜂𝑀. 

 

Figure 13 plots the sensitivities of energy conversion factors, 𝜂𝐸  and 𝜂𝑀, to the 16 

independent material constants, for the problem of film thickness ht=1.0a0, sphere radius 

R=1.0R0, and triangular loading velocity of c0=0.6. The energy conversion factors show 

obvious dependences on the elastic stiffnesses c11, c13, c33, c44, dielectric permittivity ε11, 

piezoelectric coefficients e33, e15, piezomagnetic coefficients dij, and magnetic permeability 

μ11, but they are less sensitive to elastic constant c12, piezoelectric coefficient e31, dielectric 

permittivity ε33, and magnetic permeability μ33. c11, c13, e33, and e15 promote the electric 

energy conversion from mechanical energy to electric energy while c33, c44 and ε11 tend to 

confine the electric energy conversion. Besides, c11, d33, and d15 promote the increase in 

magnetic energy conversion from mechanical energy while c13, c33, c44, e33, e15, d31, and μ11 

tend to reduce the magnetic energy conversion. The above observations are stated in details 

below, which are consistent with the physical nature and the reported publications for the 

current problems.  

(i) For larger tangential dielectric permittivity ε11 and magnetic permeability μ11, the 

dielectric and magnetic effects spread much more laterally, which reduce the 

electric/magnetic energy generations at the contact center. On the other hand, for larger 

normal dielectric permittivity ε33 and magnetic permeability μ33, the dielectric and 

magnetic effects are concentrated beneath the contact center, which makes the 

electric/magnetic energy generations larger. But those increases in electric/magnetic 

energy are not very significant when compared to the reduced amounts of 

electric/magnetic energy due to the influences of ε11 and μ11. Therefore, dielectric 

permittivities and magnetic permeabilities can be singled out for their abilities to reduce 

the efficiency of the energy conversion, which are in agreement with the observations 

reported in most publications about piezoelectric/magnetoelectric issues (Umeda et al., 

1996, 1997; Zhang et al., 2018).  
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(ii) It was reported in (Sodano et al., 2004) that the efficiency of electric energy conversion 

increased with the increasing piezoelectric coefficients. In the numerical results 

presented in Fig. 13, piezoelectric coefficient e33 results in more prominent contribution 

to the electric energy conversion. Furthermore, piezomagnetic coefficient d33 

remarkably enhance the performance of the magnetic energy conversion. For larger e33 

and d33, the electromechanical coupling and magnetomechanical coupling become 

stronger, which enhances the electric/magnetic behaviors even when the system is 

under the same mechanical characteristics. 

(iii) Elastic constant c12 has a negligible influence on the MEE behavior, as evidenced in our 

previous research (Zhang et al., 2018). c11, c33, and c44 have the same influences on 𝜂𝐸  

and 𝜂𝑀, in which c11 tends to promote the efficiency of energy conversion while c33 and 

c44 tend to reduce the efficiency. However, c13 has a positive effect on 𝜂𝐸  but a negative 

effect on 𝜂𝑀. As reported in (Wang and Chen, 2011), the equivalent Young’s modulus E0 

and Poisson’s ratio υ0 in the plane of isotropy can be calculated by 𝐸0 = (𝑐11
2 𝑐33 −

2𝑐11𝑐13
2 − 𝑐12

2 𝑐33 + 2𝑐12𝑐13
2 )/(𝑐11𝑐33 − 𝑐13

2 ), and 𝜐0 = (𝑐12𝑐33 − 𝑐13
2 )/(𝑐11𝑐33 − 𝑐13

2 ). If 

υ0 is constant, c11 tends to increase the equivalent Young’s modulus E0, which makes the 

apparent normal stiffness stronger and then promotes larger electric/magnetic energy 

conversions from the mechanical energy. On the other hand, in order to keepυ0 constant 

and increase E0 as stated above, c33 should decrease its value, which indicates an effect 

totally opposite  to that of c11.  

 

 
Fig. 13. Sensitivity of energy conversion factors 𝜂𝐸 and 𝜂𝑀  to the 16 independent material 

constants, for the problem of film thickness ht=1.0a0, sphere radius R=1.0R0, and triangular loading 

velocity of c0=0.6. 

 

4. Conclusions 

The theoretical base and a semi-analytical model (SAM) for simulating the dynamic 
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contact of a rigid sphere and the surface of a multiferroic magnetoelectroelastic (MEE) film 

under transient applied force has been developed. The research has yielded analytical 

frequency response functions (FRFs) and their conversion into influence coefficients (ICs) for 

the MEE film subjected to a set of generalized normal force and generated surface 

electric/magnetic charges under the influence of changing loading velocity in a dynamic 

process. The research has also further developed the fast numerical techniques, such as the 

conjugate gradient method (CGM) and the fast Fourier transform (FFT), for efficient 

numerical solutions to the dynamic contact behaviors of the thin-film material, including the 

distributions and variations of contact pressure and electric/magnetic potentials, as well as 

subsurface stresses. The combined influences of loading velocity, film thickness, and sphere 

radius on the dynamic MEE responses have been investigated, and the numerical results 

lead to the following conclusions. 

 

1). The dynamic contact characteristics, including the applied force and electric/magnetic 

potentials under the triangular loading speed variation are slightly smaller than those under 

the sinusoidal loading velocity variation in the early stage of the loading cycle, while the 

trend reverses in the later stage. The contact characteristic values increase with the 

maximum velocity and sphere radius, but decrease with film thickness.   

 

2). The von Mises stress become larger and the location of the maximum von Mises stress 

departs further away from the contact surface as loading velocity increases in one loading 

cycle. A thicker film results in a smaller stress. On the other hand, a larger sphere radius 

induces a smaller stress under the same peak velocity. 

 

3). An energy conversion factor is employed to evaluate the performance of MEE energy 

conversion. Under the same load and loading velocity, thicker film results in a lower energy 

conversion from mechanical energy to electric energy. On the other hand, a smaller sphere 

radius promotes a larger electric energy conversion. 

 

4). The sensitivity analyses of the energy conversion factors with respect to material 

properties show obvious their dependences on elastic stiffnesses c11, c13, c33, c44, dielectric 

permittivity ε11, piezoelectric coefficient e33, e15, piezomagnetic coefficients dij, and magnetic 

permeability μ11, but they are less sensitive to elastic constant c12, piezoelectric coefficient 

e31, dielectric permittivity ε33, and magnetic permeability μ33. Dielectric permittivities and 

magnetic permeabilities can be singled out for their abilities to reduce the efficiency of the 

energy conversion. Piezoelectric coefficient e33 results in more prominent contribution to 

the electric energy conversion. Furthermore, piezomagnetic coefficient d33 remarkably 

enhance the performance of the magnetic energy conversion. Elastic stiffness c11 tends to 
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promote the efficiency of energy conversion while c33 and c44 could reduce the efficiency. 

However, c13 has a positive effect on electric energy conversion but a negative effect on 

magnetic energy conversion. These results offer references to optimal material designs 

towards high efficiency of different energy conversions. 

  

Above all, the numerical results in this paper have answered the key questions listed in 

the introduction, which are (a) the contact characteristics in terms of electric/magnetic 

potentials, contact pressure, and stresses are all much dependent on the dynamic contact 

loading. (b) The contact characteristic values increase with the peak velocity, and the 

variations in loading velocity significantly affect the mechanical and electric/magnetic 

responses, as stated in conclusion 1). (c) The sensitivity analyses of material properties show 

obvious coupling effects and dependence of electric energy conversion on several material 

properties, as stated in conclusion 4). In order to improve the efficiency of 

mechanical-electrical/magnetic energy conversions, a systematic optimization can be 

developed from the structural topology and material components, based on conclusion 3) 

and 4). 
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Appendix A 

The constants in Eq. (22) are given as follows, 

2 2 4

0 1 10 44 11 44

2 2 4

1 2 7 44 9 44

2 4 2

2 3 5 44 8 44

2

3 4 6 44

2 2 2
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Besides, the constants in Eq. (30) are given as, 
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Appendix B 

The intermediate variables in Eq. (49) are: 
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