
Accepted Manuscript

Exergy cost of information and communication equipment for smart
metering and smart grids

Slavisa Aleksic, Vedad Mujan

PII: S2352-4677(17)30010-3
DOI: https://doi.org/10.1016/j.segan.2018.01.002
Reference: SEGAN 137

To appear in: Sustainable Energy, Grids and Networks

Received date : 12 January 2017
Revised date : 1 September 2017
Accepted date : 25 January 2018

Please cite this article as: S. Aleksic, V. Mujan, Exergy cost of information and communication
equipment for smart metering and smart grids, Sustainable Energy, Grids and Networks (2018),
https://doi.org/10.1016/j.segan.2018.01.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.segan.2018.01.002


 
1 Hochschule für Telekommunikation Leipzig (HfTL), Gustav-Freytag-Str.   43-45, 04277 Leipzig, Germany 

2 Vienna University of Technology, Institute of Telecommunications, Gusshausstrasse 25/ E389, 1040 Vienna, Austria 

(e-mail: Aleksic@hft-leipzig.de) 

 
Abstract—Future smart grids are expected to offer numerous advantages over the current electricity grid due to an improved 

efficiency of electricity production, distribution, consumption as well as sophisticated grid management and integration of distributed 

renewable energy sources. In order to enable these functionalities, however, additional equipment has to be installed, which, on the 

other hand, will lead to increased electricity consumption and more e-waste. This paper provides, for the first time, to the best of our 

knowledge, insights into the overall exergy cost related to the introduction of additional information and communication technology 

(ICT) equipment such as smart meters and other ICT devices required for future smart grids. We present results obtained using a 

model for the city of Vienna and considering all life cycle phases. Additionally, the impact of the components’ lifetime and various 

implementation options is shown. Since the environmental impact of the additional ICT equipment for smart grids is presented in a 

simple and transparent manner using a holistic approach referred as to as the exergy-based life cycle assessment (E-LCA) method, the 

results presented in this paper can easily be integrated in a more complete model of smart grids with the aim of assessing the exergy 

efficiency of various concepts and applications for future smart energy generation, distribution, and consumption systems.    

 

Index Terms — Advanced Metering Infrastructure (AMI); Home Area Network (HAN); Information and Communication 

Technology (ICT); Smart Grids; Exergy-based Life Cycle Assessment (E-LCA); Environmental Sustainability. 
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I. INTRODUCTION 

HE realization of the smart grid will only be possible by a pervasive deployment and use of information and 

communication technologies (ICTs) on top of the electricity grid [1]. It is the ICT in the smart grid, which will enable an 

improvement of the efficiency of current electricity production, distribution, and consumption systems as well as support an 

efficient integration of distributed renewable energy sources. This fact gives ICTs a very important role in smart grids, making 

them a very involved part of the overall electricity supply system [2]. The future electricity grid will be augmented by a 

magnitude of additional ICT equipment. Smart meters, power line communication (PLC) modems, data concentrators, data and 

control center (DCC) servers, switches, and routers are just some of them. Additional to exploiting the potentials for optimizing 

the generation, distribution, and consumption of electricity in future smart grids, these components and devices also need 

electricity to proper function, so they will unavoidably contribute to increased electricity consumption. Moreover, production, 

transport, and disposal of the additional ICT equipment for smart grids also require energy and cause e-waste, thereby causing a 

pollution of the environment. These facts have also to be carefully taken into consideration when assessing the impact of future 

smart grids. 

In this paper, we apply a holistic framework to assess the environmental impact of smart meters and additional ICT equipment, 

which is required for implementing the advanced metering infrastructure and home area network applications as essential parts of 

the future smart grid. The holistic framework has been briefly explained in a recent conference paper [3], which also presents a 

few preliminary results on environmental sustainability of advanced metering infrastructure (AMI). In this correspondence, we 

provide a more exhaustive description of the framework and show results of an extended study by considering additional to 

advanced metering infrastructure also a part of the customer domain such as the home are network (HAN), which on the one 

hand, opens new possibilities for increasing the energy efficiency in the customer domain but, on the other, leads to a higher 

overall energy consumption of the ICT equipment. The key question that we address in this study is how large is the 

environmental cost of an implementation of AMI and HAN and what are possible ways to mitigate the environmental impact of 

the additional ICT components. 

The paper is structured as follows. The next section introduces the exergy-based life cycle assessment (E-LCA), which is used 

here to assess the sustainability of the advanced metering infrastructure (AMI) and home area networks (HANs). The application 

of the E-LCA method is presented on a case study of smart grid deployment for the city of Vienna. Section III describes the 

considered scenario. In Section IV, results at the component level are presented, while in Sections V and VI, we show and discuss 

results on the sustainability of the entire system with varying equipment lifetimes and configurations. Section VII summarizes and 

concludes the paper. Finally, Section VIII discusses future work. 

T



II. EXERGY-BASED LIFE CYCLE ASSESSMENT (E-LCA) 

An objective and accurate estimation of environmental effects is possible by applying the fundamental laws of thermodynamics, 

which allow assessing mass and energy transfers attributed to various processes. The second law of thermodynamics enables 

further the estimation of the exploited energy and provides information on how efficiently the supplied energy is being exploited 

by a process [4]. Environmental sustainability indicators based on thermodynamics include, among others [5]: 

- Energy analysis 

- Life cycle assessment (LCA) 

- Exergy-based life cycle assessment (E-LCA). 

Life cycle assessment (LCA) represents a framework that can be used to assess various products or processes by means of their 

impact on the environment. For that purpose, all inputs and outputs of a product or process are analyzed during its considered 

lifetime, i.e., the evaluation takes the entire product’s or system’s life cycle under consideration. There are a lot of variants of a 

LCA, but most of them concentrate on emissions. LCA provides a thorough assessment of environmental effects, but has also a 

few drawbacks. The most important one is that it does not produce a simple and unambiguous outcome, which could be used for 

an easy and meaningful comparison between various potential approaches. The other drawback is its time exposure and cost. In 

contrast to a LCA approach, an exergy-based life cycle assessment (E-LCA) tracks lifetime exergy consumption and implies the 

second law of thermodynamics [5]. It provides a single outcome, which makes this approach suitable for a fast comparison of 

different systems. A decrease in exergy consumption, i.e., an increase in exergy efficiency of a system, leads to a reduction of 

resource depletion, which means that environmental impacts can often be minimized by minimizing exergy consumption. 

However, the single output value of the E-LCA can also turn out to be a drawback in some cases because it makes impossible a 

differentiated and in-depth assessment of various environmental impacts. 

Exergy is defined as the maximum amount of useful work that can be attained from a system when brought into 

thermodynamic equilibrium with its reference environment [6,7]. It can be understood as the amount of energy that can be used, 

i.e., the quantity of energy that can be transformed into useful work. Due to irreversibilities, i.e., inefficiencies attributed to real 

processes, it is never conserved. This is the main characteristic that distinguishes exergy from energy [8]. Any exergy loss 

indicates possible process improvements. The exergy of a macroscopic system is given by: 
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where extensive system parameters are the internal energy (U), the volume (V), and the number of moles of different chemical 

components i, i.e., ni, while intensive parameters of the reference environment are the pressure (Pr), the temperature (Tr), and the 

chemical potential of component i, i.e., μr,i. A useful formula for practical determination of exergy is [9]: 
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where the relatively easily determined quantities denoted by “o” in the subscript are related to the equilibrium with the 

environment. The exergy content of materials, Ex,mat, at a constant temperature, T = Tr, and pressure, P = Pr, can be calculated 

from:  
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In the above Equation, ci is the concentration of the element i, R is the gas constant, while μi
0 denotes the chemical potential for 

the element i relative to its reference state. The relation of exergy loss to entropy production is given by: 
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where ΔS is the entropy (irreversibility) generated in a process or a system. In other words, for processes that do not accumulate 

exergy, the difference between the total exergy flows in and out of the system is the exergy loss due to internal irreversibilities, 

which is proportional to the entropy creation. The overall exergy loss of a system is the sum of exergy losses in all system 

components, i.e., Ex,loss,total = ΣEx,loss,component.  

Exergy analysis has been performed in industrial ecology to indicate the potentials for improving the use of resources and 

minimizing environmental impact. The higher the exergy efficiency is, i.e., the lower exergy losses, the better the sustainability of 

the considered system or approach. An exergy analysis eliminates the most of the drawbacks of an energy analysis and LCA. In 

contrast to an energy analysis, an exergy analysis allows different forms of energy to be directly compared, since it makes use of 

the second law of thermodynamics. It does not allow a detailed assessment of environmental effects of ICTs, but it produces a 

simple, i.e., a single outcome, which can be more easily computed and compared [5]. E-LCA is also quicker and less costly to 

accomplish than LCA. All these benefits make E-LCA the environmental sustainability indicator of choice for evaluating the 

sustainability of ICTs for smart grids. 



III. CONSIDERED SCENARIO 

The advanced metering infrastructure (AMI) represents the basic infrastructure for future smart grids. It includes utility equipment 

(UE) such as smart meters, power line communication (PLC) modems, data concentrators, data and control center (DCC) 

equipment, as well as communication network equipment such as access network (AN) and core network (CN) elements. 

 AMI is expected to offer a huge number of advantages regarding reliability and energy efficiency, as well as a thorough 

insight into the state of the entire smart grid. This will open the possibility to use advanced management and monitoring as well as 

to enable important remote control functions essential in the course of unusual or unexpected events [10]. Here, we assume that 

smart meter measurements are delivered to the data concentrator by means of PLC links. The data forwarding from the data 

concentrator towards the DCC is accomplished by means of cellular radio (GSM and UMTS) and the core network. Additionally, 

user devices (UDs) and systems like smartphones, tablets, notebooks, and home energy management systems (HEMSs) are 

considered as an important part of the customer domain, which will allow consumers to visualize and minimize their own energy 

consumption. These devices and systems are essential for establishing and properly utilizing the home area networks (HANs). 

Other forms of power management techniques that can be performed without direct involvement and action of the user will 

become possible as well, such as, e.g., various demand response (DR) methods [1]. 

A. Description of the Scenario 

We define a scenario for a possible deployment and use of the advanced metering infrastructure and home area networks in order 

to analyze the impact of different system parameters on the environmental sustainability. The presented scenario is based on a 

model developed for the city of Vienna. The main results obtained by the model are the overall embodied exergy consumption 

(EEC) and the operational exergy consumption (OEC) over a time period between 2020 and 2040, i.e., assuming an operation 

time of 20 years. The EEC is the exergy consumed during the raw material extraction and processing, production, transportation, 

and disposal phases of the product’s or system’s life cycle, while the OEC is related to the use phase of the equipment, i.e. the 

operational phase. We assume that that by the year 2020, appropriate smart metering, data processing, and forwarding equipment 

required for a correct operation of the AMI application will be deployed in the city of Vienna. Moreover, home energy 

management system (HEMS) services are assumed to be present in a large number of households. Consumer devices such as 

smartphones, tablets, and notebooks are further assumed to be used in a combination with the home area network, i.e., users will 

be able to visualize, monitor, and manage their home energy consumption via a wireless connection. 

The information on the number of households in Vienna, their expected development, as well as the average number of persons 

per household is obtained from the Statistics Austria. According to these data, the number of households in Vienna is expected to 



increase from 927,905 in 2020 to 1,027,846 in 2040 [11]. This corresponds to a yearly average increase by 4,997.05 households. 

The average number of persons per household during this time period is assumed to be equal to 2. We assume that the equipment 

required to implement AMI and HAN applications is mainly manufactured in China. The total traveled distance of extracted and 

processed raw materials to their manufacturing and assembly location in Shenzhen, Guangdong in China is assumed to be 5,000 

km. From there, the final products are transported over Shanghai (China) and Hamburg (Germany) to the location where they will 

be deployed, namely to Vienna, Austria. The total traveled distance of these products was estimated to be 22,403 km. For the end-

of-life transportation, a recycling plant in Berlin, Germany is assumed. The total traveled distance of used up, damaged, and 

outdated ICT equipment to this location was estimated to be 675 km. The distances between the different ICT equipment life 

cycle stages were estimated by using the Google Maps route planner. Moreover, various transportation modes between these 

different locations are considered, i.e., truck, rail, and ship. 

IV. COMPONENTS’ EXERGY CONSUMPTION  

The exergy consumption of the utility equipment (UE) and the user devices (UDs) is estimated by defining generic structures 

and determining typical material compositions for each component type and taking into account the specific exergy content of the 

used materials. Then, the exergy consumption related to various manufacturing and assembly processes is considered. Finally, the 

exergy consumed during the end-of-life phase is calculated. The material compositions and the values for the mass-specific 

exergy consumptions related to different extraction, manufacturing, and recycling processes as well as transportation modes are 

summarized in the Appendix.  

The data on exergy consumption of the communication network equipment including network terminals, edge, aggregation, 

and core switches as well as copper and optical fiber cables is obtained from [12-14]. The exergy consumption of servers and 

home energy management systems (HEMSs) deployed in the DCC and the customer/distribution domains, respectively, is taken 

from [4,15]. The model used to dimension and evaluate the core and access networks takes into account all relevant parameters 

for the city of Vienna such as coverage, technology penetration, number of subscribers, population density, and current network 

design practices. The required data is mainly obtained from the Statistics Austria [11], the Forum Mobilkommunikation (FMK) 

[16] and the Austrian Regulatory Authority for Broadcasting and Telecommunications (RTR) [17]. Additionally, future trends in 

data traffic growth and technology development as well as the information provided by network operators are considered. For 

more detailed description regarding the model of the communication network and assumed parameters the reader is referred to 

[12,18-20]. The main results of this model are (i) estimated number of required network elements and (ii) estimated total 

electricity consumption of the network, which are used to calculate the contributions of the communication network infrastructure 



to the total EEC and OEC. Here, we assume that data concentrators are connected to the data and control center (DCC) via the 

existing core and access network infrastructure. The network related contributions to the overall EEC and OEC are calculated as a 

portion of the total network exergy consumption and according to the expected amount of AMI traffic, which will most likely be 

only a small portion of the total network traffic. 

TABLE I.   

LIFETIME ASSUMPTIONS FOR DIVERSE EQUIPMENT AS INDICATED IN FIG. 1 

ICT equipment ICT equipment category Lifetime [years] 

Data concentrator UE 7 

PLC modem UE 10 

Smart meter UE 15 

BTS rack RAN 7 

BSC rack RAN 8 

Node B rack RAN 8 

RNC rack RAN 9 

SGSN rack CN 10 

GGSN rack CN 10 

Core switch CN,DCC 3 

Aggregation switch DCC 3 

Edge switch DCC 3 

Server DCC 4 

Notebook (15- and 13-inch) DCC, UD 3 

Tablet DCC, UD 2 

Smartphone DCC, UD 2 

Router DCC 3 

DSL modem DCC, UD 3 

Cat5e cable RAN,CN,DCC > 20 

Optical fiber cable RAN,CN,DCC > 20 

HEMS UD,Others 4 

  

The lifetime of BTS and BSC racks is assumed to be equal to 7 and 8 years, respectively, that of Node B and RNC racks to 8 

and 9 years. For both SGSN and GGSN racks we assume a service time of 10 years. The lifetime of DCC routers, CN/DCC 

switches, and DCC/UD DSL modems is assumed to be 3 years. Notebooks are replaced after 3 years while both tablets and 

smartphones after 2 years of use. Data on technology penetration is based on the information obtained from Statistics Austria and 

on forecasts provided in [12]. The assumptions regarding the ICT equipment lifetime are summarized in Table I, while the model 

for evaluating the environmental sustainability of the advanced metering infrastructure (AMI) and home area networks (HANs) is 

graphically depicted in Fig. 1. 
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may need to be slightly extended or adapted to optimally support smart grid applications. Anyway, the data traffic originating 

from smart grid applications will most probably be just a small portion of the total internet traffic. Similarly, user devices such as 

smartphones, tablets, and notebooks are assumed to be partly used for HAN applications, while most of the time they are used for 

other purposes like telephony, work, entertainment, internet surfing, etc. Note that the same reasoning applies to the embodied 

exergy consumption. 

A. Utility Equipment 

The cumulative embodied (EEC) and operational (OEC) exergy consumptions obtained for the utility equipment (UE) are 

summarized in Table II. These values are calculated while considering all life cycle phases and the whole components’ service 

time, i.e. the entire UE lifetime. It is evident that the total exergy consumption of the data concentrator is highest among the utility 

equipment, which is mainly due to the high embodied exergy consumption (EEC). Note that the high operational exergy 

consumption (OEC) of the smart meter is due to the assumed long lifetime of 15 years. However, the embodied exergy 

consumption (EEC) of the smart meter is for about 1.34 GJ lower than that of the data concentrator. In general, the operational 

exergy is two to five times lower than the embodied exergy consumption as indicated in Fig. 2, which shows the relative 

contributions of EEC and OEC to the total exergy consumption over the entire UE lifetime. The assumptions regarding the 

material composition of the utility equipment are listed in Appendix A. 

TABLE II.   

ESTIMATED EMBODIED EXERGY CONSUMPTION (EEC) AND OPERATIONAL EXERGY CONSUMPTION (OEC) OF VARIOUS UTILITY EQUIPMENT (UE) 

Equipment 
Exergy Consumption 

EEC [GJ] OEC [GJ] Total [GJ] 

Smart meter 1.511 0.709 2.221 

PLC modem 1.528 0.378 1.906 

Data concentrator 2.850 0.530 3.379 

 

 

Fig. 2. Relative contributions of embodied (EEC) and operational (OEC) exergy consumptions to the total cumulative consumption over the whole lifetime of 

the smart meter, PLC modem, and data concentrator. 
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B. User Devices 

The obtained exergy consumption of user devices (UDs) is listed in Table III. By comparing Table III to Table II one can 

notice that the exergy values obtained for smartphones, tablet PCs, and notebooks are much smaller than that for the utility 

equipment (UE). The main reason for this difference is the much smaller usage factor (UF) assumed for the user devices than for 

the utility equipment. While a factor of 1 (i.e., 100%) is taken for the utility equipment, UF ~ 0.083 (i.e., 2 hours of usage per day) 

is assumed for smartphones, tablets, and notebooks. Therefore, the contribution of the OEC to the total exergy consumption is 

negligible for smartphones and tablets as graphically depicted in Fig. 3. However, for a notebook, the operational exergy is higher 

and accounts for about 24%.  

TABLE III.   

ESTIMATED EMBODIED EXERGY CONSUMPTION (EEC) AND OPERATIONAL EXERGY CONSUMPTION (OEC) OF DIFFERENT USER DEVICES (UDS) 

Equipment 
Exergy Consumption 

EEC [GJ] OEC [GJ] Total [GJ] 

Smarthone 0.120 0.0015 0.121 

Tablet PC 0.124 0.0037 0.128 

Notebook 0.171 0.0530 0.224 

HEMS (Server) 7.016 16.7140 23.730 

 

The HEMS is related to significantly higher exergy consumption when compared to the other user devices. This is because we 

assumed that HEMS applications are running on an enterprise-class server, which remains in the active state all the time, i.e., its 

UF = 1. For this reason, the operational exergy consumption (OEC) of the HEMS is more than twice as high as the embodied 

exergy consumption (EEC), as can be seen in Fig. 3.  

 

Fig. 3. Relative contributions of embodied (EEC) and operational (OEC) exergy consumptions to the total cumulative consumption over the whole lifetime of 

the smartphone, tablet PC, notebook, and HEMS. 
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V. SUSTAINABILITY ANALYSIS OF THE ADVANCED METERING INFRASTRUCTURE (AMI) 

Based on the assumptions provided in Section III and exergy consumption values for various equipment presented in Section IV, 

we analyze now the environmental sustainability of ICT equipment involved in the advanced metering infrastructure for the city of 

Vienna. We defined different assumptions and parameter variations with the aim to gain more insight into the distribution and 

development of the ICT equipment exergy consumption. Based on that, meaningful and useful conclusions on the environmental 

sustainability of ICT equipment can be provided. 

A.  Impact of the Utility Equipment (UE) Lifetime 

As both the customer and the distribution domain will be equipped with a huge number of utility equipment (UE), namely smart 

meters, power line communication (PLC) modems, and data concentrators, means to gain insights into the exergy consumption of 

this equipment regarding different lifetime assumptions would prove beneficial. For that purpose, we defined three different use 

cases (UCs) assuming different lifetimes of the considered UE as listed in Table IV. 

TABLE IV.   

DEFINITION OF USE CASES (UCS) FOR THE UTILITY EQUIPMENT (UE) LIFETIME 

Use Case (UC) 

UE lifetime [years] 

Smart meter PLC modem 
Data 

concentrator 

UC 1: short lifetime 5 5 3 

UC 2: medium lifetime 15 10 7 

UC 3: long lifetime 20 15 10 

  

Use case 1 (UC 1) assumes a short lifetime of the UE, i.e., smart meters and PLC modems are replaced every 5 years, the data 

concentrator even every 3 years. UC 2 and UC 3, on the other hand, envisage a longer lifetime of the UE. In particular, UC 2 is 

assumed to be the baseline that is taken as a basis for the scenario presented in Subsection V.B, which analyzes how the number 

of smart meters connected to a single data concentrator influences the cumulative embodied and operational exergy 

consumptions. It should be noted that the assumed number of smart meters connected to a data concentrator for the present 

scenario equals to 150, which corresponds to the number provided by UC 2 of the scenario treated in the next subsection. The 

information on the amount of data traffic per data concentrator, which is required for the assessment of AMI, was obtained from 

[21]. 

 The cumulative embodied (EEC) and operational (OEC) exergy consumptions of AMI for the three defined use cases (UCs) are 

shown in Fig. 4. As can be seen from the figure, UC 1 is related to the highest cumulative EEC. Thus, it is associated with 
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Extending the equipment lifetime can lead to a significant reduction of the cumulative embodied exergy consumption (EEC) as 

indicated by the results presented in Fig. 6-a). This result is similar to the result obtained for the AMI case (see Section V). The 

potential reduction of the cumulative EEC after 20 years of operation turned out to be almost 63%, which corresponds to a huge 

exergy saving of 10 PJ. User devices contribute by about 26% to the total embodied exergy consumption and by almost 51% to the 

total operational exergy consumption as it becomes evident when observing Fig. 6-b). Note that this result suggests a relatively 

moderate impact of user devices on the total EEC, even though their lifetime is assumed to be much shorter than that of the utility 

equipment. This is mainly due to the relatively low utilization factor of UF = 0.083 that we assume here for user devices. The high 

share of UDs to the total cumulative OEC arises mainly due to the high power consumption of HEMSs, for which an uptime of 

100% and an average load of 50% are assumed. 

B. Impact of User Devices Uptime 

In order to elaborate the impact of the utilization of user devices (UDs), which are used for home energy management 

applications, we define three use cases as shown in Table VII. In particular, we assume that smartphones, tablets, and notebooks 

are used 1, 2, or 4 hours per day, which corresponds to the usage factors of 0.042, 0.083 or 0.167, respectively.  HEMS and DSL 

modems are assumed to remain active during the whole day, so the usage factor is set to 1 for these components. 

TABLE VII.   

DEFINITION OF USE CASES (UCS) FOR DIFFERENT USER DEVICES (UDS) UPTIMES 

Use Case (UC) 

Utilization factor (UF) 

Smart 

phone 
Tablet 

Note 

book 
HEMS 

DSL 

modem 

UC 1: high utilization 0.167 0.167 0.167 1 1 

UC 2: medium utilization 0.083 0.083 0.083 1 1 

UC 3: low utilization 0.042 0.042 0.042 1 1 

 

 As becomes evident from Fig. 7, the more intensive the use of the HAN equipment, the higher cumulative exergy consumption 

can be expected after 20 years of operation. Note that user devices are typically not exclusively used for smart grid applications. 

In fact, they can also be used for many other applications such as entertainment, communication, gaming, and home office. 

Therefore, both overall EEC and overall OEC of user devices are divided into of two parts according to their usage, namely into 

the smart grid related consumption and the consumption that occurs while using the device for all other applications. In this 

work, we consider the smart grid related consumption characterized by the utilization factor (UF). For this reason, an increase of 

UF leads to a higher smart grid related part of both EEC and OEC, assumed that the overall uptime of devices remains 

unchanged. As can be seen in Fig. 7, an increase in the usage of smartphones, tablets and notebooks from 1 hour (UC3) to 4 

hours (UC1) per day leads to an increase of the total EEC and OEC by about 17% and 48%, respectively, which corresponds to 
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Fig. 8. Influence of the usage intensity of user devices (UDs): breakdown of the cumulative embodied (EEC) and operational (OEC) exergy consumption over 

different equipment groups and for the three considered use cases UC 1 – UC 3 (see Table VII). 

C. Impact of the HEMS Configuration 

Even though the HEMS can run on an ordinary personal computer (PC) and serve only one household, we assume here a HEMS 

implementation using dedicated servers that are able to serve many households (HHs). Such an implementation can lead to a 

more efficient installation, operation, and maintenance of the system.  

 The question that arises when a single HEMS device can serve a number of households (HHs) is: What is the influence of the 

number of HHs served by a HEMS on the cumulative exergy consumption? To answer this question, we assume three different 

HEMS configurations that enable 10, 20, and 100 HHs to be connected to and served by a single HEMS (see Table VIII).  
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purpose, we carried out a thermodynamic sustainability analysis that utilizes the exergy-based life cycle assessment (E-LCA) 

method.  

Considering the implementation of AMI, the results have shown that the deployment of smart meters and other required 

communication and data processing equipment can lead to an increase in total exergy consumption between 6.8 and 14.3 PJ over 

20 years of operation and considering all life cycle phases. The contribution of the operational phase to the total exergy 

consumption is about 2.1 PJ, which corresponds to less than 33% of the total. The lifetime of the equipment has a very high 

impact on the cumulative embodied exergy consumption. The cumulative embodied exergy consumption can be reduced by 

about 62% by increasing the equipment lifetime by a factor of three. In contrary, the number of smart meters connected to a 

single data concentrator shows negligible influence on the cumulative exergy consumption. Connecting 2,000 instead of 50 smart 

meters to a single data concentrator leads to savings of 2.69% and 2.92% in the cumulative embodied and operational exergy, 

respectively. 

Implementation and an extensive use of home area networks and home energy management applications promise an increase 

in energy efficiency in the customer domain. However, to optimally support the home energy management applications, one has 

to install additional equipment such as communication equipment and home energy management systems (HEMSs). 

Additionally, the usage intensity of user devices such as smartphones, tablets, and notebooks might increase. Similar to the AMI 

case, the additional ICT equipment required for implementing both the AMI and HAN systems would lead after 20 years of 

operation to an increase of the ICT related embodied exergy consumption by about 63%. The introduction of HEMSs and a more 

intensive use of user devices will contribute to an increase of the operational exergy consumption by a factor of 2 compared to 

the AMI case, which is mainly due to the high energy consumption of HEMS servers. The impact of the HEMS can be mitigated 

if many households are served by a single HEMS server. For example, sharing HEMS resources among 100 households instead 

of 10 can lead to a reduction of the operational exergy consumption by almost 60% and of the embodied exergy consumption by 

21%.  

In conclusion, our results have shown that the environmental impact of the additional ICT equipment needed for implementing 

smart grid applications cannot be neglected and has to be taken into account when assessing the environmental sustainability of 

smart grids. It is necessary to consider both the possible exergy gains, which can be achieved through introducing new concepts 

and applications for smart grids, and the exergy cost of the additional equipment needed to run these applications. Possible ways 

to reduce the exergy consumption of additional ICT components, i.e., to mitigate their environmental impact, are to increase the 

components’ and systems’ lifetime, to improve the manufacturing processes, to use existing communication and data processing 

infrastructure where possible, and to improve the energy efficiency of servers and data centers. 
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VIII. FUTURE WORK 

The work presented in this communication is only a first attempt to assess the environmental impact of communication 

equipment for smart grids. A more broad study of various technological options for implementing smart grids is needed to obtain 

a more complete and exact picture of the ICT-related exergy cost as well as to identify realization options having the highest 

potential to reduce the exergy consumption. Future developments in both communication network and data center areas can be 

considered such as advanced technologies providing improved flexibility, adaptability, and energy efficiency. In order to fully 

understand the environmental impact of ICT equipment for smart grids, possible exergy gains through developing advanced 

smart grid systems and applications should be estimated and compared to the obtained ICT-related exergy consumptions. The 

final goal is to achieve the highest possible exergy gain while keeping the exergy consumption of the additional ICT equipment 

as low as possible.        

APPENDICES: ASSUMPTIONS FOR THE EXERGY CALCULATION 

A. Material Composition of Utility Equipment (UE)  

1) Smart Meter 

The material/component composition of the Elster REX2 smart meter shown in Table IX is based on analytical conclusions 

and the information provided in [23]. The material breakdown of the printed circuit board (PCB), the current transformer (CT), 

and the power transformer (PT) was estimated based on analytical thinking and the data provided in [24-29], with the aim to 

increase the data accuracy.  

 

TABLE IX.   

MATERIAL/COMPONENT COMPOSITION OF THE SMART METER. 

Material/Component Weight [g] Portion of the total weight [%] 

Steel 161 7 

Copper 414 18 

Plastic 460 20 

Printed circuit board (PCB) 184 8 

Current transformer (CT) 345 15 

Power transformer (PT) 391 17 

Liquid crystal display (LCD) 23 1 

Other 322 14 

Total 2,300 100 
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2) Power Line Communication (PLC) Modem 

The material/component composition of the Texas Instruments (TI)-based power line communication (PLC) modem shown in 

Table X is based on analytical conclusions and the information provided in [30,31]. The material breakdown of the printed 

circuit board (PCB) and the PLC transformer (PLCT) was estimated based on analytical thinking and the data provided in 

[24,32-34]. 

TABLE X.   

MATERIAL/COMPONENT COMPOSITION OF THE PLC MODEM. 

Material/Component Weight [g] Portion of the total weight [%] 

Steel 12.5 5 

Plastic 80.0 32 

Printed circuit board (PCB) 62.5 25 

PLC transformer (PLCT) 57.5 23 

Other 37.5 15 

Total 250.0 100 

 

3) Data Concentrator 

The material/component composition of the Texas Instruments (TI)-based data concentrator shown in Table XI is based on 

analytical conclusions and the information provided in [35-37], with the aim to increase the data accuracy.  

TABLE XI.   

MATERIAL/COMPONENT COMPOSITION OF THE DATA CONCENTRATOR. 

Material/Component Weight [g] Portion of the total weight [%] 

Steel 53.2 19 

Plastic 72.8 26 

Printed circuit board (PCB) 95.2 34 

Other 58.8 21 

Total 280.0 100 

 

The material breakdown of the printed circuit board (PCB) was estimated based on data provided in [24]. To the weight of 200 

g provided in [36], additional 80 g of plastic, steel, and other materials for the casing were added, resulting in a total weight of 

280 g for the data concentrator.  

 



 

 

22

B. Material Composition of User Devices (UDs)  

1) Smartphone 

The material/component composition of the Apple iPhone 5C smartphone shown in Table XII is based on the data provided in 

[38]. The material breakdown of the printed circuit board (PCB) and the battery was estimated based on analytical thinking and 

the data provided in [24,39-53], with the aim to increase the data accuracy. 

TABLE XII.   

MATERIAL/COMPONENT COMPOSITION OF THE SMARTPHONE. 

Material/Component Weight [g] Portion of the total weight [%] 

Steel 41 31.06 

Plastic 7 5.30 

Glass 18 13.64 

Display 11 8.33 

Polycarbonate 14 10.61 

Printed circuit board (PCB) 13 9.85 

Battery 25 18.94 

Other 3 2.27 

Total 132 100.00 

 

2) Tablet 

The material/component composition of the Apple iPad mini tablet (see Table XIII) is based on the data provided in [41]. The 

material breakdown of the printed circuit board (PCB) and the of battery was estimated analytically and based on the data 

provided in [24,39-53].  

TABLE XIII.   

MATERIAL/COMPONENT COMPOSITION OF THE TABLET. 

Material/Component Weight [g] Portion of the total weight [%] 

Aluminum 62 20.06 

Plastic 10 3.24 

Glass 42 13.59 

Display 81 26.21 

PCB 24 7.77 

Battery 78 25.24 

Other metals 12 3.88 

Total 309 100.00 
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4) Notebook 

The material/component composition of the 13-inch MacBook Pro with Retina Display (w/RD) (see Table XIV) is based on 

the data provided in [42]. The material breakdown of the printed circuit board (PCB) and the battery was estimated based on 

analytical thinking and the data provided in [24,39-53], with the aim to increase the data accuracy.  

TABLE XIV.   

MATERIAL/COMPONENT COMPOSITION OF THE NOTEBOOK. 

Material/Component Weight [g] Portion of the total weight [%] 

Aluminum 614 39.13 

Plastics 49 3.12 

Glass 150 9.56 

Keyboard and trackpad 90 5.74 

Display panel 92 5.86 

Printed circuit board (PCB) 155 9.88 

Battery 334 21.29 

Solid-state drive (SSD) 13 0.83 

Other metals 72 4.59 

Total  1,569 100.00

 

3) Home Energy Management System (HEMS) 

The material composition of the home energy management system (HEMS) provided in Table XV is based on the data 

provided in [4,15]. 

TABLE XV.   

MATERIAL COMPOSITION OF THE HEMS. 

Material/Component Weight [g] Amount of total weight [%] 

Aluminum 3,250 15.55 

Steel 12,380 59.23 

Plastic 1,410 7.46 

Copper 1,560 4.07 

Iron 850 6.75 

Glass 110 0.53 

Epoxy 70 0.33 

Ceramics 40 0.19 

Other 1,230 5.89 

Total 20,900 100.00 

 

C. Raw Material Extraction and Processing  

The estimation of the raw material extraction and processing exergy consumption of the ICT equipment is achieved by using 

mass-specific exergy consumption values for different materials obtained from [4] and [15]. For that reason, the mass of various 



 

 

24

materials, which make up the different components and devices, needs to be provided. The mass-specific exergy consumption 

values for raw material extraction and processing of different materials are summarized in Table XVI.  

TABLE XVI.   

MASS-SPECIFIC EXERGY CONSUMPTION VALUES FOR RAW MATERIAL EXTRACTION AND PROCESSING. 

Material Specific exergy [kJ/kg] 

Aluminum 341,500 

Steel 52,100 

Plastic 92,300 

Copper 67,000 

Iron 51,040 

Glass 33,400 

Epoxy, Ceramics, Other 20,000 

 

D. Manufacturing and Assembly 

The manufacturing and assembly exergy consumption is composed of the exergy needed for manufacturing and assembly 

purposes and the exergy contained in the resulting material waste streams. It is estimated that the waste stream for metals and 

plastics corresponds to 10% and 50%, respectively [4,15]. The exergy consumption values we used for different manufacturing 

and assembly processes are summarized in Table XVII. 

TABLE XVII.   

EXERGY CONSUMPTION VALUES FOR MANUFACTURING AND ASSEMBLY. 

Material [unit] Specific exergy 

Metals [kJ/kg] 0.28 

Plastics [kJ/kg] 14.90 

PCBs [kJ/m2] 238,400.00 

ICs [kJ/IC] 12,500.00 

Processors [kJ/processor] 1,242,000.00 

 

E. Transportation 

The transportation exergy consumption does not depend merely on the mass of materials, but also on the distance between 

process stages, and the transportation mode [4,15]. Table XVIII shows the mass (and distance)-specific exergy consumption 

values for different transportation modes. 
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TABLE XVIII.   

MASS (AND DISTANCE)-SPECIFIC EXERGY CONSUMPTION VALUES FOR DIFFERENT TRANSPORTATION MODES. 

Mode of transportation Specific exergy [kJ/kg-km] 

Air 22.41 

Truck 2.096 

Rail 0.253 

Ship 0.296 

 

F. Recycling and Disposal  

The estimation of the exergy consumption expended on the recycling and disposal of the considered ICT equipment is based 

on the data provided in [14] and equals to approximately 520 kilo joules per kilogram (kJ/kg).  
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