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A B S T R A C T

Municipal solid waste management represents an increasingly significant environmental, fiscal, and social
challenge for cities. Understanding patterns of municipal waste generation behavior at the household and
building scales is a critical component of efficient collection routing and the design of incentives to encourage
recycling and composting. However, high spatial resolution estimates of building refuse and recycling have been
constrained by the lack of granular data for individual properties. This paper presents a new analytical approach,
which combines machine learning and small area estimation techniques, to predict weekly and daily waste
generation at the building scale. Using daily collection data from 609 New York City Department of Sanitation
(DSNY) sub-sections over ten years, together with detailed data on individual building attributes, neighborhood
socioeconomic characteristics, weather, and selected route-level collection data, we apply gradient boosting
regression trees and neural network models to estimate daily and weekly refuse and recycling tonnages for each
of the more than 750,000 residential properties in the City. Following cross-validation and a two-stage spatial
validation, our results indicate that our method is capable of predicting building-level waste generation with a
high degree of accuracy. Our methodology has the potential to support collection truck route optimization based
on expected building-level waste generation rates, and to facilitate new equitable solid waste management
policies to shift behavior and divert waste from landfills based on benchmarking and peer performance com-
parisons.

1. Introduction

Waste management is an increasingly complex quality-of-life issue
for cities around the world, especially given the rapid growth of urban
populations over the past two decades (World Health Organization
Centre for Heath Development, 2010; Leao, Bishop, & Evans, 2004).
Proper waste management is essential in order to provide sustainable,
livable cities, as the collection and removal of waste impacts carbon
emissions, traffic congestion, and air quality, as well as requiring sig-
nificant operating expenditures (Adeyemi, Olorunfemi, & Adewoye,
2001; Esin & Cosgun, 2007). To improve waste management services
and reduce the amount of waste sent to landfills, local governments are
developing new methods to create efficient waste management systems
and increase diversion rates through recycling and composting pro-
grams (MacDonald, 1996; Wang, Richardson, & Roddick, 1996;
Bhargava & Tettelbach, 1997; Guerrero, Maas, & Hogland, 2013;
Pappu, Saxena & Asolekar, 2007; Tam & Tam, 2006). New data streams,

and the application of machine learning statistical methods, enable
data-driven approaches to persistent problems in urban environmental
management. Such data have proven to be a great resource for waste
management planning, but they are typically collected at too coarse of
an aggregation to fully optimize collection routing, and provide the
empirical basis for policies that can shift, or “nudge”, behavior through
incentives or regulations based on performance metrics. The need for
high resolution and targeted municipal solid waste management policy
is crucial to minimize the future negative environmental impacts of
urban waste.

Previous work has aimed to improve municipal waste management
by using systems dynamics or data-driven modeling techniques to
predict waste generation and identify factors that explain waste and
recycling behavior. In particular, studies using temporal models with
lagged waste generation data have performed well for prediction and
forecasting, in large part due to the time series auto-correlation ob-
servable in waste generation rates at the regional or local level. Missing
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from the literature, however, are attempts to predict waste generation
for individual buildings in a large-scale municipality. Part of the chal-
lenge emerges from data constraints, as few sanitation agencies collect
and make available granular waste collection data. Furthermore, small-
area estimation problems can confound attempts to accurately down-
scale predictions from the city or district to individual buildings.

Given this context, this research attempts to inform municipal waste
management operations by developing high spatial and temporal re-
solution estimates of waste and recycling generation rates for individual
residential buildings. Using an extensive and granular waste collection
dataset from the New York City Department of Sanitation (DSNY),
coupled with detailed land use, demographic, socioeconomic, and
weather variables, we are able to overcome previous data limitations to
build a socio-spatial machine learning model to predict building-spe-
cific waste generation rates based on derived building population es-
timates for more than 750,000 residential properties in New York City.
We validate our prediction using a sample of individual truck route
collection data for specific days and locations that are representative of
the City's land use types and densities. The results of the model and
validation indicate that our method performs well at estimating
building-level waste generation. Our findings also provide a compre-
hensive understanding of the socioeconomic and land use drivers of
municipal waste generation in New York City and can enable more
efficient, and equitable, waste management practices, particularly
through route optimization and peer comparison benchmarking pro-
grams.

We begin by presenting a literature review of previous studies that
attempt to predict waste generation using machine learning techniques,
as well as applications of small unit estimation to determine building
and household population size. Section 3 includes a description of our
data and machine learning methods. Results are presented in Section 4,
followed by a discussion of the findings and their implications for urban
waste management and data-driven environmental policy.

2. Background

Numerous studies have used available waste data to identify sig-
nificant factors that influence refuse and recycling rates, and to develop
statistical models to forecast waste generation. Previous work has de-
monstrated that a broad range of factors drive waste generation de-
pending on the particular study area, although most focus on macro-
scale analyses of regions or metropolitan areas. Keser, Duzgun, and
Aksoy (2012), for example, found that regional characteristics such as
the unemployment rate, the asphalt-to-paved road ratio, temperature,
higher education ratio, and agricultural production values have a sig-
nificant influence on waste generation in Turkey. In Xiamen, China,
Zhang et al. (2015) identified population, land use, and building cov-
erage as important factors driving waste generation. Oribe-Garcia,
Kamara-Esteban, Martin, Macarulla-Arenaza, and Alonso-Vicario
(2015b) support and extend these studies by suggesting that urban
morphology, tourism activity, educational level, economic status, and
resources of the population impact aggregate residential waste gen-
eration. Denafas et al. (2014) estimate seasonal variations of waste
generation in Eastern European cities by using time series forecasting
models. Their results suggest that geographical latitude is a major factor
in the seasonal pattern of waste generation across cities primarily due
to differences in local weather.

A variety of models have been developed to predict waste genera-
tion, typically at the national or city scale. Karadimas and Loumos
(2008) used the ant colony system algorithm to predict waste genera-
tion based on spatially-dependent characteristics such as the location of
waste bins, the road network topology, and population density. Other
researchers have built predictive models to forecast waste generation
using temporal features such as seasonality and historical trends. For
instance, Rimaityte, Ruzgas, Denafas, Racys, and Martuzevicius (2012)
found that an Autoregressive and Integrated Moving Average (ARIMA)

model combined with seasonal exponential smoothing is an effective
method to predict weekly waste generation. Modern machine learning
methods, such as neural networks, have also been used in temporal
models to predict waste generation. Zade and Noori (2008) for ex-
ample, used a feed-forward artificial neural network (ANN) to forecast
weekly waste generation in the tourist city of Mashhad, Iran. They
found that ANNs perform well when predicting waste generation at low
spatial resolutions, and introducing time lag features into an ANN
model can address serial correlation in the time series data.
Antanasijevic, Pocajt, Popovic, Redzic, and Ristic (2013) also used
ANNs to predict solid waste generation at the national level in Bulgaria
and Serbia.

Combinations of spatial and temporal models have also been used to
improve prediction results. For instance, Dyson and Chang (2005) de-
veloped a systems dynamics model using population, median household
income, household size, and historical waste generation data to predict
waste generation in San Antonio, Texas. In a particularly relevant
study, Johnson et al. (2017) developed a spatiotemporal model using a
gradient boosting regression tree algorithm and features such as
weather, urban morphology, and socioeconomic and demographic in-
formation to predict weekly waste generation for 232 administrative
sections (geographic divisions) in New York City. The results demon-
strate high predictive accuracy for waste generation using historical
waste generation rates.

These studies, however, are often limited by spatially-aggregated
data that do not allow for analysis or prediction of waste generation
patterns across small areal units. Data are typically aggregated into
larger geographical units due to privacy and confidentiality issues, or
the lack of data collection at the truck, household, or building scale.
Previous attempts at building or household population estimation tend
to rely on surveys (Ojeda-Benítez, Armijo-de Vega, & Marquez-
Montenegro, 2008; Thanh, Matsui, & Fujiwara, 2010) or on down-
sampling from predictions at larger geographies, such as the city or
province (Oribe-Garcia, Kamara-Esteban, Martin, Macarulla-Arenaza, &
Alonso-Vicario, 2015a; Purcell & Magette, 2009). These studies are
either difficult to generalize, given their small samples sizes and limited
historical data, or do not account for significant variations in the oc-
cupancy of specific buildings that can be obscured by relying solely on
population surveys, such as census data. This is a significant gap in the
literature, as building-level waste generation data can provide im-
portant insights for collection route optimization, household waste
benchmarking programs, and more equitable waste reduction incentive
and behavior change initiatives built on information transparency.

3. Materials and methods

This study aims to predict weekly and daily municipal waste gen-
eration from residential properties at the building level using a data
mining and machine learning approach. We first develop a predictive
model by comparing the performance of gradient boosting regression
tree (GBRT) and Neural Network (NN) machine learning algorithms to
estimate weekly waste generation for each of the 609 DSNY sub-sections,
which are collection areas (also known as "frequencies") within the 232
DSNY sections. We then estimate individual building populations for all
residential properties in NYC by implementing small area estimation
methods that combine census population data with specific building
characteristics including type, size, and density. Weekly generation at
the building-level is then calculated by multiplying the predicted per
capita weekly waste generation for each DSNY sub-section with the
estimated building population of a given building located within that
DSNY sub-section. This approach accounts for inter-sub-section varia-
tions in waste generation behavior, driven by such variables as demo-
graphics or socioeconomic characteristics, and building-specific factors,
such as the number of residential units and their relative size. Fig. 1
presents a flow chart of our methodology.
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3.1. Data

In 2016, 3.7 million tons of municipal solid waste was collected
from residential and institutional buildings in New York City, ac-
counting for 25% of all waste generated (New York City Department of
Sanitation, 2017b). According to DSNY, each resident, on average,
generates 11.14 pounds of refuse and 2.46 pounds of recycling material
per week (The Council of the City of New York, 2017). Currently, over
80% of waste collected by DSNY is disposed of in landfills at a cost of
nearly $400 million dollars a year (Johnson et al., 2017). To reduce the
cost and environmental impact of landfilling, New York City's OneNYC
plan has established a goal of sending zero waste to landfills by 2030.
To meet this target, DSNY has launched new programs and services to
encourage and incentivize residents to reduce overall refuse generation
and increase recycling rates. One notable initiative is the pilot organics
program to collect food scraps and yard trimmings to be used for

renewable energy (New York City Department of Sanitation, 2017b).
DSNY provides regular curbside waste collection for residential

buildings, public schools, city-owned buildings and certain nonprofit
organizations, with waste categorized into refuse, paper and metal/
glass/plastic (MGP) streams (New York City Department of Sanitation,
2017a). In all, DSNY is responsible for collection from 755,594 of the
858,370 properties (88%) in New York City. DSNY operates curbside
waste collection by using weight-based truck collection (tonnage), and
each truck is designed to accommodate 12.5 tons of refuse, 11.5 tons of
paper and 10.0 tons of metal, glass, and plastic (New York City Mayor's
Office of Environmental Coordination, 2014). DSNY divides the city
into 232 sections that are further subdivided into 609 spatial areas
based on collection schedules, called sub-sections. Fig. 2 shows this
waste collection geography. DSNY tracks daily truck-route waste ton-
nage for each type of waste, and has provided historical records of sub-
section waste collection data from 2013.

Table 1 describes the primary data used in this work, which includes
waste data supplied by DSNY with daily collection tonnages for three
waste streams from January 2013 to November 2016 for each of the
609 DSNY sub-sections. Since individual geographies have different
collection schedules, such as bi-weekly or tri-weekly (Johnson et al.,
2017), we aggregate the daily collection data to the week in order to
compare different DSNY sub-sections across the city based on a
common temporal scale. Waste data are integrated with the New York
City Department of City Planning Primary Land Use and Tax Lot Output
(PLUTO) dataset, which describes individual tax lots (properties) and
includes the building class, land use, owner type, building area, the
number of units, and the construction year, among other features.
Though we consider the tax lot (based on the borough-block-lot or BBL
identifier) as a proxy for an individual building, a tax lot can have more
than one building. Across NYC, the number of lots with multiple
buildings is 223,841, which is 26.1% of all properties.

Population and socioeconomic characteristics were obtained from

Fig. 1. Methodological approach to building-scale waste generation estimates.

Fig. 2. Study area - New York City divided into 609 DSNY sub-sections (administrative collection districts).

C.E. Kontokosta et al. Computers, Environment and Urban Systems xxx (xxxx) xxx–xxx

3



the 2015 5-year estimate American Community Survey (ACS). Data
from ACS include information on households at the Census Block Group
(CBG) level, of which there are 6100 in NYC. We include population by
gender, age, race, primary language, employment status, educational
attainment, household type, median income, median rent, and vacancy
rate data. For population estimates in non-residential (municipal and
public school) buildings serviced by DSNY, the number of current stu-
dents for each public school was obtained from the New York City
Department of Education (DOE), and the number of employees in
municipal buildings was provided by the NYC Mayor's Office of
Sustainability (MOS), as collected through Local Law 84 (Kontokosta,
2015). Historical weather information and U.S. national holidays were
used to control for the seasonal variations in solid waste generation.
Weather data include temperature, precipitation, wind speed, and snow
events. These data are resampled to a weekly moving average by using
the mean or sum calculation in order to match the temporal frequency
of our waste generation data. Similarly, the number of U.S. holidays are
computed for each week.

3.2. DSNY sub-section waste prediction model

A machine learning model is used to predict each waste stream, as
well as total waste generated, at the DSNY sub-section scale. Table 2
provides a complete list of the features used to predict weekly waste
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Table 2
Description of extracted predictors.

Category Predictor Variable description

Urban form City-owned
building

Percentage of city-owned
building

Commercial space Percentage of commercial area
Retail space Percentage of retail area
Residential space Percentage of residential area
Vacancy Vacancy rate
Building age Median year of construction
Residential units Number of residential units
Public housing Percentage of public housing

area
One family
housing

Percentage of one family-
housing area

Building density Median as-built FAR (the ratio of
total gross floor area to the area
of its zoning lot)

Demographic and
socioeconomic

White Percentage of White population
Black Percentage of Black population
Asian Percentage of Asian population
Racial diversity The ratio of different racial

groups in the geographical unit
Employment Employed rate
Education level Percentage of population with at

least bachelor's degree
Elderly population Percentage of population over 65
Female Percentage female population
Households with
children

Percentage of households with
children under 6

Households living
alone

Percentage of households living
alone

Limited English
speakers

Percentage of limited English
speakers

Rent Median gross rent
Income Median household income
School enrollment Number of students enrolled in

public schools
City employees Number of city employees in

municipal buildings
Seasonality Temperature Average temperature

Precipitation Total precipitation
Snow Total snowfall amount
Wind speed Average wind speed
Weather event Number of severe weather

events
Holidays Number of U.S. holidays
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generation (dependent variable) in tons for each of the 609 DSNY sub-
sections. The model includes a total of 31 features and are trained on
data from 2013 to 2015 and tested on 2016 data. Features were selected
based on domain knowledge and previous literature, and feature im-
portance based on the model results. We initially test GBRT and NN
models with standardized data to evaluate model performance. GBRT
has been shown, in general, to out-perform other ML methods, such as
support vector regression and Random Forest models (Friedman, 2001;
Schapire, 2003), in similar applications, thus we do not test these al-
gorithms here. GBRT limits over-fitting through hyperparameter
tuning, and is able to account for complex, non-linear relationships
between variables, an improvement over simple linear approaches.
Linear models are also very susceptible to outliers in the data, as well as
collinearity within features, unlike GBRT. GBRT is an advanced itera-
tion of a typical decision tree model, with the features recursively split
and re-weighted based on the errors of the previous trees, and the goal
being the reduction of the residual sum of squares (Johnson et al., 2017;
Ye, Chow, Che, & Zheng, 2009).

We compare the initial performance of the GBRT and NN models
based on R-squared and Root Mean Squared Error (RMSE) values; the
GBRT model yields 0.87 R-squared and 0.034 RMSE, and the NN model
yields 0.77 R-squared and 0.050 RMSE. We therefore select GBRT for
model development and further parameter tuning. Model parameters
are tuned using a grid search in order to maximize model performance.
We focus our tuning on the number of trees, tree depth, and learning
rate, which control the model's structure and complexity. The final
model takes the number of trees= 200, tree depth=6, and learning
rate= 0.1. Also, an iterative cross-validation method is implemented to
ensure the robustness of the model. After tuning model hyperpara-
meters, we compute estimates of weekly waste generation across three
waste streams (refuse; paper; and metal, glass and plastic) and total
waste generation (sum of all waste streams) for each DSNY sub-section
in 2016.

3.3. Building population estimation

The second step in our methodology is to estimate the number of
occupants per building for residential properties serviced by DSNY. For
public school buildings and municipal office buildings, we used existing
data from the NYC DOE and NYC MOS Local Law 84, respectively.
Reliable estimation of residential building population, however, is a
persistent problem in urban management and planning (Lwin &
Murayama, 2009). Currently, the most granular level of population
data, with reasonable margins of error, is U.S. Census ACS data ag-
gregated to the Census Block Group (CBG). Since no building-level
population data are available, we develop an approach to estimate in-
dividual building populations using existing data from various spatial
scales, from building-specific physical and land use characteristics to
CBG population estimates. This approach is designed to be general-
izable beyond the waste prediction application presented here.

To estimate residential building populations, we first match all
buildings using their spatial identifier (BBL) in the PLUTO dataset to
their respective CBG. This results in each BBL being assigned a specific
CBG identifier. The population of each building is then estimated by

multiplying the computed occupant density for each building type in a
CBG by the total residential floor area of the given building. Table 3
provides a list of building types found in the PLUTO dataset. The final
calculation takes the form

= ×P A Dnm  (1)

where P is the estimated building population, A is the total residential
floor area of the building and D is the calculated occupant density for
building type n in CBG m. Because the actual occupant density is not
known for each building, we compute the occupant density across
building types at the CBG-level using an Ordinary Least Squares (OLS)
regression model. This method is designed to account for significant
differences in occupant density across different residential building
types (e.g. two-family home to high-rise apartment building), and for
socioeconomic and demographic variations across neighborhoods. For
example, based on the total floor area per occupant, walk-up apartment
buildings are found to have relatively higher population densities when
compared to single-family homes. In order to capture this variation, we
perform a multivariate linear regression that controls for building type.
We build on a similar dasymetric method implemented by Langford,
Maguire and Unwin (1991) and Langford (2013), by adding individual
building-specific characteristics as ancillary data. The regression model
takes the form

= + + …+y β x β x β xn n1 1 2 2 (2)

where y is the total population of the CBG and x is the total residential
floor area of the CBG for each housing type n. The coefficients βn are
computed and the ratios of the coefficients are used to weight the
corresponding occupant density for each housing type in a given CBG.
The total CBG population is therefore allocated to different building
types based on 1) the total area of that building type in the CBG and 2)
the ratio of the city-wide coefficients. This method builds on previous
small area population estimates by including building-specific type and
size characteristics, while accounting for socio-spatial variations in
occupant density based on demographic characteristics of a given
neighborhood.

3.4. Model validation

Since there are no collected or “ground truth” data available for
waste generation of individual buildings, it is impossible to evaluate the
model results against actual building-level data. However, we introduce
two alternative approaches to validate our model results using DSNY
sub-section and route narrative (individual collection truck) waste data.
The first validation method aggregates our building-level waste pre-
dictions to the DSNY sub-section. The sum of the building-level esti-
mates is compared against the actual waste collected for the DSNY sub-
section for the respective time period. Although there are limitations in
this approach, such as the possibility that under- and over-estimates at
the building level can cancel out when aggregated, it does provide
bounds for the error of our prediction.

The second validation method uses individual truck collection data
to provide a more robust and application-oriented evaluation of the
proposed model. We first assign contiguous tax lots (buildings) to

Table 3
Building typology (NYC Department of Building).

Building typology Definition

One-family house A building designed for and occupied exclusively by one family
Two-family house A building designed for and occupied exclusively by two families
Walk-up apartment Multiple dwelling building without elevator
Elevator apartment Multiple dwelling building with elevator
Condominium apartment Multiple dwelling with separate ownership
New York City Housing Authority (NYCHA) public housing Affordable housing (multiple dwelling) for low income residents supported by NYCHA
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individual truck routes. Unfortunately, there is no information available
on the specific set-out point for individual buildings, thus adding un-
certainty to the assignment of buildings to specific trucks. For tax lots
with property lines adjacent to two truck routes, we assume that the
larger property line dimension is the primary set-out point for waste
collection. In this way, each DSNY sub-section is divided into multiple
truck routes for each collection day. We then extrapolate daily waste
generation by applying the ratio of average waste generation for each
day of the week, obtained from the actual sub-section-level collection
data, to the predicted weekly waste generation at the building-level.
The per truck waste generation is then computed as the sum of the
predicted waste generation for each building associated with a given
route for a given day. This total is then compared to the actual truck
collection tonnage for that day. An illustration of this building-to-truck
route matching is shown in Fig. 3.

The truck-level validation was performed for two DSNY sub-sec-
tions, one in Manhattan (1021A) and one in Brooklyn (3114C). These
two routes were selected for data completeness (with respect to in-
dividual routes) and the heterogeneity of building densities within the
two areas. The Manhattan route consists of mixed-use, high-density
buildings, while the Brooklyn route consists primarily of low-density
residential buildings. Furthermore, these two areas are representative
of DSNY service areas across the city. We do not attempt additional
route validations because data from DSNY are limited and received in
text (PDF) form. Individual truck routes, and the buildings adjacent to
those routes, had to be digitized using an algorithm developed to ex-
tract text files and spatially join each respective street segment and
route location. The reliability and consistency of the route data pro-
vided by DSNY limited a more expansive truck-level validation.

4. Results

4.1. Predictive model performance and feature importance

Table 4 shows a summary of the performance metrics for the four
predictive models for total waste, refuse, MGP recycling, and paper
recycling for DSNYsub-sections in 2016. All models perform well, with
high R-squared values (mean of 0.81) and a high proportion of samples
with less than 20% mean absolute error (MAE). Figs. 4–7 show our
predicted weekly waste generation for each DSNY sub-section against
the actual value from the DSNY dataset.

The total waste generation model performed the best with an out-of-
sample R-squared value of 0.87 and 85.3% of sub-sections with a MAE

Fig. 3. Building-to-truck route matching (DSNY sub-section 1021A – Monday case).

Table 4
DSNY sub-section prediction model results.

Total waste Refuse MGP Paper

R-squared 0.87 0.87 0.73 0.78
Samples with less than 20% error 85.3% 82.3% 78.9% 79.8%

Fig. 4. Scatter plot of predicted v. actual values: Total waste.
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of less than 20%. The total waste and refuse models showed similar
performance, which is in large part due to the fact that refuse comprises
approximately 80% of the total solid waste stream. The R-squared for
the refuse model is 0.87 with 82.3% of samples less than 20% MAE,
which is slightly lower than the total waste prediction model in part
because of variance in recycling rates across the City. As expected, these
two models perform better than the two recycling stream models. The
MGP and paper recycling models showed lower prediction accuracy
with R-squared values of 0.73 and 0.78, respectively. The reduced
performance of the recycling models reflects the significant spatial
variations in recycling behavior. For example, Fig. 9 shows a dis-
cernible spatial pattern where the highest recycling rates are located in
parts of Manhattan, Downtown Brooklyn, and Staten Island, while the
lowest recycling rates correspond to some of the poorest communities
in the city. These spatial patterns reflect the high correlation between

recycling rates and socioeconomic attributes, including income and
educational attainment. Refuse generation per capita, however, follows
a more normally-distributed pattern as seen in Fig. 8.

One interesting finding of the predictive model, which reinforces
previous results, is that weather variables (temperature, precipitation,
wind speed, and snow) are ranked highly as important features for all
prediction models. Certainly, weather influences waste collection both
in terms of seasonality in waste generation, and in its effect on collec-
tion totals on days with severe weather conditions. Population, re-
sidential area, household characteristics, and education level are also
shown to be important features in the weekly waste generation pre-
diction model.

4.2. Building population estimation

Table 5 shows the OLS regression results for computing the relative
occupant densities by housing type. The ratio of the residential density
of the six different housing types - (1) one-family house, (2) two-family
house, (3) walk-up apartment, (4) elevator apartment, (5) con-
dominium apartment, and (6) NYCHA public housing - is found to be
19:32:35:10:12:19. The model is able to explain much of the variance in
occupant density (R-squared value is 0.84) and all coefficients are
statistically significant at the 95% confidence level. Elevator apart-
ments have relatively lower occupant densities, while walk-up apart-
ments tend to have high occupant densities. By using the population of
each CBG, the ratio of occupant densities of the six different housing
types, and the sum of residential gross floor areas of each housing type,
we are able to estimate individual building populations. An example is
shown in Table 6.

In order to validate our building population estimates, we use data
from NYC Local Law 84, which is the building energy benchmarking
ordinance covering all buildings larger than 50,000 ft2 (Kontokosta &
Tull, 2017; Reina & Kontokosta, 2017). In addition to reporting annual
energy use, residential building owners are required to provide the total
number of bedrooms in the building, and we use this bedroom data to
provide bounds to our building population estimates. Although only
large multi-family buildings are included in the validation data, as

Fig. 5. Scatter plot of predicted v. actual values: Refuse.

Fig. 6. Scatter plot of predicted v. actual values: MGP.

Fig. 7. Scatter plot of predicted v. actual values: Paper.
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Table 7 shows, the estimated population demonstrates a reasonable
relationship to the reported number of bedrooms.

4.3. Predicted solid waste generation for individual buildings

Building waste generation is calculated by multiplying the predicted
weekly waste generation per capita for a given CBG by the estimated
occupant population for a given building. Table 8 shows an example
output for the week of October 24th, 2016. The first column is the BBL
identifier for an individual property, the second column is the DSNY
collection schedule number, the third column is the estimated number

Fig. 8. Weekly average waste generation per capita for 609 DSNY sub-sections (2013–2016, tons).

Fig. 9. Weekly average recycling per capita for 609 DSNY sub-sections (2013–2016, tons).

Table 5
OLS results: ratio of corresponding occupant density based on housing type.

Residential building typology Coefficient

One-family house 0.0019*
Two-family house 0.0032*
Walk-up apartment 0.0035*
Elevator apartment 0.0010*
Condominium apartment 0.0012*
New York City Housing Authority (NYCHA) public housing 0.0019*

* p-value < 0.05.
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of building occupants, the fourth column is the predicted weekly waste
generation per capita for the DSNY sub-section, and the last column
shows the predicted value of the total weekly waste generation (in tons)
for that building.

Fig. 10 show choropleth maps of the prediction results across the
four different waste streams for the week of October 24th, 2016 for
DSNY sub-section 1021A, located in the SoHo neighborhood of Man-
hattan. Yellow to green colored parcels are serviced by DSNY, and the
darker color represents a larger volume of weekly waste generation for
those properties.

Fig. 11 shows the maps of the average errors between the model
results and actual data from October to November 2016. The red sub-
sections indicate where the model predicts greater refuse than actual,
and blue regions show an under-estimation. A comparison of the

Table 6
Example output of population estimation.

BBL Bldg class Res area DA DB DC DD DR DP POPest

3070400033 A 2064 0.0020 0.0034 0.0036 0.0010 0.0013 0.0020 5
3041510051 B 1608 0.0024 0.0040 0.0043 0.0012 0.0015 0.0024 7
3041520024 D 438,356 0.0018 0.0030 0.0034 0.0009 0.0012 0.0024 424

Table 7
Example outcome: Validation of building population estimation output - number of
bedrooms per building vs. estimated population.

BBL Bldg class Number of bedrooms
(LL84 data)

Estimated
population

4020860040 D 500 460
3056460036 D 91 82
3011890007 D 139 158
3047750041 D 66 64
1015320001 D 260 353
3050620014 D 134 138
3007290072 D 82 82

Table 8
Example output of building-level weekly total waste generation prediction.

BBL DSNY sub-section Bldg occupants Predicted weekly waste
generation per capita (tons)

Predicted total weekly
waste generation (tons)

1021790466 1122B 144 0.004646 0.669
1021680061 1123A 107 0.004662 0.499
1021740182 1123A 77 0.004662 0.419
1021540088 1123B 8 0.005442 0.044
1021700340 1123A 125 0.004662 0.583

Fig. 10. Weekly waste generation prediction results (DSNY sub-section 1021A case: Monday, October 24th, 2016).
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visualizations in Fig. 11 shows that there, as expected, are higher error
rates for recycling material generation than refuse generation alone.
Overall, we find that the projected total waste and refuse generation are
within 10% of the actual waste generation in 83% of the sub-sections.

The truck route validation using the two DSNY sub-sections de-
scribed above indicates that the proposed model performs well in terms
of absolute error. Fig. 12 visualizes the different truck routes on a
Monday in DSNY sub-section 1021A (Manhattan) for refuse collection.
Colored polylines represent individual trucks, and the line width re-
presents the relative amount of refuse generated for each truck.
Tables 9 and 10 show the results of our two validation DSNY sub-sec-
tions [1021A (Manhattan) and 3114C (Brooklyn)], respectively, and
the “Truck route” column represents the individual collection truck
associated within a given collection schedule. The overall prediction
accuracy of the aggregate total collection by the individual trucks is
99.8% and 93.9% for the two routes, respectively, though we observe
wide variations in accuracy of the prediction for specific trucks. These
truck-level differences are likely caused by variances in the set-out
point for individual buildings, as described above, that lead to the mis-
allocation of the waste from individual buildings to a particular truck.
Determining the actual set-out point is a significant operational chal-
lenge for DSNY and no data are currently available.

5. Discussion, limitations, and conclusion

The aim of this research is to develop a predictive model for waste
generation at the building-level in a dense urban environment, using
New York City as a case study. We combine a socio-spatial model of
waste generation per capita per week with estimates of the occupant
population for each of the more than 750,000 residential buildings in
the City. Our best-performing predictive model (GBRT) is able to pre-
dict total weekly waste generation for DSNY sub-sections with an out-
of-sample R-squared value of 0.87. Subsequent models built predicting
refuse, MGP, and paper recycling, respectively, also perform well. We
find that the variables with the highest feature importance are weather
(temperature, precipitation, wind speed, and snow event), residential
building type and density, and demographic variables. Weather-related
features capture temporal (i.e. seasonal) variations in the data, in ad-
dition to capturing weekly anomalous weather activity. Our building
prediction model demonstrates high levels of accuracy following two
validation processes. In the two collection truck validation cases, the
model resulted in 99.8% and 93.9% prediction accuracy, respectively.

Certain data limitations constrain the predictive power of our
model, although iterative improvements are expected as additional
validation data are acquired. In order to reflect the spatial

Fig. 11. DSNY sub-section level weekly waste generation validation - the maps of the average errors between the model results and actual data from October to November 2016.
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heterogeneity in waste generation behavior and the propensity of a unit
in a building to be occupied, additional features should be considered.
Our model could be improved with accurate information on building
occupancies at high temporal resolution, particularly accounting for
weekly fluctuations in residential population. In addition, specific in-
formation on the waste set-out (pick-up/drop-off) point for each
building would be useful to match buildings to their true truck route
narratives. We are currently working with DSNY to collect these data
across selected routes.

The implications of our model are significant. By estimating the
amount of waste, refuse, MGP, and paper generated at the building-
level with a high degree of accuracy, DSNY can develop more efficient
routing schedules for its collection trucks. With annual costs of waste
collection reaching hundreds of millions of dollars, even marginal ef-
ficiency gains can have non-trivial fiscal impacts. For instance, the
number of trips with a partially full truck could be minimized, thus
reducing the total vehicle- and person-hours for collection. Similarly, a
more efficient allocation of collection trucks could reduce negative air
quality impacts and congestion caused by vehicle use and idling. These
same models can be applied to other cities around the world, incurring
similar savings for other municipalities.

Another implication of our model is our ability to detect areas across
the city that have higher or lower propensities to recycle. With this
information at a granular level, for individual buildings, DSNY can

Fig. 12. Truck routes with line width showing relative refuse tonnage (DSNY sub-section 1021A – Monday case).

Table 9
Truck route validation result: Predicted value aggregated for the route vs. actual value
(1021A, Monday 2016-10-24, refuse case).

Truck route Tons collected (predicted) Tons collected (actual)

MW021M1 (1021A1) 9.83 (t) 13.12 (t)
MW021M2 (1021A2) 11.55 (t) 10.68 (t)
MW021M3 (1021A3) 11.70 (t) 8.70 (t)
MW021M4 (1021A4) 4.48 (t) 5.44 (t)
Total 37.88 (t) 37.94 (t)
Accuracy 99.8%

Table 10
Truck route validation result: Predicted value aggregated for the route vs. actual value
(3114C, Monday 2016-10-24, refuse case).

Truck route Tons collected (predicted) Tons collected (actual)

BK114M1 (3114C1) 9.50 (t) 8.69 (t)
BK114M2 (3114C2) 13.14 (t) 10.54 (t)
BK114M3 (3114C3) 7.73 (t) 9.30 (t)
Total 30.37 (t) 28.53 (t)
Accuracy 93.9%
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create targeted outreach programs to promote recycling activity and
investigate differences in recycling rates across properties and neigh-
borhoods. These lessons could then be generalized to other cities
around the world. Furthermore, a better understanding of the waste
generation habits of New York City households can greatly assist city
decision-makers in achieving the goal of sending zero waste to landfills
by 2030. Data-driven modeling approaches similar to the one created
here can help to design and implement more effective, targeted stra-
tegies in the future.

Finally, our findings could be used to develop incentive structures to
“nudge” households to shift waste behavior. Unit pricing programs,
such as “pay-as-you-throw”, often raise equity concerns regarding the
disproportionate impact of fixed-price unit costs for waste removal for
lower-income households, and households that are relatively larger
than average. By accurately predicting individual building waste gen-
eration rates and accounting for building population and demographic
variations, a more equitable pricing structure can be developed.
Similarly, our building-level estimates can be used to inform peer
comparisons and similar social influence mechanisms to encourage
recycling and composting activity. Other incentives, such as demand
pricing in high-waste time periods, could be adapted from other uti-
lities, such as the energy sector.

Using machine learning to inform urban operations and planning is
a growing research field. Our work adds to the literature both on data-
driven city management and urban solid waste management by pro-
viding one of the first predictive models of building-level waste and
recycling generation. While there are several implications of our model
for waste management practice, the methods described here can also
have wide application to other urban systems and environmental
management more broadly.
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