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Abstract

Over the last fifteen years, the theory and practice of revenue management has experienced

significant developments due to the need to incorporate customer choice behavior. In this

paper, we portray these developments by reviewing the key literature on choice-based revenue

management, specifically focusing on methodological publications of availability control over

the years 2004-2017. For this purpose, we first state the choice-based network revenue man-

agement problem by formulating the underlying dynamic program, and structure the review

according to its components and the resulting inherent challenges. In particular, we first fo-

cus on the demand modeling by giving an overview of popular choice models, discussing their

properties, and describing estimation procedures relevant to choice-based revenue manage-

ment. Second, we elaborate on assortment optimization, which is a fundamental component

of the problem. Third, we describe recent developments on tackling the entire control prob-

lem. We also discuss the relation to dynamic pricing. Finally, we give directions for future

research.

Keywords:

Revenue Management, Customer Choice, Availability Control, Capacity Control

1. Introduction

Revenue Management (RM) refers to the theory and practice of IT-supported manage-

ment of demand by means such as prices or product availability based on demand models

so as to maximize profits or revenue. As a discipline, it originated in the airline industry

in the 1970s following the deregulation of the US airline market. The term RM was coined
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because, in the airline sector, low variable costs and high fixed costs lead to an environment

where maximization of revenue is (almost) equivalent to maximizing profits. However, RM

techniques are not limited to revenue optimization, and indeed are also used for maximization

of other objectives such as profit. RM can be delineated from more general pricing practice

by its use of often highly sophisticated computer systems that automatically process sales

and other data to produce demand forecasts, which in turn are used to optimize demand

management decisions. Since its conception, it has seen widespread adoption in many ar-

eas, including transportation (trains, car rental, ferries, cargo shipping), hospitality (hotels,

casinos), broadcasting and advertising, and others.

A lot of research has been dedicated to this field over the past 40 years; for relevant

literature reviews see McGill and Van Ryzin (1999) and Chiang et al. (2007), for relevant

textbooks see Talluri and Van Ryzin (2004), Phillips (2005), or Bodea and Ferguson (2014).

Until around 2004, most of it was based on the assumption that demand for any product

is independent of the availability of other products. In other words, it was assumed that

customers would never substitute one product for another, but instead would consider the

purchase of a specific product only and, if this was not available, not to purchase at all. This

so-called independent demand assumption was and still is reasonable in quasi-monopolistic

situations where different product offerings are strongly fenced off. For example, in the airline

industry, different types of fares used to be associated with specific restrictions (cancelation

policy, advance purchase requirement, . . . ) that were intended to appeal to a specific customer

segment only. However, with the rise of low-cost carriers and the advent of online travel

agencies like Expedia or Orbitz by the early 21st century, the independent demand assumption

turned out to be problematic due to the increased competition and visibility of different fares.

Consequently, the focus of this review is on the design and estimation of discrete choice

models for RM, and on the problem of how to control demand via product availability over

a finite period of time while accounting for customer’s choice behavior. The most recent

comprehensive review in this field is by Shen and Su (2007), who provide an overview of

research on customer behavior in RM and auctions. More specifically, they partition work

in the area in those papers dedicated to inter-temporal substitution and strategic customer

purchase behavior, and those focusing on multi-product substitution. We exclude the former

from our review and only take multi-product substitution into account. The relevant section
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on multi-product substitution in their paper covers the period from the seminal paper of

Talluri and Van Ryzin (2004) to 2007. We include these works and expand the review to

developments in choice-based RM up to and including 2017. Note that Weatherford and

Ratliff (2010) review the literature on RM under dependent demand; however, they focus

on heuristics specifically designed for airlines’ legacy booking systems. Our review has a

wider scope and provides an overview of general methodological developments beyond specific

applications.

Our review is structured as follows: In Section 2, we begin by presenting a general formu-

lation of the choice-based network RM problem of availability control. Based upon this, we

dedicate the following three sections to the three main challenges arising in the context of this

problem. In particular, in Section 3, we discuss the demand modeling side by reviewing the

literature on customer choice models that have been integrated in the model so far, along with

appropriate estimation methods that have been developed. Second, in Section 4, we discuss

different approaches of assortment optimization, which forms a significant part of the overall

problem and which is closely related to the integrated choice model. Third, in Section 5, we

focus on the literature regarding the entire dynamic control problem, focusing specifically on

different approximations that have been developed. In Section 6 we conclude the review by

giving an outlook on potential future research opportunities.

2. The choice-based network RM problem of availability control

In this section, we first provide a general description of the availability control problem

in §2.1. We then present a formulation of the resulting choice-based network RM problem

as a stochastic dynamic program in §2.2. Three main challenges in solving the problem are

identified in §2.3. Each of these challenges is then addressed in Sections 3 to 5 in detail.

2.1. General description

During a selling horizon (also called booking horizon), a firm offers products out of a finite

set to heterogeneous customers arriving over time. Most commonly, the products correspond

to services that have to be delivered after the selling horizon. In general, prices (revenues)

of the products and capacities for providing the services will be fixed in the short-term.

Furthermore, capacities are perishable and often come with high fixed costs, whereas the
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marginal costs resulting from selling an additional product unit are rather low. With such a

cost structure on hand, revenues can be used as proxies for profits.

Facing such a situation, the firm’s goal consists in maximizing its overall total revenue by

performing revenue management. Since heterogeneous customers will have different prefer-

ences concerning the products, they will also have a different willingness-to-pay and, in the

end, will make different choices depending on what products they are offered. Therefore, the

firm has to manage the sales process during the selling horizon appropriately, which is the

task of availability control. It consists of deciding which products to offer at which point of

time in the selling horizon.

To illustrate, in car rentals a product could be a specific car type to be rented out over a

number of specified days at a certain price at a particular station. Each rental day represents

a resource with capacity equivalent to the inventory of that car type, so a multi-day rental

consumes multiple resources. In the airline industry, a product is usually a ticket for the

desired itinerary in a certain compartment, linked to a specific fare and booking class which

may come along with booking restrictions, e.g. minimum stay restrictions. Each compartment

on each point-to-point flight (called a leg) in the airline’s network on the considered day of

service represents a resource with a certain seat capacity. Each product requires one (non-

stop flight) or several (stop-over flight) of these resources. Obviously, in both examples, the

resources are perishable and their provision comes with high fixed costs.

On the demand side, customers could have different preferences, e.g., depending on the

purpose of their travel. A common distinction in the airline industry is among business

travelers and leisure travelers. When these groups of customers are offered the same set of

products by the firm, they will usually make different choices. Furthermore, if their preferred

product is not available, they may show a different substitution behavior, i.e., switch to

different products or not purchase at all.

To reflect the characteristics of the supply side, the term “network RM” is often used,

whereas for the demand side the term “choice-based RM” is common. To conclude the

general description, let us briefly provide some background on common terms in RM. When

the practice of RM emerged in the airline industry of the 1970ies, price changes were difficult

to implement and hence booking limits were introduced to control different fare classes. In

other words, capacity (as opposed to prices) is controlled, and hence this is referred to as
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capacity or inventory control. In the literature, control problems of this type usually assume

that we set booking limits or accept/reject individual demand requests.

In this review, we focus on “availability control”, which refers to deciding on the set of

available product alternatives from which the customer may choose. The main difference

is that the terms capacity control/inventory control tend to be used in the context of in-

dependent demand (i.e. independent of available product alternatives), whereas the term

availability control is usually used in the context of dependent demand. We regard both

capacity/inventory control and availability control as being part of “quantity-based” RM, in

contrast to dynamic pricing or “price-based” RM where the firm changes prices of products

to manage the sales process. However, there is some ambiguity in the literature on the use of

these terms, especially because there is some overlap (e.g. pricing on a discrete set of price

points can be framed as special case of availability control).

Finally, the term RM may encompass further instruments which can be found in service

industries. For instance, in the airline industry, customers may cancel their flights and, hence,

overbooking may be applied which consists in selling more tickets than available capacity

anticipating future cancelations.

2.2. Formulation as a stochastic, dynamic program

More formally, the choice-based network RM problem that we consider can be formulated

as follows. A firm sells products over a finite time horizon consisting of T time periods,

indexed by t, starting at the beginning of period t = 1 and ending after period t = T . The

time periods are assumed to be sufficiently small such that the probability of more than one

customer arriving within a single time period is negligible.

The set of products is denoted by J := {1, . . . , J}. Each product j ∈ J has a fixed

revenue rj associated with it. For the given set of resources I := {1, . . . , I}, the resources

needed for any product are defined in a matrix A ∈ NI,J0 , where aij = b if product j uses b

units of resource i ∈ I. Accordingly, the j-th column vector Aj represents the overall resource

consumption of product j. At the beginning of period t, we have an available inventory of

ct ∈ NI0, so c1 denotes the vector of initial capacities. The set J (ct) contains all products that

can be feasibly offered given the remaining available capacity: J (ct) := {j ∈ J |Aj ≤ ct}.
The so-called offer set S ⊆ J (ct) consists of all products that the firm makes available to

customers in period t.
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The customer population is assumed to consist of L := {1, . . . , L} segments. Each seg-

ment l ∈ L is characterized by an arrival rate, a consideration set, and a model that governs

customers’ product choices for a given offer set. We define these characteristics in turn,

starting with the arrival rate. The probability that a customer arrives in time period t is

assumed to be fixed at λ; this is to simplify notation, but our approach can be generalized to

time-heterogeneous arrival rates. With probability pl, a customer who has arrived belongs to

segment l, so that we can define a segment-specific arrival rate λl := plλ. The consideration

set Cl ⊆ J represents the set of all products that a customer of segment l would consider for

purchase if they were to be offered. Two consideration sets l and l′ are said to be overlapping,

if Cl ∩ Cl′ 6= ∅, and disjoint, otherwise. For a given offer set S, a customer from segment l

buys product j ∈ S with probability P lj(S) if j ∈ S ∩Cl. Overall, the firm sells product j ∈ S
when offering the set S with probability Pj(S) =

∑
l∈L plP

l
j(Sl). The probability that there is

no sale is accordingly P0(S) = 1−∑j∈S Pj(S). The values of the probability parameters are

usually obtained from some theoretical choice model which is calibrated on real-word data,

but which we will leave unspecified at this stage.

Within availability control, the firm has to determine the offer set S in every time period

t = 1, ..., T of the selling horizon so as to maximize expected revenue over the remaining

booking horizon. The corresponding optimal policy for the entire network RM problem

can, in theory, be obtained by a stochastic dynamic program. Although intractable, we

do nevertheless state it (as is commonly done in the literature) so as to have a conceptual

reference point. Let the value function Vt(ct) denote the maximum expected revenue that

can be earned over the remaining time horizon [t, T ], given remaining capacity ct in period t.

Then Vt(ct) must satisfy the Bellman equation

Vt(ct) = max
S⊆J (ct)




∑

j∈S
λPj(S)

(
rj + Vt+1(ct −Aj)

)
+
(
λP0(S) + 1− λ

)
Vt+1(ct)



 , ∀ t,∀ ct,

(2.1)

with the boundary condition VT+1(cT+1) = 0 for all cT+1. Let V DP := V1(c1) denote the

optimal value of this dynamic program from 1 to T , for the given initial capacity vector c1.

Equation (2.1) is the standard formulation of the choice-based network RM problem of

availability control. Let ∆jVt+1(ct) = Vt+1(ct) − Vt+1(ct − Aj) be the opportunity cost
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associated with selling product j, which represents the expected loss of future revenue due to

selling product j. With these values on hand, we can re-write equation (2.1) to yield:

Vt(ct) = max
S⊆J (ct)




∑

j∈S
λPj(S)

(
rj −∆jVt+1(ct)

)


+ Vt+1(ct), ∀ t,∀ ct. (2.2)

2.3. Challenges in solving the choice-based network RM problem

By taking a closer look at equation (2.2), the challenges to solve the described choice-based

network RM problem and to obtain an implementable policy can be elicited.

First of all, we have to determine the arrival rate λ and the probabilities Pj(S) of choosing

a certain product j depending on the offer set S. This requires specifying a suitable demand

model as well as estimating its parameters from booking data observed in the past. Hence,

in Section 3 we will present different demand models of the discrete choice type and discuss

approaches for their estimation.

Next, for each state ct in period t, all possible actions have to be evaluated. In our context,

an action consists of specifying an offer set S. Since there are 2|J (ct)| possible sets in period

t, this may not be done by brute force. Instead, in order to cope with the possibly large

action space, an optimization problem has to be solved, which is closely related to assortment

optimization for physical retail shelves, or for products dynamically generated and displayed

on a web page. Indeed, if the opportunity costs ∆jVt+1(ct) in (2.2) are assumed to be known,

each single availability control decision in a period t boils down to an assortment optimization

problem, where a revenue maximizing assortment with revenues r̃j = rj −∆jVt+1(ct) has to

be determined. For that reason, we will also review some of the assortment optimization

literature in Section 4. However, we concentrate on those methodological papers that are of

importance to the RM setting of controlling demand over time.

Finally, the value function Vt(ct) or the opportunity cost ∆jVt+1(ct) have to be computed

and stored for all periods t = 1, . . . , T and possible combinations of remaining capacity ct,

that is for all possible states. This may again be prohibitive due to the resulting size of the

state space, which grows exponentially in the number of resources I. Indeed, we emphasize

that the dynamic programming formulations (2.1) and (2.2) are intractable for all but the

smallest problem instances even under the assumption of independent demand (see Section

1), which is the most simple demand model. Therefore, much of the literature is focused on
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how to approximate Vt+1(ct) or ∆jVt+1(ct). We will review this literature in Section 5.

3. Discrete Choice Models: Design & Estimation

In this section, we discuss choice model design and estimation in RM applications. At

the highest level, we categorize choice models as parametric (§3.1), non-parametric (§3.2), or

multi-stage (§3.3), and review models that have received significant attention in each category.

The aim is not to provide a detailed discussion of each choice model, but rather to give an

overview of different approaches. In particular, much recent theoretical work has been devoted

to exploiting structural properties of certain choice models that we seek to highlight.

3.1. Parametric models

Parametric models are rooted in random utility theory, where we assume that consumers

associate a certain utility with every choice alternative (product), and decide on the alterna-

tive that maximizes his/her utility. This utility for alternative j has a deterministic and a

random part: the utility is expressed by Uj = uj+εj , where uj is the deterministic component

and εj the random component with zero mean. Therefore, uj can be regarded as the mean

utility of alternative j. Let S ⊆ J be the set of products offered to a customer, then the

probability that product j is chosen is given by Pj(S) = P (Uj = max
{
Uj′ : j′ ∈ S ∪ {0}

}
),

with U0 representing the utility of not choosing anything or buying from a competitor, i.e.,

the utility of an aggregated non-purchase alternative that is always available. The determin-

istic component uj is usually expressed as a linear function βTxj of vector of attributes xj

that influence the purchase probabilities. Different choice models are obtained depending on

the assumptions made on the distribution of the random utility part. For a comprehensive

introduction to the (econometric) theory of parametric choice models, including derivation

and estimation, we refer to the textbooks of Ben-Akiva and Lerman (1985), Train (2009),

and Hensher et al. (2015).

3.1.1. Multinomial logit

One of the most widely used models is the Multinomial Logit (MNL). This assumes

that the entire customer population can be described with the same set of parameters β.

Furthermore, it is based on the assumption that the random utility components εj are inde-

pendent and identically distributed random variables with a Gumbel distribution, that means
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P (εj ≤ x) = exp(− exp(−x)) for all x ∈ R. Under this assumption, it can be shown that the

probability that product j is chosen from set S is given by:

Pj(S) =
euj/µ∑

i∈S e
ui/µ + eu0/µ

. (3.1)

Changing the scaling parameter µ affects the behavior of MNL: as µ → 0, MNL be-

comes purely deterministic (i.e., Pj(S) = 1 if uj = max {ui : i ∈ S ∪ {0}} ; 0 otherwise).

Conversely, when µ → ∞, the utility of each product becomes irrelevant and the proba-

bility is uniformly spread across all available products and the non-purchase alternative (i.e.,

Pj(S) = 1/(|S| + 1), ∀j ∈ S). This shows that, despite its simplicity, MNL is a powerful

and flexible choice model. Nonetheless, MNL is also based on a strong assumption known

as Independence from Irrelevant Alternatives (IIA): For any two sets S, S′ ∈ J and any two

alternatives i, j ∈ S ∩ S′, the choice probabilities satisfy Pi(S)/Pj(S) = Pi(S
′)/Pj(S′), which

implies proportional substitution across alternatives and can lead to overestimation of choice

probabilities of products considered similar by consumers.

Talluri and Van Ryzin (2004) were the first to introduce the MNL choice model in rev-

enue management. They acknowledge the difficulty of dealing with unobservable no-purchase

outcomes and propose an expectation-maximization (EM) approach to jointly estimate the

homogeneous arrival rate λ and the utility parameters β from historical data. A similar esti-

mation approach is used by Vulcano et al. (2010) and Gallego et al. (2015b). The EM method

is also the basis for the estimation approach developed by Vulcano et al. (2012) that is also

applicable when demand follows a nonhomogeneous Poisson arrival process.

Several researchers have investigated alternatives to using EM in MNL parameter esti-

mation: Newman et al. (2014) formulate a method using marginal log-likelihood functions,

resulting in an algorithm faster than the EM approach suggested by Talluri and Van Ryzin

(2004). Abdallah and Vulcano (2016) likewise investigate how to overcome the slow conver-

gence of EM; they introduce a minorization-maximization (MM) algorithm to estimate the

MNL parameters. Rusmevichientong et al. (2010a) propose an estimation approach that can

be applied under resource capacity limitations. Rusmevichientong and Topaloglu (2012) as-

sume the MNL parameters to be unknown and provide a robust formulation based on a set

of likely parameter values.
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3.1.2. Finite-mixture logit

Revenue management typically seeks to exploit differences in customers’ preferences and

willingness to pay. For this purpose, a natural extension is to consider multiple customer

segments, each assumed to follow a segment-specific MNL model. If we can observe each

customer’s membership in a segment, then we can continue to use the MNL model: one for

each segment. However, if membership of a customer in a segment is unobservable, then

the individual segment-level MNL models are linked in that we can only probabilistically

attribute a segment to a customer. We need to jointly estimate a probability ql representing

the likelihood of this membership for every segment l ∈ L, along with the MNL parameters

βl for all segments l ∈ L. In other words, we mix a finite number of MNL models, hence the

resulting choice model is called finite-mixture logit or latent class model.

Each segment l will have its own vector of coefficients βl used to build utilities ulj = βTl xj

of customers belonging to that segment, where xj is a vector containing the attribute values

of product j. Every segment l also has a consideration set of products Cl ⊆ J associated

with it, containing the products that consumers in the segment would consider for purchase.

The probability of choosing product j is given by:

Pj(S) =
∑

l∈L
ql

eulj∑
i∈S∩Cl

euli + eul0
, j ∈ S. (3.2)

So-called Mixed MNL (MMNL) models represent a MNL model with random coefficients β

drawn from a cumulative distribution function, and the finite-mixture model is obtained for

the special case where this distribution has finite support. Under mild regularity conditions,

McFadden and Train (2000) show that any discrete choice model derived from random util-

ity maximization has choice probabilities that can be arbitrarily closely approximated by a

MMNL model. Therefore, it is not surprising that the finite-mixture logit tends to represent

choice behavior better than MNL, at the expense of a more challenging parameter estimation.

The latter is also discussed by McFadden and Train (2000). To the best of our knowledge,

while finite-mixture logit has been considered in assortment optimization (see Section 4),

there have been no papers developing specific estimation procedures.
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3.1.3. Nested logit

The Nested Logit (NL) model is appropriate if we can aggregate alternatives into nests in

a way such that the IIA holds within each nest but not across nests. Each nest represents a

set of substitutes. A customer decides which nest to buy from, or to leave without purchase.

If a nest is selected, the customer chooses an alternative out of the nest. Let K be the set of

nests and Sk the set of products offered from nest k ∈ K. The deterministic, observable part

of the utility of product j is denoted by uj , and we call vkj := exp(uj/µk) the preference value

for product j in nest k. The preference value of non-purchase is labeled v0. The parameter µk

is a measure of independence in unobserved utility among the alternatives in nest k (Train,

2009). The overall preference of a customer for nest k is Vk(Sk) =
∑

j∈Sk
vkj . If a customer

has already chosen to buy from nest k (given Sk products offered), then the probability that

he/she will purchase product j ∈ Sk is given by vkj/Vk(Sk).

The probability that a customer will purchase from nest k can be computed as follows:

Vk(Sk)
µk

v0 +
∑

h∈K Vh(Sh)µh
,

Therefore, the choice probability for product j from nest k is given by:

Pj([Sh]h∈K) =
vkjVk(Sk)

µk−1

v0 +
∑

h∈K Vh(Sh)µh
.

The parameters can be either estimated by simultaneous maximum likelihood, or sequen-

tially (first within nests, then over nests). Train (2009) recommends the former. A recent

paper featuring NL parameter estimation using a maximum likelihood method in the context

of RM is the work of Anderson and Xie (2012), who propose an opaque pricing approach in

a hotel context.

3.1.4. Markov chain models

Blanchet et al. (2016) propose a choice model where the customer’s choice process is

represented by a Markov chain having J + 1 states, each corresponding to a product j ∈ J
or to the non-purchase option. Let νi be the arrival probability at state i. A customer

arriving at i either makes the purchase if i is available, or proceeds to a different state

j, if i is unavailable. Therefore, νi can be interpreted as the probability that a customer

chooses alternative i (which could be the non-purchase option i = 0) when all products are
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available. The transition probability from alternative i to j is denoted by ρij and represents

the probability of substituting alternative i with j, given the unavailability of product i. Every

state is connected with state 0 to represent the no-purchase event. The model is entirely

defined by the parameter vectors ν and ρ, which need to be estimated. Blanchet et al. (2016)

show that this model is a good approximation to any random utility discrete choice model

under mild assumptions. In fact, Berbeglia (2016) shows that the Markov chain model itself

belongs to the class of discrete choice models based on random utility. Şimşek and Topaloglu

(2017) propose an Expectation-Maximization algorithm to estimate the Markov chain model

parameters.

3.1.5. Exponomial models

Alptekinoğlu and Semple (2016) propose a new choice model that incorporates negatively

skewed distributions of consumer utilities, as opposed to the MNL or NL models that assume

that the consumers’ willingness to pay distribution is positively skewed. In this model, choice

probabilities are expressed as a linear combination of exponential terms; hence the term

‘exponomial’. It is designed for applications where consumers would not choose to overpay if

they were well-informed about the products and prices. Let us assume that the utility of a

product j is given by Uj = uj − zj , where uj and zj are the deterministic and random part of

the utility, respectively. The random variables zi are independent and identically distributed

exponentially with mean 1/ξ. Given a choice set S with n options, Alptekinoğlu and Semple

(2016) show that the probability that a customer chooses product j is given in closed form:

Pj(S) =
e−ξ

∑n
i=j(ui−uj)

n− j − 1
−

j−1∑

k=1

e−ξ
∑n

i=k(ui−uk)

(n− k)(n− k + 1)
, (3.3)

under the assumption that the deterministic utilities are ordered u1 ≤ u2 ≤ ... ≤ un. They

also show that the loglikelihood function is concave and therefore use maximum likelihood

estimation to obtain the unknown parameters that define the deterministic utilities ui.

3.2. Non-parametric models

The main problem of parametric choice models is their assumption that the choice behavior

can be captured in a certain functional form; while this brings advantages through the ability

to exploit the structural properties of such models, they might be a poor representation of the

actual choice behavior. In particular, it is necessary to specify the attributes that are assumed
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to drive the choice process; a source of specification errors. Furthermore, estimation becomes

more challenging as we include more attributes, leading to increased estimation errors.

An alternative is to consider non-parametric, rank-based models. We assume that every

consumer ranks all alternatives j ∈ J and the non-purchase option in a certain order, and

chooses the highest-ranking available option (which may be the non-purchase option). Any

such ranking list is referred to as a customer type, and demand is modeled through a probabil-

ity mass function over these customer types. The model is very general, and various common

choice models such as the MNL are special cases of a rank-based model as discussed by Ma-

hajan and Van Ryzin (2001). Since there is a factorial number of potential customer types,

the challenge of specifying the probability mass function lies in the identification of relevant

customer types. As Van Ryzin and Vulcano (2015) describe, the trade-off between model

specification errors and estimation errors in parametric models exists similarly in rank-based

models: the trade-off is now between more customer types and a higher risk of overfitting

versus fewer types with a higher estimation error.

Some recent work has been conducted on partial identification of customer types: Given

a fixed assortment, Farias et al. (2013) employ a robust approach by identifying the distribu-

tion over customer types with the worst-case revenue using constraint sampling. This turns

out to be essentially the sparsest-choice model, with sparsity defined in terms of the num-

ber of customer types with positive probability weight. Sher et al. (2011) propose a linear

programming approach to obtain upper and lower bounds on probabilities of any customer

type. Van Ryzin and Vulcano (2015) propose an approach of progressively building a set of

customer types by starting from a simple set and extending it with new types that increase

the likelihood. Van Ryzin and Vulcano (2017) develop an expectation-maximization method

to jointly estimate the arrival rate of customers and the probability mass function, based

only on sales transaction and product availability data. One of the main disadvantages of

non-parametric models is their inability to make predictions on products not seen before (as

opposed to parametric models).

3.3. Multi-stage choice models

In all the choice models discussed so far, the choice process is represented in a single

stage: given a set of available alternatives, each choice model returns a purchase probability

for each alternative. In the marketing and economics literature, much attention has been
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devoted to the study of consider-then-choose decision processes that involve two stages. First,

consumers form a consideration set and then to choose from among the considered available

alternatives. In a recent literature review, Hauser (2014) highlights that there is strong

evidence for consumers choosing in this way.

Consideration sets may be observable or unobservable; in the latter case, the estimation

process includes the additional challenge of predicting what the relevant consideration sets are.

For example, Gensch and Soofi (1995) show that MNL is strong in predicting the consideration

set, but not in predicting first choice demand. The model has also been extended to more

than two stages: Masatlioglu and Nakajima (2013) propose a dynamic search process where

consumers’ consideration sets are formed iteratively.

In the retail and revenue management literature, this concept has received some (but rel-

atively little) attention. Cachon et al. (2005) consider a retail assortment planning problem

with search costs where consumers either choose a product from the retailer’s assortment, or

choose to continue searching for alternatives available elsewhere (incurring a certain search

cost). Wang and Sahin (2014) likewise investigate the impact of consumer search cost on

assortment planning and pricing, but explicitly building on a two-stage consider-then-choose

logit model. Jagabathula and Rusmevichientong (2015) propose a tractable nonparamet-

ric expectation-maximization approach to estimate a two-stage choice model and design a

solution approach to the joint assortment and price optimization problem.

Also Jagabathula and Vulcano (2017) propose a two-stage nonparametric estimation ap-

proach, but here the customers are represented by partial orders of preferences. When a

customer arrives in the system, he/she samples a full preference list of the products consis-

tent with the partial ordering, forms a consideration set, and chooses the preferred option

among the considered ones.

4. Assortment optimization

There is a vast literature on how to optimize assortments; see Kök et al. (2008) and

Hübner and Kuhn (2012) for recent reviews that focus on both assortment optimization and

inventory planning. In our article, we focus on the dynamic availability control problem under

customer choice behavior. It contains an assortment optimization problem in each time step

of the Bellman equation (2.2), which we re-state for convenience:
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max
S⊆J (ct)




∑

j∈S
λPj(S)

(
rj −∆jVt+1(ct)

)


 = max

S⊆J (ct)




∑

j∈S
λPj(S)r̃j



 ,

where ∆jVt+1(ct) = Vt+1(ct)−Vt+1(ct−Aj) is the opportunity cost associated with selling

product j and r̃j = rj −∆jVt+1(ct) represents the so-called displacement adjusted revenue.

This assortment optimization problem often needs to be solved in real-time (e.g. to decide

on which products to display on a website of an airline or a car rental company), so the ability

to solve it very quickly is crucial. The difficulty in finding an optimal solution depends on

the choice model that underpins the purchase probabilities Pj(S). In the following, we review

recent literature on efficient optimization for the choice models described in the previous

section. As described in §2.1, we assume that capacities are fixed in the short term. Hence,

we do not concern ourselves with issues such as planning of optimal inventory levels; we are

only concerned with the assortment itself.

4.1. General choice model

Some authors considered the assortment optimization problem without exploiting the

specific structure adherent to a particular choice model. This has the advantage that the

solution approach is portable, regardless of the specific choice models being used. To that

end, more general heuristics are derived, either using a revenue-ordered approach or by a

greedy approach that adds products iteratively to an initially empty set. The former approach

involves searching the revenue maximizing set among the sets S1, , . . . , SJ which are nested

by (displacement adjusted) revenues such that each set Sk contains the k products with the

highest revenues. This heuristic can even be optimal (see MNL discussion below). Berbeglia

and Joret (2017) analyze revenue-ordered strategies and their ability to approximate the

optimal solution for a broad class of models including all random utility discrete choice models.

The greedy approach has been used by Jagabathula (2014) who further extends the heuristic

by allowing it to delete and exchange products in each iteration.

4.2. MNL

Talluri and Van Ryzin (2004) show that the revenue-ordered approach is optimal under

the MNL with a single customer segment and without further constraints. Various versions

of assortment problems under MNL have been considered: optimization under a capacity
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constraint (Rusmevichientong et al., 2010a; Desir and Goyal, 2014), constraints that have a

totally unimodular structure (Davis et al., 2013), robust assortment optimization where the

true MNL parameters are unknown (Rusmevichientong and Topaloglu, 2012), an extension

applicable to the so-called generalized attraction model (Wang, 2013), as well as MNL with

nested consideration sets but identical MNL parameters for every segment (Feldman and

Topaloglu, 2015a).

4.3. Finite-mixture logit

The assortment optimization problem becomes very challenging when moving from the

single-segment MNL model to the multi-segment case. Miranda Bront et al. (2009), Rus-

mevichientong et al. (2010b), and Rusmevichientong et al. (2014) established that the prob-

lem is NP-complete when the consideration sets of the segments overlap, even with just two

customer segments. Rusmevichientong et al. (2010b) provide a polynomial approximation

scheme, and both they and Rusmevichientong et al. (2014) provide approximation guaran-

tees for using the revenue-ordered heuristic. Upper bounds on the optimal expected revenue

are proposed by Feldman and Topaloglu (2015b) that can be used as a proxy for the opti-

mality gap. Extensions include cardinality-constrained assortments, which are considered by

Méndez-Dı́az et al. (2014) and Şen et al. (2015). The latter propose a conic quadratic mixed

integer programming formulation that can be solved by commercial software even for large

instances.

4.4. Nested logit

For the two-level NL, Li and Rusmevichientong (2014) present a necessary and sufficient

condition for the optimal assortment. Furthermore, they identify a certain structure of the

optimal solution that can be exploited in a greedy algorithm running in O(nm logm) time,

where m denotes the number of nests, each having n products. The more general case of

having d levels is tackled by Li et al. (2015). Davis et al. (2014) provide an upper bound

on the optimal expected revenue. Furthermore, they find that nested-by-revenue assortments

can be expected to perform well when the revenues or the attractiveness of the products

within a particular nest are not too different from each other (assuming the customers always

purchase within the selected nest). Also, the case that the latter assumption is violated is

considered. Feldman and Topaloglu (2015c) extend the results to the case where there are
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capacity constraints on the total capacity consumption of all products offered in all nests.

Cardinality and space constraints are investigated by Gallego and Topaloglu (2014), who

find that the assortment problem under cardinality constraints can be solved efficiently via

a linear program. Space constraints render the problem NP-hard, and the authors develop

performance guarantees for this case.

4.5. Exponomial, Markov and rank-based models

Alptekinoğlu and Semple (2016) provide structural results on the assortment optimization

under the exponomial choice model. The Markov chain based choice model was proposed in

Blanchet et al. (2016), who also provide polynomial-time solution algorithms. Feldman and

Topaloglu (2017) give a linear program to obtain the optimal solution to the assortment

problem (and solution approaches to the single-resource and network RM problem) for the

Markov chain choice model. Désir et al. (2015) investigate the same choice model in the

assortment problem under cardinality and capacity constraints and present constant-factor

approximations.

Aouad et al. (2015b) provide best-possible approximability bounds for the assortment

problem without capacity constraints when a rank-based choice model is considered. Goyal

et al. (2016) show that the capacitated assortment planning problem is NP-hard to approxi-

mate within a factor better than 1− 1/e.

For the special case that customers only consider purchasing one of two substitutable

products, Paul et al. (2016) propose a 2-approximation algorithm for the rank-based choice

model. Also Bertsimas and Mǐsić (2015) use a rank-based approach: they propose a two-step

procedure of estimation and optimization via a mixed-integer programming formulation that

can accommodate various constraints.

4.6. Multi-stage models

Several authors have recently investigated assortment optimization under consider-then-

choose choice models. Wang and Sahin (2014) focus on a joint assortment planning and

pricing problem where customers initially balance utility uncertainty and search costs to

form a consideration set, before evaluating these options and choosing one option. Revenue-

ordered assortments fail to be optimal; instead, they propose so-called attractiveness ordered

assortments that are shown to exhibit good performance. Aouad et al. (2015a) develop a
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dynamic programming approach that they show to be efficient under certain assumptions

on how customers consider and choose. In particular, they present polynomial running time

guarantees assuming that customers consider arbitrary subsets of products, but that their

relative ranking preferences are derived from a common permutation.

5. Availability control over time

In this section, we review the literature that focuses on how to solve/approximate the

choice-based network RM problem given as a general dynamic program in (2.1). We begin

with the independent demand case (§5.1), and then discuss availability control using a single

resource (§5.2) and a network of resources (§5.3), respectively. Finally, we discuss the relation

to dynamic pricing (§5.4).

5.1. The independent demand case

Note that the traditional independent demand model as described in Section 1 obviously

is a special case of (2.1). More precisely, as Talluri and Van Ryzin (2004) point out, it can

be obtained from defining the choice probabilities by Pj(S) = pj if j ∈ S and 0 otherwise,

with pj denoting the probability that the incoming customer requests product j, regardless of

what alternatives are available to him/her. Even though the independent demand model is

somewhat outdated for the reasons described earlier, it still has some following in the airline

industry, as airlines often still rely on independent demand systems. That is the reason why

since the early 2000s, attempts have been taken to find approaches that allow for incorporating

choice behavior to some extent while still using the legacy systems. In this context, Fiig et al.

(2010) describe a theory around the so-called fare transformation, also known as marginal

revenue transformation, which technically goes back to Kincaid and Darling (1963). The

main idea is to feed an independent demand system with modified fare values, such that buy-

down choice behavior is adequately reflected. A buy-down occurs when a customer decides

not to buy a higher fare product (even though it is less than – or equal to – the customers

willingness-to-pay) in favor of a lower available fare. The value by which the original fare is

reduced is also denoted as the fare modifier, reflecting the cost of customers’ price elasticity.

The fare transformation can basically be applied to deterministic as well as stochastic models,

ranging from dynamic programming and dynamic programming decomposition, to EMSR-

based methods (also see Walczak et al. (2010)), and it is also possible to model a hybrid
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setting with a mix of price-sensitive demand with complete buy-down choice behavior (called

“priceable demand” in the industry) and independent demand (called “yieldable demand”).

However, the transformation is technically only exact in the case that the so-called efficient

frontier is nested with regard to the products contained in the corresponding offer sets (see

the following subsection for details). Moreover, in the case of network availability control, the

transformation requires that the choice behavior is non-overlapping with regard to different

itineraries, which can be a rather strong limitation.

5.2. Single resource availability control

The seminal publication on choice-based revenue management is Talluri and Van Ryzin

(2004), who focus on a special case of the network problem (2.1) which is obtained if m = 1,

that is, if only one single resource ist considered (ct is a scalar in this case). Note that

in the early days of revenue management, in practice as well as in theory, the focus was

usually on such single-leg problems only, before there was a shift towards more sophisticated

network-based methods in the 1990s. In their paper, Talluri and Van Ryzin (2004) develop a

whole new theory of availability control, thereby adapting techniques from portfolio theory.

In particular, they show that an optimal offer set S is always from an ordered family of

subsets of J that are efficient with regard to the trade-off between expected revenue and

purchase probability, while inefficient subsets of J can be ignored. The efficient subsets can

be visualized two-dimensionally to form a so-called efficient frontier in their order, and it can

be shown that the more capacity is available or the less time remains, the further an optimal

set lies on this frontier, i.e., the lower the quotient of revenue and purchase probability of the

currently optimal offer set is. Moreover, in the case that the efficient subsets are nested with

regard to the contained products along the frontier, a nested allocation policy is optimal. For

the case of MNL as the underlying choice model (as well as for independent demand), the

authors show that the optimal policy is nested by the order of the product’s revenues (so

called “nesting by fare-class order,” see Section 4).

Given the thoroughness of Talluri and Van Ryzin (2004), in recent years, only a few

publications can be observed that continue to focus specifically on the single-leg choice-based

setting. Cooper and Li (2012) study an airline setting relying on an alternative modeling

approach based on a buy-up based choice model that estimates the probability that a customer

who cannot buy the fare he/she is aiming to, will purchase a higher fare (also denoted as
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upsell or sell-up). They compare the performance of their approach with a modified version of

Littlewood’s rule incorporating choice, and investigate the long-run behavior of their approach

when flights take place repeatedly and the parameters of their choice model are updated

accordingly over time. They show that their approach works well in most cases in as far as

it can eliminate the so-called spiral-down effect to a certain extent (even when the buy-up

model is misspecified). The spiral-down effect refers to steadily reducing revenues due to

the use of demand models that assume demand for any individual product is independent

of available alternative products, although actual demand does depend on them (see Cooper

et al. (2006)).

Gallego et al. (2009) propose new extensions of the traditional EMSR-based approaches

for the single-leg problem, relying on buy-up-probabilities that are consistently derived from

an MNL model.

The single-leg problem is also investigated, among other problems, by Feldman and

Topaloglu (2017) with a Markov chain as the underlying choice model. They show that

the optimal policy can be represented by protection levels. Furthermore, they prove that

the nesting properties from Talluri and Van Ryzin (2004) regarding the optimal policy with

regard to time and capacity monotonicity, also hold under the Markov chain model.

5.3. Network availability control

The network availability control problem has been formally defined by the dynamic pro-

gram (2.1). Since it is intractable for realistically-sized problem instances, the primary concern

of research on network availability control is on deriving approximations of the value func-

tion Vt(ct). Our ultimate goal is to use these approximations to estimate the opportunity

costs ∆jVt+1(ct), so that we can use them in a control policy in the form of the assortment

optimization problem discussed in Section 4.

A first step towards network availability control is to consider management of products

that use different resources, however, no two products use the same resource. In the airline

context, this corresponds to customers choosing between parallel flights. Zhang and Cooper

(2005) investigate this problem and propose upper and lower bounds on the value function.

They use a weighted average of these bounds to obtain an approximation to the value function.

For the more general network revenue management problem, Gallego et al. (2004) extend a

standard linear programming model under independent demand to a model that incorporates
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dependent demand, i.e. that accounts for customer choice behavior. It is called the Choice-

based Deterministic Linear Program, CDLP for short. We state it here because much of the

literature over the past ten years is related to it. Let h(S) represent the number of time

periods that a certain offer set S shall be offered (not necessarily integer). Given the arrival

of a customer, the expected revenue R(S) from offering S for one time period is given by

R(S) :=
∑

j∈S Pj(S)rj , and the expected consumption of resource i from offering S is defined

by Qi(S) :=
∑

j∈S Pj(S)aij , ∀i. Let ci denote the available capacity of resource i. CDLP

assumes that demand is deterministic and equal to its expected value and it is given by:

(CDLP) zCDLP = max
h

∑

S⊆J
λR(S)h(S)

∑

S⊆J
λQi(S)h(S) ≤ ci, ∀i ∈ I,

∑

S⊆J
h(S) = T,

h(S) ≥ 0, ∀S ⊆ J .

CDLP maximizes expected revenue subject to resource capacity constraints and a fixed

time horizon. The CDLP’s optimal dual values associated with the capacity constraints can

be used as estimates of the marginal value of capacity and thereby to estimate opportunity

costs. Liu and Van Ryzin (2008) build on this work and propose to solve this linear pro-

gram by column generation (since it has a number of variables that grow exponentially in

the number of products in the network). They use the dual solution of CDLP to decom-

pose the network dynamic program (2.1) into resource-level dynamic programs, and use the

resulting value function approximation to obtain opportunity cost estimates in the control

policy. However, in general, the column generation is computationally inefficient and, in fact,

intractable for even moderate-sized applications. Various researchers have focused on propos-

ing better formulations, i.e. either delivering better revenue results at the expense of more

computational challenges, or the same or similar results in shorter computational time under

exploitation of certain properties of the choice model. CDLP provides an upper bound zCDLP

on the optimal expected revenue V1(c1), and much attention has been devoted to establish-

ing alternative bounds on the optimal expected revenue, and whether bounds dominate each

other. The motivation behind this is that they can be used as benchmarks and, furthermore,
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that tighter bounds usually (but not necessarily) imply better policy performance in terms

of expected revenue.

A string of papers has been devoted to the development of efficient solution techniques

for variants of the CDLP: Kunnumkal and Topaloglu (2008) improve on the work of Liu and

Van Ryzin (2008) by making their approximation of the dynamic program time-dependent.

The resulting formulation provides tighter upper bounds on the optimal value of the dynamic

program than CDLP, and gives better revenue results in simulation studies. Furthermore,

Kunnumkal and Topaloglu (2010) propose a dynamic programming decomposition similar to

Liu and Van Ryzin (2008) but with the main difference that they view revenue allocations to

individual resources as decision variables (as opposed to using the dual values of CDLP), and

they show that this results in upper bounds that are tighter than that of CDLP.

Upper bounds that are looser than those given by CDLP are provided by Talluri (2014) for

the finite-mixture MNL: he proposes a mathematical program that is based on decomposing

the CDLP by customer segment. The sub-problems are loosely linked and overall form an

upper bound on CDLP. It is typically a fairly loose upper bound, and indeed its revenue

performance in simulation studies is not always good, but it can be solved by orders of

magnitude faster than CDLP. Meissner et al. (2013) build on this by devising valid inequalities

that can be added to this more efficient mathematical program without losing its tractability.

Their results are promising in that the observed revenue performance in simulation studies is

often nearly equivalent to that of CDLP, despite being much simpler to solve. This approach

is particularly interesting against the background of Bront et al. (2009) who show that CDLP

(specifically, the column generation subproblem) is NP-hard for the finite-mixture logit model

with products that are being considered for purchase by more than one segment (in other

words, if the consideration sets overlap), while it can only efficiently be solved in the non-

overlapping (disjoint) case, where the problem can be decomposed by segment each following a

standard MNL (Liu and Van Ryzin (2008)). The approach of Meissner et al. (2013), however,

also provides a tractable formulation for general choice models where there may be an overlap

of the consideration sets of the different customer segments. In fact, their formulation often

returned bounds equivalent to those given by CDLP. This observation motivated research by

Strauss and Talluri (2017) who provide structural insights as to when CDLP and the approach

of Meissner et al. (2013) are equivalent.
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Gallego et al. (2015b) consider an efficient solution of CDLP under the so-called general

attraction choice model, of which MNL is a special case. They show that CDLP can equiv-

alently be re-formulated in a linear program (called Sales-Based Linear Program, SBLP for

short) with many fewer decision variables and a fairly small number of constraints. This

equivalence also holds for the finite mixture MNL model under the assumption that the seg-

ments’ consideration sets do not overlap. This strong result motivated further research by

Kunnumkal and Talluri (2015) who develop similarly tractable linear programs that provide a

tighter upper bound than SBLP. They also demonstrate that the valid inequalities proposed

by Meissner et al. (2013) can be adapted to be used in their linear programming formulation

so as to also deal with the case of overlapping consideration sets. Cheung and Simchi-Levi

(2016) propose an algorithm that solves CDLP to near optimality with provable efficiency un-

der the assumption that the underlying assortment optimization can be solved approximately.

Similarly, Gallego et al. (2015a) propose an algorithm that can solve CDLP to near-optimality

in a setting that allows for different customer types (and therefore can be used in personalised

assortment optimization over time). Their algorithms generate ε-optimal solutions for any

ε > 0 and is applicable to various choice models including MMNL.

A number of works build on the seminal paper of Adelman (2007) who proposes to use a

linear programming (LP) formulation that equivalently corresponds to the DP to construct

value function approximations. He assumes independent demand, but Zhang and Adelman

(2009) extend Adelman’s work to the customer choice setting. We briefly state the LP formu-

lation here because various authors have used this approach of constructing approximations

over recent years. As stated e.g. in the book of Powell (2007), the DP (2.1) can be equivalently

expressed by the following LP:

min
v(·)

v1(c1)

vt(ct) ≥ λ
∑

j∈S
Pj(S) [rj − (vt+1(ct+1)− vt+1(ct+1 −Aj))] + vt+1(ct+1), ∀ct, t, S ⊂ J .

Clearly, this formulation is as intractable as the DP due to the large number of decision

variables vt(x) and constraints. However, the formulation is helpful for deriving value function

approximations and in establishing upper bound relationships. For example, Zhang and

Adelman (2009) reduce the number of decision variables vt(ct) by replacing them with the
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time-dependent, affine approximation vt(ct) ≈ θt +
∑m

i=1 Vt,icti, ∀ t, c, where the values Vt,i

can be interpreted as the time-dependent value of a unit of resource i, and θt is an adjusting

constant. In the same paper, they establish an upper bound on Vt(ct), namely Vt(ct) ≤
mini{vt,i(xi) +

∑
k 6=i πkxk}, where πi is the optimal dual value associated with the capacity

constraint on resource i in CDLP. The function vt,i(·) can be obtained by solving a dynamic

program with a single resource as proposed by Liu and Van Ryzin (2008).

This bound motivated Zhang (2011) to use it directly as a value function approximation

in the LP shown above. He solves the resulting nonlinear approximation with a simultaneous

dynamic programming procedure. Meissner and Strauss (2012b) also build on Zhang and

Adelman (2009) and extend their approach by also including dependence of the approxima-

tion on the inventory levels (in addition to time), which results in further tightened bounds.

Kunnumkal and Talluri (2016b) derive analytic results on how much the affine approxima-

tion and that of Meissner and Strauss (2012b) can tighten the CDLP bound zCDLP. In their

previous work, Kunnumkal and Talluri (2015), they show that their proposed tractable LP-

formulations provide upper bounds on the optimal expected revenue provably between zCDLP

and the bound of the affine approximation. Vossen and Zhang (2014) improve on the affine ap-

proximation by developing a new dynamic aggregation/disaggregation algorithm that allows

the problem to be solved far quicker than with the affine formulation of Zhang and Adelman

(2009). A tractable piecewise-linear approximation is proposed by Kunnumkal and Talluri

(2016a), who also show that this approach is equivalent to the Lagrangian relaxation that has

been used, e.g. by Topaloglu (2009) to relax certain linking constraints in order to decompose

the problem into simpler ones. Vossen and Zhang (2015) propose a way of reducing the size

of the resulting LP for both the affine and the piecewise-linear approximations.

The CDLP has the disadvantage of assuming that demand is deterministic and equal to its

expected value. One way of overcoming this limitation to some extent is to consider random

samples of demand; Kunnumkal and Topaloglu (2011) and Kunnumkal (2014) use such an

approach. Also Van Ryzin and Vulcano (2008) and Koch (2017) propose a network availability

control mechanism that is based on simulation. A common approach to overcome the static

nature of the deterministic demand assumption is to re-solve the CDLP several times over

the booking horizon. Jasin and Kumar (2012) investigate such re-solving schedules for a

deterministic linear programming formulation under customer choice and give performance
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guarantees in the form of a bound on expected revenue loss relative to the optimal expected

revenue.

The network availability control problem is discussed specifically for the Markov chain

choice model by Feldman and Topaloglu (2017), and specifically for a rank-based choice model

by Chen and Homem-de Mello (2010). In a network RM setting where availability control is

implemented by bid prices, Meissner and Strauss (2012a) propose a simple greedy heuristic to

solve the assortment problem in the control policy with good results. Dai et al. (2014) present

a study on an airline in which they build and test a number of choice models (MNL, NL,

mixture logit) and develop a deterministic fluid optimization formulation for parallel flights.

They find that MNL performs better than the more sophisticated alternatives.

5.4. The relation to dynamic pricing

As the origins of revenue management are closely linked to the airline industry, revenue

management is often equated with availability control. However, given the current devel-

opments regarding airline reservation systems, as well as the application of revenue manage-

ment techniques in many other industries that do not necessarily depend on the limitations of

reservation systems, directly controlling product prices in a dynamic fashion has become much

more relevant. In this section, we specifically focus on the relationship between multi-product

dynamic pricing and availability control from a technical perspective.

Mainly motivated by the retail industry, e.g., the selling of seasonal goods, there is a

large body of dynamic pricing literature under the assumption of independent demand (see

e.g. Bitran and Caldentey (2003) for a review), that means we assume that customers do

not substitute products but rather only decide whether or not to buy a given product at the

given price. There are much less publications to be found that consider dynamic pricing in

the presence of customer choice behavior.

Discrete prices

If we include customer choice behavior and assume that product prices are selected from

a finite set, one can think of the resulting problem as a variant of the availability control

problem (2.1) with an additional side constraint for the maximization. More precisely, for

each real-world product, here denoted by k, we define a set of virtual products Jk which are

all similar except for the price. The sets are defined as mutually exclusive and completely

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

exhaustive, i.e., Ji ∩ Jk = ∅ for all products i, k with i 6= k and
⋃
∀k
Jk = J . Then, we can

optimize prices by adding constraints

|S ∩ Jk| ≤ 1 ∀ k (5.1)

to the maximization at each stage of (2.1), which ensures that for each real-world product

(at most) one price is selected. Note that selecting no price for a product k can virtually be

interpreted as setting such a high price that demand for k is driven to zero, which e.g. allows

handling stock-out situations.

Fundamentally, the resulting problem that has to be solved at each stage of (2.1) is a

variant of the assortment optimization problem discussed in Section 4, known as Assortment

Pricing or Product Line Pricing in the literature. For the special case of parallel flights,

Zhang and Cooper (2009) propose a pricing approach that is rooted in approximating the

value function with a weighted average of an upper and lower bound similar to their earlier

work (see Zhang and Cooper (2005)). In the case that probabilities are modeled by the MNL,

it can be shown that the resulting fractional program has a total unimodular constraint

matrix and a quasi-convex objective function (see Chen and Hausman (2000)), such that

the binary variables for selecting a price out of Jk can be LP-relaxed. As a consequence,

standard Charnes-Cooper-transformation can be applied (see Charnes and Cooper (1962)),

leading to an efficiently solvable linear program. A corresponding linearization is proposed

by Davis et al. (2013). The dynamic program of the overall discrete dynamic pricing problem

is analyzed in more detail by Schön (2010b).

In the situation where more customer segments, each with its own MNL, need to be mod-

eled, Schön (2010a) considers segment-specific pricing with common setup cost constraints,

and shows that the problem can be decomposed such that the above-mentioned linearization

is applicable. However, where prices are not segment-specific, total demand follows a finite-

mixture logit model (see Sections 3.1.2 and 4) such that the pricing problem is NP-hard to

solve. In this case, at least a mixed integer linear programming formulation can be obtained

by applying adequate techniques (see e.g. Li (1994), Wu (1997)).

Continuous prices

In a situation where prices are continuous, the original formulation (2.1) needs to be

modified. At each stage, r ∈ RJ+ is a decision vector with one entry for each product’s price.
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RJ+ is the n-dimension non-negative real numbers and represents the set of allowable prices.

A customer buys product j ∈ J with probability Pj(r). Probabilities have to be defined such

that setting a dummy price at infinity will drive demand for the corresponding product to

zero. Then, the resulting problem is given by

Vt(ct) = max
r∈RJ

+




∑

j∈J
λPj(r)

(
rj + Vt+1(ct −Aj)

)
+
(
λP0(r) + 1− λ

)
Vt+1(ct)



 , ∀ t,∀ ct

(5.2)

with the boundary conditions VT+1(cT+1) = 0 if cT+1 ≥ 0 and VT+1(cT+1) =∞ otherwise.

Where demand follows the MNL, the resulting multidimensional and continuous maxi-

mization problem that we need to solve at each stage of (5.2) has been shown to be non-

concave and thus difficult to solve (Hanson and Martin (1996)). However, more recently,

Dong et al. (2009) present a strong result by proving that while this sub-problem is not quasi-

concave in the price vector, after a reformulation it is concave in the choice probabilities.

They give an analytic solution to the pricing problem that boils down to a simple Newton

root search. The result is useful for solving pricing sub-problems quickly if we are working

with the MNL model.

A related work by Akcay et al. (2010) likewise looks at solving the dynamic pricing model

under MNL. As opposed to Dong et al. (2009), who argued via concavity of the MNL profit

function in the choice probabilities, they derive their efficient solution method from proving

the unimodality of the MNL profit function. The concavity of the profit function in the choice

probabilities breaks down under the finite mixture MNL model as shown by Li et al. (2017),

even for entirely symmetric price sensitivities across all segments and all products. Likewise,

the equal markup pricing structure identified for the MNL does no longer hold. In contrast,

the nested logit model has more structure: Li and Huh (2011) show that concavity still holds

for this choice model, and Gallego and Wang (2014) prove that the adjusted markup (defined

as price minus cost minus the reciprocal of the price variable per nest) is constant across all

nests at optimiality. They exploit that latter feature to formulate the multiproduct pricing

problem as a problem with a singe variable per nest; in fact, they can simplify the overall

problem further and reduce it to maximization of a unimodal function with a single variable

under mild conditions.
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Li et al. (2015) look into assortment and price optimization problems under the d-level

nested logit model. They consider pricing under fixed assortment and assortment optimization

under fixed prices, but not joint control. As with the MNL model, the profit function is not

concave in the product prices. Under this more sophisticated choice model, they propose

an iterative algorithm to generate a sequence of prices that converge to a stationary point.

This is related to work by Rayfield et al. (2015) who focus on price optimization under the

nested logit model. They consider the specific angle where there are price constraints (upper

and lower bounds) that need to be accounted for. Approximation methods with performance

guarantees are being developed.

Alptekinoğlu and Semple (2016) take a different path in that they propose a new choice

model, the so-called exponomial choice model that we discussed above. They present struc-

tural results on optimal assortments for both exogenous and endogenous prices. The pricing

problem given a fixed assortment has a certain structure that can be exploited; in particular,

Alptekinoğlu and Semple (2016) show that the resulting problem can be solved using a piece-

wise linear approximation and linear programming. However, it is more involved than using

the simpler MNL model as shown by Dong et al. (2009) and Akcay et al. (2010).

In addition to the publications mentioned, there are a couple of other relevant papers

that specifically consider dynamic pricing with multiple products under customer choice and

discrete/continuous prices, and that have been published in the last decade. An excellent

overview and categorization is given in Section 2 of the recent survey paper by Chen and

Chen (2015), which is specifically dedicated to dynamic pricing.

6. Conclusion and Outlook

Choice-based revenue management has received a considerable boost in attention over the

past decade, in particular assortment optimization has recently been intensively worked on.

Various choice models have been investigated with the aim of establishing efficient solution

approaches to the assortment optimization problem, which is important for RM control poli-

cies since these problems need to be solved in real-time in order to dynamically generate offer

sets. Usually, a particular choice model was first analyzed on its own, and subsequently in

conjunction with certain constraints on capacity, allowable prices, consideration set struc-

tures, etc. We expect that more work will appear in the coming years on this, using less
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common choice models such as the paired combinatorial logit model (Zhang et al. (2017)).

In particular, we see that there is scope for future research on multi-stage choice models that

have seen a lot of attention in the marketing literature but almost none in revenue manage-

ment. As discussed above, in marketing, two-stage models (also called consider-then-choose

models) are common, and there is also some work on multi-stage models that address the

situation where customers’ consideration sets may change over several stages.

Modeling of choice processes that incorporate several stages are also of interest in the

context of incorporating ancillary revenues into the optimization. Customers can be modeled

to first choose a product, and in a second stage to choose ancillary services; Bockelie and

Belobaba (2017) propose a sequential consumer choice process along these lines. The increas-

ing importance of ancillary revenues in traditional RM industries like airlines, car rentals,

casinos, or cruise lines has so far not been adequately reflected in the academic literature.

As far as the network availability control problem as a whole is concerned, published

work to date has focused on various approximations of the underpinning dynamic program.

Most of these papers offer provable bounds on the optimal expected revenue as opposed to

performance guarantees on the optimality gap. Furthermore, we expect future work to focus

increasingly on learning problems that deal with the exploration-exploitation trade off faced

when we drop the assumption of known parameters of the demand model, such as the paper

of Agrawal et al. (2016).

Learning is particularly important in the context of personalization; this topic was re-

cently investigated by Chen et al. (2015). Also in industry, there is a need for personalized

approaches, as recent developments in airline distribution technology offer completely new

possibilities with regard to making much more flexible and customized offers. Personalization

may be approached in various ways, such as identifying which customer segment an incoming

request could originate from, and then offering a segment-specific pre-assembled set of prod-

ucts. Gallego et al. (2015a) propose an optimization approach where each customer’s segment

is assumed to become known at the time of booking. As pointed out by Wittman and Be-

lobaba (2017), one challenge in personalized RM is to develop sophisticated approaches that

handle the potential negative effects on revenue of the new personalized control and pricing

possibilities, especially in a competitive environment, where a competitive spiral down effect

has been shown to exist (Isler and Imhof (2008)).
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Overall, choice modeling has developed into one of the most active research areas in RM,

and we expect that the advances in theory will lead to wider adoption of these techniques in

practice as well.
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