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INSURANCE VALUATION: A COMPUTABLE
MULTI-PERIOD COST-OF-CAPITAL APPROACH

HAMPUS ENGSNER, MATHIAS LINDHOLM, AND FILIP LINDSKOG

Abstract. We present an approach to market-consistent multi-period
valuation of insurance liability cash flows based on a two-stage valuation
procedure. First, a portfolio of traded financial instrument aimed at
replicating the liability cash flow is fixed. Then the residual cash flow is
managed by repeated one-period replication using only cash funds. The
latter part takes capital requirements and costs into account, as well
as limited liability and risk averseness of capital providers. The cost-of-
capital margin is the value of the residual cash flow. We set up a general
framework for the cost-of-capital margin and relate it to dynamic risk
measurement. Moreover, we present explicit formulas and properties of
the cost-of-capital margin under further assumptions on the model for
the liability cash flow and on the conditional risk measures and utility
functions. Finally, we highlight computational aspects of the cost-of-
capital margin, and related quantities, in terms of an example from life
insurance.

Keywords: valuation of insurance liabilities, multi-period valuation,
market-consistent valuation, cost of capital, risk margin, dynamic risk
measurement

JEL Classification: G22, G11, G28

1. Introduction

The current solvency regulatory framework Solvency II emphasizes market-
consistent valuation of liabilities; it is explicitly stated that liabilities should
be “valued at the amount for which they could be ... transferred or settled
... between knowledgeable and willing parties in an arm’s length transac-
tion”. Solvency assessment of an insurance company is based on future net
values of assets and liabilities, and market-consistent valuation enables sol-
vency assessments that take dependence between future values of assets and
liabilities into account. Moreover, current regulatory frameworks emphasize
risk measurement over a one-year period. In particular, at any given time,
the whole liability cash flow is taken into account in terms of the cash flow
during the next one-year period and the market-consistent value at the end
of the one-year period of the remaining liability cash flow. However, liability
cash flows are typically not replicable by financial instruments. Therefore,
the contribution to the liability value from the residual cash flow resulting
from imperfect replication must be determined.

Given an aggregate liability cash flow of an insurance company, portfolios
may be formed that generate cash flows with expected values matching that
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of the liability cash flow. The traditional actuarial practice of reserving
provides an example of such a portfolio consisting of default-free bonds.
In case of dependence between the liability cash flow and market values of
financial instruments, more sophisticated replicating portfolios may be more
suitable. However, the mismatch between the cash flow of such a portfolio
and that of the original liability cash flow is typically substantial. The
residual liability cash flow must be handled throughout the life of the liability
cash flow by making sure that sufficient additional capital is available at all
times. Capital providers, such as share holders, require compensation for
providing buffer capital, which should be taken into account in the liability
valuation. In particular, capital costs should be accounted for.

In Solvency II, the so-called technical provisions correspond to the aggre-
gate liability value and is defined as the sum of a best estimate, correspond-
ing to a discounted actuarial fair value, and a so-called risk margin aimed
at capturing capital costs. Unfortunately, the risk margin in the current
regulatory framework lacks a proper definition and theoretical foundation,
and different approximation formulas for this ill-defined object have been
suggested. Criticism of the risk margin and suggestions for better notions of
cost-of-capital margins or market-value margins are found in e.g. [11], [13],
[17], [20] and [24].

This paper addresses valuation of an aggregate liability cash flow of an
insurance company, although the problem and our suggested solutions apply
to liability valuation in other contexts as well. We present an approach that,
in many aspects, is similar to current practice and has wide-ranging appli-
cability. The approach we propose is inspired by [11] and [17], where the
cost-of-capital margin for valuing aggregate liability cash flows is analyzed.
The framework for liability cash flow valuation presented in [11] combines
financial replication arguments with cost-of-capital considerations. Our pro-
posed framework is on the one hand a generalization of that framework and
with more attention paid to mathematical details. On the other hand, for
the repeated one-period replication of the residual cash flow, we severely
restrict the allowed replication instruments compared to [11]. Such a sim-
plification of the problem allows us to derive much stronger results which
in turn yields a framework that can be easily adopted, and it avoids many
of the computational difficulties highlighted in [17] without sacrificing con-
ceptual consistency. From a practical perspective, it leads to an approach
to valuation of liability cash flows that does not rely heavily on subjective
choices of joint dynamics for market prices of possible replication instru-
ments. The use of financial valuation principles in insurance is inevitable
given the principle of market-consistent valuation of liabilities, in particular
for liability cash flows with long durations and products with guarantees.
For more on financial and actuarial valuation of insurance liabilities aimed
at solvency assessment, see [25].

Conditional monetary risk measures and utility functions are important
basic building blocks in the approach to liability cash flow valuation con-
sidered here. Extensions from static, or one-period, risk measurement to
dynamic risk measurement has been studied extensively for more than a
decade following the seminal paper [2] on one-period risk measurement, see
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e.g. [3], [4], [6], [16], [19] and [23]. Much of the analysis of dynamic risk mea-
surement has focused on dynamic measurement of risk corresponding to a
single cash flow, such as the cash flow of a derivative payoff, at a fixed future
time. In [20] a market-value margin for valuation of insurance liabilities is
presented based on multi-period mean-variance hedging. However, this val-
uation framework is not directly applicable to the problem we consider since
the liability cash flow considered in [20] occur at a terminal time whereas
we consider cash flows at all times up to a terminal time. For the problem
we consider, there is no natural way to roll cash flows forward and thereby
reducing the dynamic risk measurement problem to a considerably simpler
problem. The frameworks for dynamic risk measurement developed in [3]
and [4] are well-suited to handle liability valuation problems of the type we
consider. However, we do not want to restrict the liability cash flows to
bounded stochastic processes. Moreover, the liability valuation problem we
consider corresponds to repeated one-period replication rather than truly
multi-period replication. Another important aspect is that we assume that
the capital provider has limited liability and that causes the cost-of-capital
margin to lack the convexity properties that are essential for the so-called
risk-adjusted values analyzed in [3] and similarly for the dynamic risk mea-
sures analyzed in [4]. Risk measurement for multi-period income streams
are studied in [14] and [15], where the dynamic risk measurement problem
is formulated as a stochastic optimization problem. There, computational
aspects of multi-period risk measurement are clarified and illustrated. Al-
though our approach to liability valuation differ substantially from that in
[14] and [15], computability is an essential feature.

This paper is organized as follows. Section 2 gives a nontechnical deriva-
tion of the cost-of-capital margin, as we believe that it should be defined,
by economic arguments.

Section 3 presents a mathematical framework that allows the cost-of-
capital margin to be defined rigorously, and establishes its fundamental
properties. We also describe how the cost-of-capital margin is related to
conditional monetary utility functions in the sense of [4], showing that the
cost-of-capital margin is conceptually consistent with risk-adjusted values
and dynamic monetary utility functions as defined in [3] and [4]. There
is however a major difference. The limited liability property of capital
providers is an essential ingredient in our definition of the cost-of-capital
margin and may cause violation of concavity/convexity properties. We de-
fine the cost-of-capital margin in terms of repeated one-period replication
similar to [11] and allow capital requirements to be given in terms of con-
ditional versions of nonconvex risk measures such as Value-at-Risk which is
the current industry practice for insurance markets subject to the Solvency
II regulation. Therefore, convexity properties are not assumed and not es-
sential to us. Time-consistency is however an essential property. For the
cost-of-capital margin, this property essentially follows immediately from
the definition. Towards the end of Section 3 we consider a family of con-
ditional risk measures that include commonly used risk measures such as
Value-at-Risk and spectral risk measures, and we show that this family of
risk measures are particularly useful for ensuring stronger properties and
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explicit formulas for the cost-of-capital margin when the liability cash flow
is restricted to certain families of stochastic processes. It is well known, see
e.g. [5] and [19], that conditional or dynamic versions of Value-at-Risk and
spectral risk measures are not time-consistent when applied to time periods
of varying lengths. In our setting, only repeated conditional single-period
risk measurement appears. Therefore, time-inconsistency of risk measure-
ment over time periods of varying lengths does not cause problems for the
time-consistency of the cost-of-capital margin.

Section 4 considers specific models for the liability cash flow and the filtra-
tion representing the flow of information over time about the remaining cash
flow until complete runoff of the liability. Specifically, we consider models
of autoregressive type and Gaussian models. We show that when combined
with the general framework presented in Section 3, these models allow for
explicit formulas and stronger results concerning the effects of properties
of the chosen filtration. We believe that the explicit expressions presented
here constitute candidates for standard formulas for cost-of-capital margin
computation that may be adopted in improved future solvency regulation.

Finally, Section 5 presents a life-insurance example that illustrates fea-
tures of the cost-of-capital margin and clarifies computational aspects.

2. The cost-of-capital margin

In this section we derive the cost-of-capital margin without mathematical
details, they are found in Section 3.

We consider time periods (years) 1, . . . , T , corresponding time points
0, 1, . . . , T , and a filtered probability space (Ω,F ,F,P), where F = (Ft)Tt=0

with {∅,Ω} = F0 ⊆ · · · ⊆ FT = F .
A liability cash flow corresponds to an F-adapted stochastic process Xo =

(Xo
t )Tt=1 interpreted as a cash flow from an aggregate insurance liability in

runoff. Our aim is to give a precise meaning to the market-consistent value
of the liability by taking capital costs into account, and provide results that
allow this value to be computed.

When the value of an insurance liability cash flow includes capital costs
from capital requirements based on future values of both assets and liabili-
ties, the liability value depends on the future values of all assets, including
assets held for investment purpose only. In particular, two companies with
identical liability cash flows would assign different market-consistent values
to the two identical cash flows. This has undesired implications. Instead,
as is done in e.g. [11] and prescribed by EIOPA, see [9, Article 38], we take
the point of view that an aggregate liability cash flow should be valued by
considering a hypothetical transfer of the liability to a separate entity, a so-
called reference undertaking, whose assets have the sole purpose of matching
the value of the liability as well as possible.

We will give a meaning to the liability value by a particular two-stage
valuation procedure: the first stage corresponds to choosing a replicating
portfolio of traded financial instruments, the second stage corresponds to
managing the residual cash flow from imperfect replication in the first stage.

At time 0, a portfolio is purchased with the aim of generating a cash flow
replicating the cash flow Xo. This static replicating portfolio has a market
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price π and generates the cash flow Xs = (Xs
t )Tt=1. We use the wording

“static” in order to emphasize that, for the purpose of valuation, it is a
portfolio strategy that is fixed throughout the life of the liability cash flow.
However, the replicating portfolio may be “dynamic” in the sense that its
cash flow depends on events not known at time 0. This is completely in line
with pricing a financial derivative in terms of the initial market price of a
self-financing hedging strategy. If Xo is independent of financial asset prices,
then the canonical example is a portfolio of zero-coupon bonds generating
the cash flow Xs = E [Xo] = (E [Xo

t ])Tt=1.
The value of the original liability is defined as the sum of the market

price π of the replicating portfolio and the value V0(X) of the residual cash
flow X := Xo − Xs from repeated one-period replication using only cash
funds provided by a capital provider with limited liability requiring com-
pensation for capital costs. That is, the cash flow X will be re-valued at all
times 1, . . . , T . We call the value V0(X) of the residual cash flow the cost-of-
capital margin. Note that we below refer also to Vt(X) as the cost-of-capital
margin for all t = 0, . . . , T . We emphasize that repeated one-period repli-
cation is done with cash only. Allowing for repeated one-period replication
using a mix of assets such as bonds with short time to maturity inevitably
makes the value of the liability cash flow depend on subjective views on the
development over time of spot rates over different time horizons.

Next we will present economic arguments that lead to a recursion defining
Vt(X) in terms of Xt+1 and Vt+1(X), capital requirements and the accept-
ability condition of the capital provider. At time t, the insurance company is
required to hold the capital Rt(−Xt+1−Vt+1(X)), where Rt is a conditional
monetary risk measure, see Definition 1, quantifying the risk from liability
cash flow during year t+1 and the value at time t+1 of the remaining resid-
ual cash flow (Xt+2, . . . , XT ). Also at time t, the capital Vt(X) matching
precisely the value of the residual cash flow at that time is available. The
capital provider is asked to provide the missing required capital

Ct := Rt(−Xt+1 − Vt+1(X))− Vt(X).(1)

If the capital provider accepts providing Ct at time t, then at time t+ 1 the
amount Xt+1 is paid and the remaining capital is Rt(−Xt+1 − Vt+1(X)) −
Xt+1. If this amount exceeds the value Vt+1(X) of the liability at time t+1,
then the capital provider collects the excess capital as a compensation for
providing the buffer capital Ct at time t. Moreover, the capital provider has
limited liability: if

Rt(−Xt+1 − Vt+1(X))−Xt+1 − Vt+1(X) < 0,

then the capital provider has no obligation to provide further capital to
offset the deficit.

The capital provider’s acceptability condition at time t is expressed in
terms of a conditional utility function Ut, see Definition 2, and a value ηt ≥ 0
quantifying the size of the intended compensation to the capital provider for
making capital available:

Ut
((
Rt(−Xt+1 − Vt+1(X))−Xt+1 − Vt+1(X)

)
+

)
≥ (1 + ηt)Ct,(2)
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where x+ = max(x, 0). Ut may be chosen as the conditional expectation
although alternatives that take the risk aversion of the capital provider into
account may be more appropriate.

Combining (1) and (2) now gives, with Yt+1 := Xt+1 + Vt+1(X),

Vt(X) ≥ Rt(−Yt+1)− 1
1 + ηt

Ut
((
Rt(−Yt+1)− Yt+1

)
+

)
.

If the inequality above is strict, then the capital provider obtains a better-
than-required investment opportunity at the expense of policy holders who
are obliged to pay higher-than-needed premiums: the capital Vt(X) belongs
to the policy holders of contracts that at that time may still cause claims,
not to the capital provider. Therefore, we define the value of the cash flow
as the smallest value for which the capital provider finds the investment
opportunity acceptable. That is, we replace the inequality above by an
equality:

Vt(X) := Rt(−Yt+1)− 1
1 + ηt

Ut
((
Rt(−Yt+1)− Yt+1

)
+

)
.(3)

Recall that the market-consistent value we assign to the original cash flow is
the sum of the market price π of a replicating portfolio set up at time 0 and
the cost-of-capital margin V0(X). Notice that if perfect initial replication
is possible, then X = 0 as there is no residual cash flow, and consequently
V0(X) = 0 since no capital funds for repeated one-period replication are
needed. In this case the market-consistent value is simply the market price of
the perfect hedge of the liability cash flow. However, when perfect replication
is impossible, a poor choice of replicating portfolio may lead to a residual
cash flow that requires much capital from the capital provider, causing the
market-consistent value to become unreasonably high. In particular, for this
approach to market-consistent valuation of insurance liabilities to be sound,
in the sense that policy holders are not over-charged due to poor asset-
liability management, the insurance regulator must specify what approaches
to imperfect replication of liability cash flows are acceptable.

3. The valuation framework

We consider time periods 1, . . . , T , corresponding time points 0, 1, . . . , T ,
and a filtered probability space (Ω,F ,F,P), where F = (Ft)Tt=0 with {∅,Ω} =
F0 ⊆ · · · ⊆ FT = F . Let L0(Ft) := L0(Ω,Ft,P) denote the vector space
of all real-valued Ft-measurable random variables, and let L0

+(Ft) be the
subset of L0(Ft) of random variables taking values in [0,∞). L0(F0) is
simply the set of constants, i.e. R. For p ∈ (0,∞), let Lp(Ft) := {Y ∈
L0(Ft) : E [|Y |p] < ∞} and let Lp+(Ft) denotes the subset of Lp(Ft) of
random variables taking values in [0,∞). Finally, L∞(Ft) consists of the
essentially bounded Ft-measurable random variables: Y ∈ L0(Ft) such that

inf{r > 0 : P(ω ∈ Ω : |Y (ω)| > r) = 0} <∞.
We say that two random variables are equal if they coincide P-almost surely
(a.s.). All equalities and inequalities between random variables are inter-
preted in the P-a.s. sense.
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In order to determine the cost-of-capital margin we consider conditional
monetary risk measures Rt and conditional monetary utility functions Ut.
We express values and cash flows via a numéraire which we take to be a
money market account that pays no interest, where money can be deposited
and later withdrawn. We have no need for and do not assume risk-free
borrowing. Choosing the numéraire to be a money market account paying
stochastic interest rates would not pose mathematical difficulties, but would
force us to pay more attention to the interpretation of the cash flows in terms
of this numéraire.

By a dynamic monetary risk measure R := (Rt)T−1
t=0 quantifying one-

period capital requirements we mean the following:

Definition 1. For p ∈ [0,∞], a dynamic monetary risk measure (Rt)T−1
t=0 is

a sequence of mappings Rt : Lp(Ft+1)→ Lp(Ft) satisfying

if λ ∈ Lp(Ft) and Y ∈ Lp(Ft+1), then Rt(Y + λ) = Rt(Y )− λ,(4)

if Y, Ỹ ∈ Lp(Ft+1) and Y ≤ Ỹ , then Rt(Y ) ≥ Rt(Ỹ ),(5)

Rt(0) = 0.(6)

By a dynamic monetary utility function U := (Ut)T−1
t=0 quantifying one-

period acceptability for capital providers we mean the following:

Definition 2. For p ∈ [0,∞], a dynamic monetary utility function (Ut)T−1
t=0

is a sequence of mappings Ut : Lp+(Ft+1)→ Lp+(Ft) satisfying

if λ ∈ Lp+(Ft) and Y ∈ Lp+(Ft+1), then Ut(Y + λ) = Ut(Y ) + λ,(7)

if Y, Ỹ ∈ Lp+(Ft+1) and Y ≤ Ỹ , then Ut(Y ) ≤ Ut(Ỹ ),(8)

Ut(0) = 0.(9)

Notice from (3) that, for the purpose of defining the cost-of-capital mar-
gin, it is sufficient to only consider mappings Ut whose argument is nonneg-
ative.

Remark 1. If (Rt)T−1
t=0 is a dynamic monetary risk measure in the sense of

Definition 1, then (Ũt)T−1
t=0 := (−Rt)T−1

t=0 has the properties

if λ ∈ Lp(Ft) and Y ∈ Lp(Ft+1), then Ũt(Y + λ) = Ũt(Y ) + λ,(10)

if Y, Ỹ ∈ Lp(Ft+1) and Y ≤ Ỹ , then Ũt(Y ) ≤ Ũt(Ỹ ),(11)

Ũt(0) = 0.(12)

Properties (11) and (12) together imply Ũt(Y ) ∈ Lp+(Ft) if Y ∈ Lp+(Ft+1).
In particular, if, for all t, Ũ+

t denotes the restriction of Ũt to Lp+(Ft+1), then
(Ũ+

t )T−1
t=0 is a dynamic monetary utility function in the sense of Definition

2.

Remark 2. Classic expected utility theory gives an acceptability condition
of the form E [ut(Y ) | Ft] ≥ ut(Ct), where ut is an Ft-measurable, increasing
and concave function, and, in our case Y := (Rt(−Yt+1)−Yt+1)+. Defining
Ũt(Y ) := u−1

t (E [ut(Y ) | Ft]) (the certainty equivalent) and setting ηt := 0
shows that the condition E [ut(Y ) | Ft] ≥ ut(Ct) is a special case of (2).
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Notice that Ũt satisfies (11) and (12) by construction. In general, Ũt does
not satisfy (10). However, if ut is the exponential utility function ut(x) =
−τt exp{−x/τt}, 0 < τt ∈ L1

+(Ft), then Ũt(Y ) = −τt log E [exp{−Y/τt} | Ft]
which satisfies (10). Hence, for p = 0, (Ũt)T−1

t=0 is a dynamic monetary
utility function in the sense of Definition 2.

In [12], properties of the functional Y 7→ u−1(E [u(Y )]) are determined
and related to properties of the increasing and concave function u. In par-
ticular, from [12] it is clear that the property (10) is an exception.

There is a vast literature on expected utility theory and how it appears from
axioms of rational decision making, see e.g. [18]. In [26], the consequences
of replacing the so-called Independence Axiom by an axiom termed Dual
Independence was presented, leading to the so-called Dual Theory of Choice
Under Risk. Whereas the traditional independence axiom leads to preference
relations expressed in terms of expected utilities, under the Dual Theory
preference relations can be phrased in terms of utility functionals having
(when modified to a conditional setting such as the one considered here)
the property (10) (in [26], the utility functionals are defined on a space of
bounded random variables). For further details we refer to Section 3.3 and
in particular Remark 4.

The following proposition provides the basis for defining the cost-of-
capital margin in (3) rigorously.

Proposition 1. Fix p ∈ [0,∞]. Let (Rt)T−1
t=0 be given by Definition 1, let

(Ut)T−1
t=0 be given by Definition 2, and let ηt ∈ L0

+(Ft).
(i)

Wt(Y ) := Rt(−Y )− 1
1 + ηt

Ut
((
Rt(−Y )− Y

)
+

)
(13)

is a mapping from Lp(Ft+1) to Lp(Ft) having the properties

if λ ∈ Lp(Ft) and Y ∈ Lp(Ft+1), then Wt(Y + λ) = Wt(Y ) + λ,(14)

if Y, Ỹ ∈ Lp(Ft+1) and Y ≤ Ỹ , then Wt(Y ) ≤Wt(Ỹ ),(15)

Wt(0) = 0.(16)

(ii) Let (Xt)Tt=1 be an F-adapted cash flow with Xt ∈ Lp(Ft) for every t.
The cost-of-capital margin Vt(X) in (3) satisfies

Vt(X) = Wt ◦ · · · ◦WT−1(Xt+1 + · · ·+XT ),(17)

where Wt ◦ · · · ◦WT−1 denotes the composition of mappings Wt, . . . ,WT−1.

Proof of Proposition 1. Since (1 + ηt)−1 is Ft-measurable and takes values
in (0, 1], it follows directly from the definitions of Rt and Ut that Wt is a
mapping from Lp(Ft+1) to Lp(Ft). The properties (14) and (16) for Wt fol-
low immediately from the corresponding properties of Rt and Ut. It remains
to verify property (15) for Wt. Take Yt+1 ≤ Ỹt+1 in Lp(Ft+1). Then

(Rt(−Ỹt+1)− Ỹt+1)+ ≤ (Rt(−Yt+1)− Ỹt+1)+ +Rt(−Ỹt+1)−Rt(−Yt+1)

≤ (Rt(−Yt+1)− Yt+1)+ +Rt(−Ỹt+1)−Rt(−Yt+1).
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Since Rt(−Ỹt+1)−Rt(−Yt+1) ∈ Lp+(Ft), (7)-(9) together imply that

Ut((Rt(−Ỹt+1)− Ỹt+1)+)− Ut((Rt(−Yt+1)− Yt+1)+)

≤ Rt(−Ỹt+1)−Rt(−Yt+1)

which further implies

Wt(Ỹt+1)−Wt(Yt+1) ≥ (Rt(−Ỹt+1)−Rt(−Yt+1))
ηt

1 + ηt
≥ 0

and verifies property (15). Finally, we verify the representation (17) of
Vt(X) in terms of Wt, . . . ,WT−1 and Xt+1 + · · · + XT . If Xs ∈ Lp(Fs)
for s = t + 1, . . . , T , then Xt+1 + · · · + XT ∈ Lp(FT ) and the right-hand
side in (17) is well-defined. Repeated application of (14) now verifies the
representation (17). �
Definition 3. Fix p ∈ [0,∞]. Let (Rt)T−1

t=0 by given by Definition 1, let
(Ut)T−1

t=0 be given by Definition 2, and let (Wt)T−1
t=0 be given by (13). Let

(Xt)Tt=1 be an F-adapted cash flow with Xt ∈ Lp(Ft) for every t. We define
the cost-of-capital margins Vt(X) as

Vt(X) := Wt ◦ · · · ◦WT−1(Xt+1 + · · ·+XT ), t = 0, . . . , T − 1,(18)

and VT (X) := 0.

Notice that we may express (18) as Vt(X) := Wt(Xt+1 + Vt+1(X)) =
Wt(Yt+1).

Remark 3. Property (14), which is essential for defining the cost-of-capital
margin in terms of compositions of Wts in (18), is inherited from the corre-
sponding property (4) of the Rts. The corresponding property (7) of the Uts
is used only to show the monotonicity property (15). In fact, a sufficient
requirement would be a milder version of (7) with the equality replaced by
the inequality Ut(Y + λ) ≤ Ut(Y ) + λ.

Proposition 2. Let X, X̃ be F-adapted cash flows with Xt, X̃t ∈ Lp(Ft) for
every t.
(i) Let b be a T -dimensional vector with components in Lp(Ft), and let
Xu ≤ X̃u for each u. Then, for every t < T ,

Vt(0) = 0, Vt(X + b) = Vt(X) +
T∑

u=t+1

bt, Vt(X) ≤ Vt(X̃).

(ii) The cost-of-capital margins are time consistent in the sense that for
every pair of times (s, t) with s ≤ t, the two conditions (Xu)tu=1 = (X̃u)tu=1

and Vt(X) ≤ Vt(X̃) together imply Vs(X) ≤ Vs(X̃).

Proof of Proposition 2. (i) The properties follow immediately from (18). (ii)
In proving time consistency it is sufficient to take s = t− 1. By (15),

Vt−1(X) = Wt−1(Xt + Vt(X))

= Wt−1(X̃t + Vt(X))

≤Wt−1(X̃t + Vt(X̃))

= Vt−1(X̃).
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�
The dynamic version of Value-at-Risk presented in the example below

is an example of a dynamic monetary risk measure (Rt)T−1
t=0 with Rt :

L0(Ft+1) → L0(Ft). In Section 3.3 further examples of dynamic mone-
tary risk measures and utility functions are presented and their properties
are investigated for use in Section 4 together with specific models for the
liability cash flows.

Example 1. In the static or one-period setting, Value-at-Risk at time 0 at
level u ∈ (0, 1) of a value Z ∈ L0(F1) is defined as

VaRu(Z) := min{m ∈ R : P(m+ Z < 0) ≤ u}
= min{m ∈ R : P(−Z ≤ m) ≥ 1− u}
= min{m ∈ R : Q−Z((−∞,m]) ≥ 1− u)}
=: F−1

−Z(1− u),

where Q−Z denotes the distribution of −Z, and F−Z(m) = Q−Z((−∞,m]).
The natural dynamic version of Value-at-Risk at time t at level u of a value
Z ∈ L0(Ft+1) is

VaRt,u(Z) := ess inf{m ∈ L0(Ft) : P(m+ Z < 0 | Ft) ≤ u},
where “ess inf” denotes the greatest lower bound of a family of random vari-
ables (with respect to P-almost sure inequality). Alternatively, we may define
VaRt,u(Z) in terms of a conditional distribution Qt,−Z of −Z with respect
to Ft: for each ω ∈ Ω, Qt,−Z(ω, ·) is a probability measure on the Borel
subsets of R, and for each Borel set A ⊂ R, Qt,−Z(·, A) is a version of
P(−Z ∈ A | Ft). Define Z ′ ∈ L0(Ft) by

Z ′(ω) := min{m ∈ R : Qt,−Z(ω, (−∞,m]) ≥ 1− u} =: F−1
t,−Z(ω, 1− u)

and notice that VaRt,u(Z) = Z ′ P-almost surely. Notice that (VaRt,u)T−1
t=0

satisfies the properties in Definition 1 for p = 0.

3.1. Model-invariant bounds. Consider a dynamic risk measure (Rt)T−1
t=0

and a dynamic monetary utility function (Ut)T−1
t=0 , and (Wt)T−1

t=0 given by
(13). Consider also an F-adapted cash flow (Xt)Tt=1 with Xt ∈ Lp(Ft) for
every t. With Yt+1 := Xt+1 + Vt+1(X), combining (8) and (9) yields

Vt(X) = Rt(−Yt+1)− 1
1 + ηt

Ut((Rt(−Yt+1)− Yt+1)+)

≤ Rt(−Yt+1)

= Rt(−Xt+1 − Vt+1(X)).

Repeated application of this inequality together with (4) and (5) gives the
upper bound

Vt(X) ≤ Rt(−Xt+1 −Rt+1(−Xt+2 − · · · −RT−1(−XT ) . . . ))

= Rt(−Rt+1(· · · −RT−1(−Xt+1 − · · · −XT ) . . . )).

Further assumptions clearly enable sharper bounds. Suppose that p ≥ 1 and
take, for every t, Ut to be the conditional expectation given Ft. It follows
from Jensen’s inequality for conditional expectations that the conditional
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expectation is well defined as a mapping Lp(Fu) → Lp(Ft) for u > t. In
particular,

Vt(X) = Rt(−Yt+1)− 1
1 + ηt

E
[(
Rt(−Yt+1)− Yt+1

)
+
| Ft

]

≤ Rt(−Yt+1)− 1
1 + ηt

E [Rt(−Yt+1)− Yt+1 | Ft]

=
1

1 + ηt

(
ηtRt(−Yt+1) + E [Xt+1 | Ft] + E [Vt+1(X) | Ft]

)
.(19)

Applying this inequality repeatedly together with the tower property of
conditional expectation yields

Vt(X) ≤
T−1∑

s=t

E
[
ηsRs(−Ys+1)∏s
u=t(1 + ηu)

| Ft
]

+
T−1∑

s=t

E
[

Xs+1∏s
u=t(1 + ηu)

| Ft
]
.

Notice that if ηt = η0 for all t, then

V0(X) ≤ η0

T−1∑

t=0

E [Rt(−Yt+1)]
(1 + η0)t+1

+
T∑

t=1

E [Xt]
(1 + η0)t

.

If the static replicating portfolio is chosen at time 0 such that E [Xs] =
E [Xo], then the residual cash flow X := Xo − E [Xo] has zero mean so the
second sum in the above upper bound vanishes, i.e.

V0(X) ≤ η0

T−1∑

t=0

E [Rt(−Yt+1)]
(1 + η0)t+1

.(20)

Notice that the upper bound for Vt(X) in (19) can be rewritten as

Vt(X) ≤ ηt(Rt(−Yt+1)− Vt(X)) + E [Xt+1 | Ft] + E [Vt+1(X) | Ft] .
Repeated application of this inequality and use of the tower property of
conditional expectation yields

V0(X) ≤
T−1∑

t=0

E
[
ηt

(
Rt(−Yt+1)− Vt(X)

)]
+

T∑

t=1

E [Xt] .

Hence, if further ηt = η0 for all t and E [X] = 0, then

V0(X) ≤ η0

T−1∑

t=0

E [Rt(−Yt+1)− Vt(X)] .(21)

Notice the difference between the two upper bounds (20) and (21): the
former is formulated in terms of expected future capital requirement whereas
the latter is formulated in terms of expected future buffer capital provided
by capital providers.

We end the discussion of model-invariant bounds for the cost-of-capital
margin with a comment on the Solvency II risk margin. In [9, Article 37] it
is stated that the risk margin should be computed as

CoC
∑

t≥0

SCR(t)
(1 + r(t+ 1))t+1

,
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where CoC := 0.06, r(t+ 1) denotes the basic risk-free interest rate for the
maturity of t+ 1 years, and SCR(t) denotes the Solvency Capital Require-
ment after t years. In our setting, SCR(t) = 0 for t ≥ T since there is no
liability cash flow beyond that time. One may criticize several aspects of
the Solvency II risk margin. First, for t ≥ 1, SCR(t) is a random variable as
seen from time 0. Secondly, SCR(t) does not take capital costs into account,
and the discounting in the computation of SCR(t) and in the computation
of the risk margin are not conceptually consistent.

The upper bound in (21) is somewhat similar to the formula for the
Solvency II risk margin. For p ≥ 1, take (Rt)T−1

t=0 to be a dynamic risk
measure in the sense of Definition 1, and take the Ut to be conditional
expectations E [· | Ft]. If we define the SCR-like quantity

S̃CRt(Xo) := Rt

( T∑

u=t+1

E [Xo
u | Ft] + Vt(Xo − E [Xo | Ft])

−Xo
t+1 −

T∑

u=t+2

E [Xo
u | Ft+1]− Vt+1(Xo − E [Xo | Ft+1])

)
,

then, using the the second of the three properties in Proposition 2 (i) for Vt
and Vt+1, it can be shown that S̃CRt(Xo) = Rt(−Yt+1)− Vt(X), where, as
before, X := Xo − E [Xo | F0] and Yt+1 := Xt+1 + Vt+1(X). Indeed,

Vt(Xo − E [Xo | Ft])− Vt+1(Xo − E [Xo | Ft+1])

= Vt(X)− Vt+1(X) + E
[
Xo
t+1 | F0

]
− E

[
Xo
t+1 | Ft

]

+
T∑

u=t+2

(
E [Xo

u | Ft+1]− E [Xo
u | Ft]

)
,

which yields

S̃CRt(Xo) = Rt
(
E
[
Xo
t+1 | F0

]
− E

[
Xo
t+1 | Ft+1

]
+ Vt(X)− Vt+1(X)

)

= Rt(−Yt+1)− Vt(X).

In particular, (21) can be rephrased as

V0(X) ≤ η0

T−1∑

t=0

E
[
S̃CRt(Xo)

]
.

For an in-depth comparison between a conceptually consistent notion of
cost-of-capital margin and the Solvency II risk margin, see Section 5 in [11].

3.2. Dynamic monetary utility functions. The notions of risk-adjusted
values in [3] and conditional and dynamic monetary utility functions in [4]
are closely connected to the cost-of-capital margin considered here. In [3]
and [4], cumulative cash flows and value processes are considered whereas
we consider incremental cash flows and liability processes corresponding to
liability values for future cash flows. We will now proceed to establish the
connection between Vt(·) (and Wt(·)) and the work of [3] and [4].

For p ∈ [0,∞], let Rp1,T denote the space of all F-adapted stochastic
processes (Yt)Tt=1 with Yt ∈ Lp(Ft) for every t. For 1 ≤ u ≤ v ≤ T , define
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the projection πu,v : Rp1,T → R
p
1,T by

πu,v(Y )t := 1u≤tYt∧v, t ∈ {1, . . . , T},

and Rpu,v := πu,vRp1,T . Let (Wt)T−1
t=0 be as in Proposition 1. For all t, let

ϕt,T : Rpt,T → Lp(Ft) be given by

ϕt,T (Y ) := −Wt ◦ · · · ◦WT−1(−YT ).(22)

In [3] and [4] the elements in Rp1,T are interpreted as cumulative rather
than incremental cash flows. For an incremental cash flow X ∈ Rp1,T , let
Xc ∈ Rp1,T be the cumulative cash flow given by Xc

t :=
∑t

s=1Xs, and notice
that

ϕt,T (Xc) = Xc
t −Wt ◦ · · · ◦WT−1(−(Xc

T −Xc
t ))

=
t∑

s=1

Xs − Vt(−X),

and similarly, Vt(X) = −Xc
t − ϕt,T (−Xc).

We now verify that ϕt,T in (22) is a conditional monetary utility function
in the sense of Definition 3.1 in [4], excluding the concavity axiom, and that
(ϕt,T )Tt=1 is time-consistent in the sense of Definition 4.2 in [4].

Proposition 3. The mappings ϕt,T in (22) are conditional monetary utility
functions in the sense

ϕt,T (0) = 0,

ϕt,T (Y ) ≤ ϕt,T (Ỹ ) for all Y, Ỹ ∈ Rpt,T such that Y ≤ Ỹ ,
ϕt,T (Y +m1[t,T ]) = ϕt,T (Y ) +m for all Y ∈ Rpt,T and m ∈ Lp(Ft),

and (ϕt,T )Tt=1 is time-consistent in the sense

ϕt,T (Y ) = ϕt,T (Y 1[t,u) + ϕu,T (Y )1[u,T ])(23)

for every t ≤ u ≤ T and all X ∈ Rpt,T .

Proof of Proposition 3. Since Ws(0) = 0 for s = 0, ..., T − 1,

ϕt,T (0) = −Wt ◦ · · · ◦WT−1(−0) = 0.

Due to the fact that Ws(0) = 0 for s = 0, . . . , T − 1. For Y, Ỹ ∈ Rpt,T such
that Y ≤ Ỹ ,

ϕt,T (Ỹ )− ϕt,T (Y ) = −Wt ◦ · · · ◦WT−1(−ỸT ) +Wt ◦ · · · ◦WT−1(−YT )

Noting that −YT ≥ −ỸT and using, repeatedly, the monotonicity property
of Ws for s = 0, . . . , T − 1 we arrive at ϕt,T (Ỹ ) − ϕt,T (Y ) ≥ 0. Finally we
note that

ϕt,T (Y +m1[t,T ]) = −Wt ◦ · · · ◦WT−1(−(YT +m))

= m−Wt ◦ · · · ◦WT−1(−YT )

= ϕt,T (Y ) +m,
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where the second equality follows from the translation invariance of Ws for
s = t, . . . , T−1. Time consistency in the sense of (23) follows almost directly
from the definition.

ϕt,T (Y 1[t,u) + ϕu,T (Y )1[u,T ])

= −Wt ◦ · · · ◦WT−1(−(Y 1[t,u) + ϕu,T (Y )1[u,T ])T )

= −Wt ◦ · · · ◦WT−1(−ϕu,T (Y ))

= −Wt ◦ · · · ◦Wu−1(−ϕu,T (Y )),

where the last equality is due to the translation invariance of Ws for s =
t, . . . , T − 1 combined with the fact that −ϕu,T (Y ) is Fs-measurable for
s ≥ u and noting that Ws(0) = 0 for s = u, . . . , T − 1. From the definition
(22) of ϕu,T we get

−Wt ◦ · · · ◦Wu−1(−(−Wu ◦ · · · ◦WT−1(−YT )))

= −Wt ◦ · · · ◦WT−1(−YT )

= ϕt,T (Y ).

�

3.3. Risk measures and utility functions based on conditional quan-
tiles. For Y ∈ Lp(Ft+1), write Qt,Y for its conditional distribution given Ft:
Qt,Y (ω, ·) is a probability measure on the Borel subsets of R, and Qt,Y (·, A)
is a version of P(Y ∈ A | Ft). We may write the conditional distribution
and quantile functions of Y given Ft, respectively, as

Ft,Y (ω, y) := Qt,Y (ω, (−∞, y]),

F−1
t,Y (ω, u) := min{y ∈ R : Ft,Y (ω, y) ≥ u}.

For a probability measures MR and MU on (0, 1), define, for Y ∈ Lp(Ft+1),

Rt(Y ) :=
∫ 1

0
F−1
t,−Y (u)dMR(u),(24)

Ut(Y ) :=
∫ 1

0
F−1
t,Y (u)dMU (u).(25)

Remark 4. Conditional monetary risk measures of the form (24) include
risk measures such as Value-at-Risk and Expected Shortfall that are pre-
scribed by current solvency regulation for capital requirements: VaRt,0.005(Y ) =
F−1
t,−Y (0.995) is obtained by taking MR to be the degenerated probability dis-

tribution corresponding to a unit point mass at 0.995, and

ESt,0.01(Y ) :=
1

0.01

∫ 0.01

0
VaRt,u(Y )du

is obtained by taking MR to be the uniform distribution on (0.99, 1).
Conditional monetary utility functions of the form (25) are utility func-

tions in the sense of Yaari’s Dual Theory of Choice Under Risk, see [26].
Alternatively, when applied to a random variable representing a loss, they
are −1 times a distortion risk measures in the sense of Wang, see [21] and
[22]. This is described below.
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A distortion function is a nondecreasing function g : [0, 1] → [0, 1] satis-
fying g(0) = 0 and g(1) = 1. Given a distortion function g, the g-distorted
expectation of Y , with survival function F Y , is given by

ρg(Y ) : = −
∫ 0

−∞

(
1− g

(
F Y (x)

))
dx+

∫ ∞

0
g
(
F Y (x)

)
dx(26)

=
∫ 1

0
F−1
Y ((1− u)+)dg(u),(27)

where F−1
Y ((1 − u)+) := limv↓1−u F

−1
Y (v). The equality (27) follows from

Theorem 4 in [7]. Notice that the first integral in (26) vanishes if only
nonnegative random variables are considered. Finally, notice that

Ut(Y ) : =
∫ 1

0
F−1
t,Y (u)dMU (u)

= −
∫ 1

0
F−1
t,−Y ((1− u)+)dMU (u)

= −ρg,t(−Y ),

where g is the distribution function of MU and ρg,t(−Y ) is the Ft-measurable
g-distorted expectation of −Y obtained by replacing FY by Ft,Y in (26). If
g is continuous, then Ut(Y ) = −ρg,t(−Y ) = ρg,t(Y ).

Proposition 4. Suppose there exist u0 ∈ (0, 1/2) and m ∈ (0,∞) such that,
for k = R,U ,

max
(
Mk((u, v)),Mk((1− v, 1− u))

)
≤ m(v − u) for all 0 < u < v < u0.

Fix p ∈ [1,∞].
(i) Rt in (24) and Ut in (25) are well-defined as mappings from Lp(Ft+1)
to Lp(Ft) and satisfy (4)-(6) and (7)-(9), respectively.
(ii) If Y ∈ Lp(Ft+1) and, for any Borel set A ⊂ R

P(Y ∈ A | Ft) = P(Y (1) + Y (2)Y (3) ∈ A | Ft),
where Y (1) ∈ Lp(Ft), 0 < Y (2) ∈ L0(F0), and Y (3) ∈ Lp(Ft+1) is indepen-
dent of Ft, then

Rt(Y ) = −Y (1) + Y (2)Rt(Y (3)),

Ut(Y ) = Y (1) + Y (2)Ut(Y (3)),

where Rt(Y (3)), Ut(Y (3)) ∈ L0(F0). Moreover, Rt(Y (3)) = R0(Ỹ (3)) and
Ut(Y (3)) = U0(Ỹ (3)) for Ỹ (3) ∈ Lp(F1) with Y (3) and Ỹ (3) equally dis-
tributed. For Wt in (13),

Wt(Y ) = Y (1) + Y (2)Wt(Y (3)),

and if ηt ∈ L0
+(F0), then Wt(Y (3)) ∈ L0(F0). Further, if ηt = η0, then

Wt(Y (3)) = W0(Ỹ (3)) for Ỹ (3) ∈ Lp(F1) with Y (3) and Ỹ (3) equally dis-
tributed.

Proof of Proposition 4. (i) It is sufficient to prove the statement (i) for Rt
and Ut only for Rt since the same proof, with minor modifications, applies
to Ut. For p = ∞ the statement holds without the requirement on MR.
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We now consider p ∈ [1,∞). The conditional quantile has the monotonicity
property

F−1
t,Y (ω, u) ≤ F−1

t,Ỹ
(ω, u) if Y ≤ Ỹ

and the properties F−1
t,Y (ω, u) ≤ 0 if Y ≤ 0 and F−1

t,Y (ω, u) ≥ 0 if Y ≥ 0. In
particular, Rt(|Y |) ≤ Rt(Y ) ≤ Rt(−|Y |). We show that Rt(|Y |), Rt(−|Y |) ∈
Lp(Ft).

E [Rt(−|Y |)p] = E
[(∫ 1

0
F−1
t,|Y |(u)dMR(u)

)p]

≤ E
[∫ 1

0

(
F−1
t,|Y |(u)

)p
dMR(u)

]

= E
[∫ 1−u0

0
F−1
t,|Y |p(u)dMR(u)

]
+ E

[∫ 1

1−u0

F−1
t,|Y |p(u)dMR(u)

]

=: E1 + E2,

where the first inequality above is an application of Jensen’s inequality, and
the second equality follows from the fact that g(F−1

Z (u)) = F−1
g(Z)(u) for

increasing functions g. Moreover,

E1 ≤ E
[
F−1
t,|Y |p(1− u0)

∫ 1−u0

0
dMR(u)

]
≤ E

[
F−1
t,|Y |p(1− u0)

]
,

E2 ≤ mE
[∫ 1

1−u0

F−1
t,|Y |p(u)du

]
≤ mE

[∫ 1

0
F−1
t,|Y |p(u)du

]
.

Since

E
[∫ 1

0
F−1
t,|Y |p(u)du

]
= E [E [|Y |p | Ft]] = E [|Y |p] <∞

and

E
[∫ 1

0
F−1
t,|Y |p(u)du

]
≥ E

[∫ 1

1−u0

F−1
t,|Y |p(u)du

]
≥ u0E

[
F−1
t,|Y |p(1− u0)

]
,

E1, E2 < ∞, from which E [|Rt(−|Y |)|p] = E [Rt(−|Y |)p] < ∞ follows. The
argument for showing E [|Rt(|Y |)|p] <∞ is completely analogous upon writ-
ing

E [(−Rt(|Y |))p] = E
[(∫ 1

0
(−F−1

t,−|Y |(u))dMR(u)
)p]

= E
[(∫ 1

0
F−1
t,|Y |((1− u)+)dMR(u)

)p]
,

where F−1
t,|Y |(ω, (1− u)+) := limv↓1−u F

−1
t,|Y |(ω, v).

Set Y := Y (1) + Y (2)Y (3), where Y (1) ∈ Lp(Ft), 0 < Y (2) ∈ Lp(Ft), and
Y (3) ∈ Lp(Ft+1). Then

Ft,Y (ω, y) := Qt,Y (ω, (−∞, y])

= Qt,Y (3)(ω, (−∞, (y − Y (1)(ω))/Y (2)(ω)]).
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Therefore,

F−1
t,Y (ω, u) := min{y ∈ R : Qt,Y (ω, (−∞, y]) ≥ u}

= min{y ∈ R : Qt,Y (3)(ω, (−∞, (y − Y (1)(ω))/Y (2)(ω)]) ≥ u}
= Y (1)(ω) + Y (2)(ω) min{y ∈ R : Qt,Y (3)(ω, (−∞, y]) ≥ u}
= Y (1)(ω) + Y (2)(ω)F−1

t,Y (3)(ω, u).

Similarly, F−1
t,−Y (ω, u) = −Y (1)(ω) + Y (2)(ω)F−1

t,−Y (3)(ω, u). It now follows
from the definitions of Rt and Ut in (24) and (25) that the properties (4)-(6)
and (7)-(9) hold. The proof of statement (i) is complete.

(ii) Under the stronger assumption that Y (1) ∈ Lp(Ft), 0 < Y (2) ∈
L0(F0), and Y (3) ∈ Lp(Ft+1) is independent of Ft,

F−1
t,Y (ω, u) := Y (1)(ω) + Y (2)(ω)F−1

t,Y (3)(ω, u)

= Y (1)(ω) + Y (2)F−1
Y (3)(u)

since Y (2) is a constant and Y (3) does not depend on Ft. Similarly,

F−1
t,−Y (ω, u) = −Y (1)(ω) + Y (2)F−1

−Y (3)(u).

It follows from the definitions of Rt, Ut and Wt in (24), (25) and (13), that
Wt(Y ) = Y (1) + Y (2)Wt(Y (3)), and similarly for Rt(Y ) and Ut(Y ), where
Wt(Y (3)) is a constant if ηt ∈ L0

+(F0). �

Remark 5. Notice that the condition on MR in Proposition 4 holds e.g. if
MR has support in (0, 1) bounded away from 0 and 1 (the case for a con-
ditional version of Value-at-Risk) or if MR has a bounded density (the case
for a conditional version of Expected Shortfall).

Example 2. Here we derive an expression for Wt(Yt+1) for Rt and Ut of
the form (24) and (24), respectively, under the assumption that the distri-
bution function x 7→ MU (0, x] is continuous. Using well-known properties
of quantile functions, we may write

∫ 1

0
F−1
t,(Rt(−Yt+1)−Yt+1)+

(u)dMU (u)

= −
∫ 1

0
F−1
t,−(Rt(−Yt+1)−Yt+1)+

(1− u)dMU (u)

=
∫ 1

0
(Rt(−Yt+1)− F−1

t,Yt+1
(1− u))+dM

U (u)

= Rt(−Yt+1)
∫ 1

1−γt

dMU (u)−
∫ 1

1−γt

F−1
t,Yt+1

(1− u)dMU (u),

where γt := P(Yt+1 ≤ Rt(−Yt+1) | Ft). Hence,

Wt(Yt+1) =
(

1− MU (1− γt, 1)
1 + ηt

)∫ 1

0
F−1
t,Yt+1

(u)dMR(u)

+
1

1 + ηt

∫ 1

1−γt

F−1
t,Yt+1

(1− u)dMU (u).
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In particular,

Wt(Yt+1) =
∫ 1

0
F−1
t,Yt+1

(u)dMW
t (u),

where MW
t is an Ft-measurable probability distribution on (0, 1) given by

MW
t (A) :=

(
1− MU (1− γt, 1)

1 + ηt

)
MR(A) +

M̃U (A ∩ (0, γt))
1 + ηt

,

where M̃U := MU ◦ h−1 for h(u) := 1− u and A is a Borel subset of (0, 1).
If Rt = VaRt,p, ηt = η0 and Ft,Yt+1 is continuous, then γt = 1 − p and

MW
t = MW

0 . If further Ut(·) = E [· | Ft], then

Wt(Yt+1) =
1

1 + η0

(
(η0 + p) VaRt,p(−Yt+1)− pESt,p(−Yt+1)

+ E [Yt+1 | Ft]
)
.

If dMR(u) = mR(u)du and dMU (u) = mU (u)du for monotone integrable
functions mR and mU with mR nondecreasing and mU nonincreasing, then
MW
t has a density

mW
t (u) =

(
1− MU (1− γt, 1)

1 + ηt

)
mR(u) +

1
1 + ηt

mU (1− u)1[0,γt](u).

The density mW
t is not monotone. Similarly to the argument in the proof

of Theorem 4.1 in [1], it follows that Wt does not have the subadditivity
property Wt(Yt+1+Ỹt+1) ≤Wt(Yt+1)+Wt(Ỹt+1). However, see Proposition 9
below, we may ensure subadditivity of the cost-of-capital margin by imposing
restrictions on the stochastic model for the liability cash flow.

4. Cost-of-capital margin for specific models

In order to obtain stronger results we need to impose further assumptions.
We will therefore assume conditional risk measures Rt and conditional utility
functions Ut of the kind presented in Section 3.3. Moreover, we will consider
flexible models that, when combined with those conditional risk measures
and utility functions provide e.g. explicit formulas for the cost-of-capital
margin. More specifically, in Section 4.1 we consider residual cash flows of
an autoregressive form, and in 4.2 we consider a class of Gaussian models
for the residual cash flows.

4.1. Autoregressive cash flows. Residual cash flows that are given by an
autoregressive process of order one are particularly well suited for explicit
computation of the cost-of-capital margin when the dynamic monetary risk
measures and dynamic monetary utility functions are of the type presented
in Section 3.3. The autoregressive processes include residual cash flows with
independent components as a special case.

Proposition 5. Fix p ∈ [1,∞] and let Wt be given by (13) with Rt and Ut
in (24) and (25), respectively, satisfying the condition in Proposition 4. Let
(Zt)Tt=1 be an F-adapted sequence of random variables such that, for each t,
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Zt+1 ∈ Lp(Ft+1) is independent of Ft. Let (αt)Tt=1 be a nonrandom sequence
of real numbers. Let

X0 := 0, Xt+1 := αt+1Xt + Zt+1, t = 0, . . . , T − 1,

and set

βT := 1, βt := 1 + βt+1αt+1, t ∈ {1, . . . , T − 1},
δT := 0, δt := δt+1 + |βt+1|Wt(sign(βt+1)Zt+1), t ∈ {0, . . . , T − 1}.

Then, for t = 0, . . . , T − 1, δt ∈ L0(F0) and

Vt(X) = δt + βt+1αt+1Xt ∈ Lp(Ft).(28)

In particular,

V0(X) =
T−1∑

t=0

|βt+1|Wt(sign(βt+1)Zt+1).

Proof of Proposition 5. The statement is proved by induction. First,

VT−1(X) = WT−1(XT ) = αTXT−1 +WT−1(ZT ) = δT−1 + βTαTXT−1,

i.e. (28) holds for t = T − 1. The recursion step: take t ∈ {1, . . . , T − 1} and
suppose that Vt(X) is given by (28). Then

Xt + Vt(X) = δt + βtXt = δt + βtαtXt−1 + βtZt.

From Proposition 4 it follows that Wt−1(βtZt) is a constant and Xt+Vt(X) ∈
Lp(Ft). Moreover,

Vt−1(X) = Wt−1(Xt + Vt(X))

= δt + βtαtXt−1 +Wt−1(βtZt)

= δt + βtαtXt−1 + |βt|Wt−1(sign(βt)Zt)
= δt−1 + βtαtXt−1.

In particular, Vt−1(X) = Wt−1(Xt + Vt(X)) ∈ Lp(Ft−1). We conclude that
(28) holds for t = 0, . . . , T − 1. �

Remark 6. Notice that in the special case where (Xt)Tt=1 has independent
components, corresponding to αt = 0 for all t, Vt(X) =

∑T−1
s=t Ws(Xs+1).

In particular, Vt(X) ∈ L0(F0) if ηt ∈ L0
+(F0) for all t. If αt = α ∈ (−1, 1)

for all t, then

0 < βt =
T−t∑

j=0

αj =
1− αT−t+1

1− α .

If further Wt(Zt+1) = W0(Z1) for all t, then V0(X) = f(α)W0(Z1), where

f(α) :=
T∑

t=1

T−t∑

j=0

αj =
T∑

j=0

(T − j)αj =
αT+1 − (T + 1)α+ T

(1− α)2
.
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4.2. Gaussian cash flows. The convenient properties of conditional distri-
butions of multivariate normal distributions allow for much stronger results
than what have been possible in the setting considered so far. In what fol-
lows, we will therefore derive properties of the cost-of-capital margin in a
Gaussian setting. Since the cost-of-capital margin is primarily intended for
aggregate cash flows, Gaussian model assumptions will in many situations
provide a reasonable approximation.

Definition 4. Let Γ be a finite set of Gaussian vectors in RT that are jointly
Gaussian. Let

G0 := {∅,Ω}, Gt :=
(
∨Z∈Γ σ(Zt)

)
∨ Gt−1 for t = 1, . . . , T.

G := (Gt)Tt=0 is called a Gaussian filtration, and, if X ∈ Γ, then (X,G) is
called a Gaussian model.

For a Gaussian model (X,G), X is interpreted as a cash flow that may
be assigned a value and G represents the flow of information used in the
valuation of X. Notice that by Proposition 2 it is sufficient to only consider
zero mean Gaussian cash flows X.

Consider a Gaussian model (X,G) and let

Y = a0 +
∑

Z∈Γ

T∑

s=1

aZs Zs for some a0 ∈ R, aZs ∈ R.(29)

Then, the conditional distribution of Y given Gt is given by

P(Y ∈ A | Gt) = P(E [Y | Gt] + Var(Y | Gt)1/2εt+1 ∈ A | Gt),(30)

where εt+1 is Gt+1-measurable, standard normal and independent of Gt.
Moreover,

E [Y | Gt] = b0 +
∑

Z∈Γ

t∑

s=1

bZs Zs for some b0 ∈ R, bZs ∈ R,(31)

and, a special feature of conditional Gaussian distributions that is essential
here, Var(Y | Gs) ∈ L0

+(G0). These properties ensure that if the mapping
Wt : Lp(Gt+1)→ Lp(Gt) given by (13), with F := G and ηt := η0, satisfying
the assumptions in Proposition 4, and if Y ∈ Lp(Gt+1) is of the form (29),
then, by Proposition 4 and (31), for every p ∈ [1,∞),

Wt(Y ) = E [Y | Gt] + Var(Y | Gt)1/2Wt(εt+1)

= E [Y | Gt] + Var(Y | Gt)1/2W0(ε1).

Assumption 1. For a zero mean Gaussian model (X,G) and p ∈ [1,∞),
(Wt)T−1

t=0 is a sequence of mappings Wt : Lp(Gt+1)→ Lp(Gt) as in Proposition
4 with F := G and ηt := η0 ∈ L0

+(G0). Moreover, ε1 is G1-measurable and
standard normal.

Proposition 6. Let (X,G) be a zero mean Gaussian model and suppose
that Assumption 1 holds. Then, for t ∈ {0, . . . , T − 1},

Vt,G(X) = E

[
T∑

s=t+1

Xs | Gt
]

+
T∑

s=t+1

Var
(
E

[
T∑

u=s

Xu | Gs
]
| Gs−1

)1/2
W0(ε1).
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Moreover,

V0,G(X) =
T∑

s=1

(
Var

( T∑

u=s

Xu | Gs−1

)
−Var

( T∑

u=s

Xu | Gs
))1/2

W0(ε1).

Notice that, given the assumptions of Proposition 6, we may express the
cost-of-capital margin V0,G(X) as

T∑

s=1

Var
(
Xs + E

[
T∑

u=s+1

Xu | Gs
]
− E

[
T∑

u=s

Xu | Gs−1

]
| Gs−1

)1/2
W0(ε1).

In particular, the cost-of-capital margin V0,G(X) is proportional to the sum
of the conditional standard deviations of the errors of the repeated predic-
tions of the sum of the remaining cash flows.

Proof of Proposition 6. The statement is proved by induction. Let c :=
W0(ε1) and Vt(X) := Vt,G(X). Clearly, XT is of the form (29) so (30) holds.
Therefore, from statement (iii) in Proposition 4,

VT−1(X) := WT−1(XT ) = E [XT | GT−1] + Var(XT | GT−1)1/2c.

Now let t ≤ T − 1 and assume that the expression for Vt(X) holds for t.
Then Xt+Vt(X) is of the form (29) so (30) holds. Therefore, from statement
(iii) in Proposition 4,

Vt−1(X) := Wt−1(Xt + Vt(X))

= E [Xt + Vt(X) | Gt−1] + Var(Xt + Vt(X) | Gt−1)1/2c

= E

[
T∑

s=t

Xs | Gt−1

]
+

T∑

s=t+1

Var
(
E

[
T∑

u=s

Xu | Gs
]
| Gs−1

)1/2
c

+ Var
(
Xt + E

[
T∑

s=t+1

Xs | Gt
]
| Gt−1

)1/2
c

= E

[
T∑

s=t

Xs | Gt
]

+
T∑

s=t

Var
(
E

[
T∑

u=s

Xu | Gs
]
| Gs−1

)1/2
c.

Recall the variance decomposition formula: for F ⊂ G ⊂ H and Y ∈ L2(H),

Var(Y | F) = E [Var(Y | G) | F ] + Var(E [Y | G] | F).

Applying the variance decomposition formula and using the fact that in the
Gaussian case the conditional variance is a constant, we find that, for s < T ,

Var
(
E

[
T∑

u=s

Xu | Gs
]
| Gs−1

)

= Var
( T∑

u=s

Xu | Gs−1

)
− E

[
Var

( T∑

u=s

Xu | Gs
)
| Gs−1

]

= Var
( T∑

u=s

Xu | Gs−1

)
−Var

( T∑

u=s

Xu | Gs
)
.

�
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Computation of W0(ε1) is illustrated in the following example.

Example 3. Let ε1 be standard normal with distribution and density func-
tion Φ and ϕ, respectively, and let U0(·) = E [·]. Then

W0(ε1) = R0(−ε1)− 1
1 + η0

E
[
(R0(−ε1)− ε1)1{ε1≤R0(−ε1)}

]

= R0(−ε1)− 1
1 + η0

(
R0(−ε1)Φ(R0(−ε1)) + ϕ(R0(−ε1))

)

≤ R0(−ε1)
η0

1 + η0
,

where the inequality is due to the Mill’s ratio inequalities ϕ(x)x/(1 + x2) ≤
1− Φ(x) ≤ ϕ(x)/x for x > 0, see e.g. [10]. Notice that if R0 = VaRp, then
R0(−ε1) = Φ−1(1− p), and for Expected Shortfall, R0 = ESp, corresponding
to mR(u) = p−11[1−p,1](u) in Example 2, R0(−ε1) = p−1ϕ(Φ−1(1− p)).

Bounds on the cost-of-capital margin can be obtained from Proposition
6. From the proof of Proposition 6, notice that

Vt,G(X)− E

[
T∑

s=t+1

Xs | Gt
]

= W0(ε1)
T∑

s=t+1

a1/2
s ,(32)

where, for s = 1, . . . , T ,

as := Var
( T∑

u=t+1

Xu | Gs−1

)
−Var

( T∑

u=t+1

Xu | Gs
)
.(33)

In particular,

T∑

s=t+1

as = Var
( T∑

s=t+1

Xs | Gt
)
.

An upper bound on the left-hand side in (32) is found by solving a standard
convex optimization problem:

maximize
T∑

s=t+1

a1/2
s

subject to
T∑

s=t+1

as = C, as ≥ 0

The concave objective function has a unique maximum for as = C/(T − t)
for all s. Minimizing the objective function over the same (convex) set gives
a minimum for as0 = C for some s0 ∈ {t+ 1, . . . , T} and as = 0 for s 6= s0.
We have thus proved the following bounds.
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Proposition 7. Let (X,G) be a zero mean Gaussian model and suppose
that Assumption 1 holds. Then,

W0(ε1) Var
( T∑

s=t+1

Xs | Gt
)1/2

≤ Vt,G(X)− E

[
T∑

s=t+1

Xs | Gt
]

≤W0(ε1)(T − t)1/2 Var
( T∑

s=t+1

Xs | Gt
)1/2

.

In particular,

W0(ε1) Var
( T∑

s=1

Xs

)1/2
≤ V0,G(X) ≤W0(ε1)T 1/2 Var

( T∑

s=1

Xs

)1/2
.

The interpretation of the upper bound for the cost-of-capital margin
V0,G(X) in Proposition 7 is as follows. The Gaussian model (X,G) maxi-
mizing V0,G(X) corresponds to a filtration G such that

Var
( T∑

u=1

Xu | Gs−1

)
−Var

( T∑

u=1

Xu | Gs
)

=
1
T

Var
( T∑

u=1

Xu

)
,

i.e. the uncertainty (variance) in the remaining cash flow is distributed evenly
over the length of the cash flow.

The interpretation of the lower bound in Proposition 7 is as follows. Given
a zero mean Gaussian cash flow X, such that Var(X1) > 0, the Gaussian
model (X,G) minimizing V0,G(X) corresponds to a filtration G such that

Var
( T∑

u=1

Xu | Gs
)

= 0 for s ≥ 1

i.e. the cash flow after time 1 is completely known at time 1. In particular,
after time 1 there is no need for capital funds and hence there are no capital
costs. This interpretation follows from Proposition 8 below.

Proposition 8. Let (X,G) and (X, G̃) be two Gaussian models such that,
for every t, G̃t = Gs for some s ≥ t. Suppose further that, for both Gaussian
models, Assumption 1 holds. Then V0,G(X) ≥ V

0,G̃(X).

Proof. It is sufficient to consider the case G̃t0 = Gt0+1 for some t0 ≥ 1, and
G̃t = Gt for t 6= t0. Repeating the argument then yields the conclusion.
Set bt := Var(

∑T
u=1Xu | Gt), b̃t := Var(

∑T
u=1Xu | G̃t), at := bt−1 − bt and

ãt := b̃t−1 − b̃t. Then

V0,G(X)− V
0,G̃(X) = W0(ε1)

T∑

t=1

(a1/2
t − ã1/2

t )

= W0(ε1)
(
a

1/2
t0

+ a
1/2
t0+1 − ã

1/2
t0
− ã1/2

t0+1

)

= W0(ε1)
(
a

1/2
t0

+ a
1/2
t0+1 − 0− (at0 + at0+1)1/2

)

≥ 0

due to the subadditivity of R+ 3 x 7→ x1/2 ∈ R+. �
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In the Gaussian setting, the cost-of-capital margin is subadditive. If the
aggregate liability cash flow is decomposed into a sum of sub-liability cash
flows, then the sum of the corresponding cost-of-capital margins dominates
the cost-of-capital margin for the aggregate liability cash flow.

Proposition 9. Let ((X, X̃),G) be a Gaussian model and suppose that As-
sumption 1 holds. Then, for t ∈ {0, . . . , T − 1}, Vt,G(X + X̃) ≤ Vt,G(X) +
Vt,G(X̃).

Proof. From Proposition 6,

W0(ε1)−1
(
Vt,G(X + X̃)− Vt,G(X)− Vt,G(X̃)

)
=

T∑

s=t+1

∆s,T ,

where

∆s,T = Var
(
E

[
T∑

u=s

Xu | Gs
]

+ E

[
T∑

u=s

X̃u | Gs
]
| Gs−1

)1/2

−Var
(
E

[
T∑

u=s

Xu | Gs
]
| Gs−1

)1/2
−Var

(
E

[
T∑

u=s

X̃u | Gs
]
| Gs−1

)1/2

The conclusion now follows from the general fact

Var(Z + Z̃ | G) ≤ (Var(Z | G)1/2 + Var(Z̃ | G)1/2)2.

�

5. Valuation of a life-insurance portfolio

We will now go through a simple, yet realistic, life-insurance example
aimed at illustrating aspects of the cost-of-capital margin.

One of the simplest insurance contracts that is non-trivial and for which
it is possible to carry out an exact valuation is a portfolio which at time
0 consists of n0 identical and independent term-life-insurance contracts. A
term-life-insurance contract for a today x years old individual that termi-
nates at latest T years from today is constructed as follows: if the insured
individual

• dies during year t+1 (between times t and t+1) for t ∈ {0, . . . , T−1},
the amount 1 is paid to the beneficiary at time t + 1 (payment at
end of year),
• is alive after T years, the contract pays nothing.

Given the above, at time 0 there are N0 = n0 active contracts of x years old
individuals terminating at time T . Moreover, deaths of individuals are as-
sumed to be independent events. Further, if we let Dt+1 denote the number
of deaths during year t+1, the dynamics of the number of active contracts at
each time can be described as a nested binomial process as follows: (Nt)Tt=0

is a Markov process with Nt+1 := Nt −Dt+1 and Dt+1|Nt ∼ Bin(Nt, qx+t).
Here

qx+t := P(Tx ≤ t+ 1|Tx > t) = 1− Sx(t+ 1)
Sx(t)

, t = 0, . . . , T − 1,
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where Tx is the remaining lifetime of a today x years old individual, where

Sx(u) := exp
{
−
∫ x+u

x
µsds

}
,

where µs ≥ 0 is the so-called mortality law or force of mortality. Here we
let µs be the Makeham mortality law given by

µx := α+ β exp{γx}, α, β, γ > 0.

In the numerical calculations carried out below we will use α = 0.001, β =
0.000012 and γ = 0.101314, corresponding to Swedish mortality table M90
for males. The qx+ts are so-called deferred death probabilities, sometimes
denoted by t|1qx. Appendix A describes how the recursive valuation is for-
mulated for a homogeneous population.

If we instead would assign a value to this liability cash flow using EIOPA’s
standard procedure, we would let the liability value correspond to the so-
called Technical Provisions (TP) given by

TP(D) := BEµ,1(D) + RM(D),

where,

BEµ,i(D) :=
T∑

j=i

E [Dj ;µ]
(1 + ri−1,j)j−i+1

, i = 1, . . . , T,

where E [Dj ;µ] denotes expected value of Dj using mortality law µ and ri,j
is the yearly compounded forward rate for the period i to j. That is, if
we let si denote the yearly compounded spot rate from 0 to i, it holds that
(1+si+1)i+1 = (1+si)i(1+ri,i+1). Typically the sis denotes EIOPA’s annual
zero-coupon spot rates where si := r0,i. Further,

SCR(D) := BEµ̃,1(D)− BEµ,1(D),

µ̃ = 1.15µ corresponds to the stressed mortality defined by EIOPA, see [9,
Article 137], and the risk margin RM is finally given by

RM(D) := CoC
SCR(D)
BEµ,1(D)

T∑

i=1

BEµ,i(D)
(1 + r0,i)i

,

see [8, Paragraph 1.114, Method 2]. In the examples below EIOPA’s annual
zero-coupon spot rates are the basis of all discounting, and in particular we
use the Swedish curve as of September 30th 2016. Further, CoC is the cost-
of-capital rate, taken to be 0.06. Computations of BEµ̃,1(D) and BEµ,i(D)
are found in Appendix A.

Note that the above definition of the BE together with how the discount-
ing is carried out for future BE will result in a net effect of discounting in
the (double)sum defining RM corresponding to discounting once with re-
spect to the original spot curve provided by EIOPA. This is the only way
we can make any sense of the definition of SCR and RM, i.e. avoid “double”
discounting.

Figure 1 shows BE as a function of time to contract expiry for a portfolio
consisting of n0 = 1000 50 years old Swedish males.

Figure 1 shows a comparison between the valuation according to our inter-
pretation of EIOPA’s standard valuation procedure for a portfolio consisting
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Figure 1. The left figure shows best estimate as function
of time to contract expiry for a term-life-insurance portfolio
consisting of n0 = 1000 independent 50 years old Swedish
males. For the same portfolio, the right figure compares
the cost-of-capital margins for the nested binomial model
(circles) and EIOPA risk margins without discounting (solid
black discs). The solid black lines corresponds to the stan-
dard formula calculations with discounting.

of N0 = n0 = 1000 identical 50 years old Swedish males, and the valuation
according to (13) and (18). Here Rt is set to conditional VaR at the 0.5%
level, seen as a mapping Rt : L1(Ft+1) → L1(Ft) with F taken to be the
filtration generated by (Nt), Ut := E [· | Ft], and ηt := CoC := 0.06. Infor-
mation about computational aspects can be found in Appendix A.1. Each
circle in the left panel of Figure 1 corresponds to a specific (total) best es-
timate for a portfolio consisting of 1000 contracts of 50 years old Swedish
males that had the same specific time to contract expiry at the time of val-
uation (time 0). That is, each point corresponds to a new portfolio with a
certain time to expiry and not the evolution of one portfolio with duration
30 years. This interpretation applies to all figures below.

For the sake of comparison we focus on EIOPA’s risk margin together
with the value of the residual cash flow as defined in Section 3. From Figure
1 it can be seen that in this situation EIOPA’s risk margin may underesti-
mate as well as overestimate the risk compared to the above more correct
valuation procedure. One can argue that the EIOPA method used here is an
approximation, but it does not necessarily seem to be a prudent one. This
is unfortunate, since the authors believe that this method is commonly used
in the industry, given that the so-called proportionality principle applies.
Further, from Figure 1 it is seen that, when discounting is used, EIOPA’s
risk margin is closer to the cost-of-capital margin. Recall that the cost-of-
capital margin is the second step in the two-step valuation procedure, where
discounting appears in the first step (value of replicating portfolio) but not
in the cost-of-capital margin valuation applied to the residual liability cash
flow. Consequently, discounting will affect EIOPA’s method, but not the
cost-of-capital margin. Further, even in the low interest rate environment
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as of September 30th 2016, the effect of discounting is still substantial for
moderate portfolio durations. Moreover, the observed differences between
EIOPA’s method and the method proposed in the present paper are in gen-
eral hard to understand, due to that EIOPA’s method is ad hoc.

Further, one can note that the recursions defined in Appendix A.1 are
expressed for a single homogeneous population. For heterogeneous popula-
tions, numerical problems with computation of binomial probabilities may
arise. Therefore, it is of interest to analyse how well the Gaussian approxi-
mation of Section 4.2 performs, since this can be readily adapted to handle
heterogeneous populations. In order to do so, we want to compare the cash
flow generated by D with that of E [D] +X, where X is a zero mean Gauss-
ian vector with the same covariance matrix as D, following the setup of
Section 4.2. Detailed calculations showing how this is done can be found in
Appendix A.2 and A.3.

Figure 2. For a term-life-insurance portfolio consisting of
n0 = 1000 independent 50 years old Swedish males, the left
figure compares cost-of-capital margins for the nested bino-
mial model (circles) and the Gaussian approximation (solid
black discs). The right figure compares cost-of-capital mar-
gins for the nested binomial model (circles) and the upper
bound (21) (solid black triangles).

In Figure 2 we see that the approximation is performing well for the chosen
times to expiry of the insurance contracts, given a portfolio size of n0 = 1000.
For larger portfolio sizes and more complex insurance products the Gaussian
approximation will serve as a natural benchmark method. Further, from the
panel on the right-hand side of Figure 2 it is also seen that the upper bound
given by (21) is close to the exact calculation.

Even though the Gaussian approximation is close to the correct valua-
tion for this particular portfolio of term-life contracts, it is seen that the
approximation yields an underestimation. Another simple type of insurance
contract is given by the analogous temporary annuity contract that pays an
amount 1 at the end of each year when the insured is alive, but at most for
T years. In analogy with the term-life contracts above, the best estimate
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from year i for the temporary annuities is given by

BEµ,i(N) :=
T∑

j=i+1

E [Nj ;µ]
(1 + ri−1,j)j−i+1

, i = 1, . . . , T,

where E [Nj ;µ] denotes expected value of Nj using mortality law µ, and
the expressions for SCR etc. follow verbatim with the exception that the
stress is a 15% decrease. The calculations for the corresponding number of
contracts active at the end of each calendar year follow the ones carried out
for the term-life contracts, see Appendix A.

Figure 3. The left figure shows best estimate as function of
time to contract expiry for a temporary annuity portfolio con-
sisting of n0 = 1000 independent 50 years old Swedish males.
For the same portfolio, the right figure compares the cost-of-
capital margins for the nested binomial model (circles) and
EIOPA risk margins without discounting (solid black discs).
The solid black lines corresponds to the standard formula
calculations with discounting.

Figure 3 shows the the analog of Figure 1 for a portfolio of n0 = 1000
independent temporary annuities for 50 years old Swedish males. Again it is
seen that EIOPA’s method for most times to expiry produces larger values
than the cost-of-capital margin, but not for the shorter times to expiry.

Regarding the Gaussian approximation, it is seen from Figure 4 that in
the situation with a portfolio of temporary annuities the Gaussian approxi-
mation produces prudent estimates that are very close to the upper bound
given by (21).
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Figure 4. For a temporary annuity portfolio consisting of
n0 = 1000 independent 50 years old Swedish males, the left
figure compares cost-of-capital margins for the nested bino-
mial model (circles) and the Gaussian approximation (solid
black discs). The right figure compares cost-of-capital mar-
gins for the nested binomial model (circles) and the upper
bound (21) (solid black triangles).
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Appendix A. Computational details for Section 5

A.1. Recursive valuation for a homogeneous population. Let Wt be
defined as in Section 3. The backward recursive valuation for the nested
binomial model of Section 5 can be expressed explicitly as follows. Write
Vt(D) := Gt(Nt), where Nt denotes the number of active contracts at time
t, and Gt is some deterministic function, presuming that Ft = σ(N1, ..., Nt).
With this notation,

Yt+1 = Dt+1 +Gt+1(Nt+1) = Dt+1 +Gt+1(Nt −Dt+1)

and we get the following recursion formula for all n ∈ {0, 1, ..., N0}: GT (n) =
0 and, for t = 0, . . . , T − 1,

Gt(n) = Wt(Dt+1 +Gt+1(n−Dt+1)), Dt+1 ∼ Bin(n, qt),

where the dependence on the age of the insured population has been omitted
to simplify the notation. Starting by calculating GT−1(n) for all feasible
values of n, we can use the recursive formula until we reach V0(D) = G0(N0).
The computational feasibility relies on the fact that the relevant information
at time t is contained in Nt which takes values in the relatively small set
{0, . . . , N0}. If we consider information which may be expressed as a vector
in Nk, k ≥ 2, direct computation will be considerably more involved, and
possibly unfeasible. This would be the case if the population of insured
consisted of k ≥ 2 homogeneous subgroups.

The above expressions describe the valuation recursions used to value
homogeneous term-life portfolios, but the same reasoning applies to obtain
valuation recursions for temporary annuity portfolios.
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A.2. Computation of moments in the nested binomial model. We
will now go through how E [Di] and E [DiDj ] are calculated for the nested
binomial model described in Section 5. In order to ease notation we omit
explicit references to the age x of the insured population. First, note that
with qk := P(Tx ≤ k + 1 | Tx > k),

Ni ∼ Bin(n0, p̃i), p̃i :=
i−1∏

k=0

(1− qk), i ≥ 1,

Di+1 | Nl ∼ Bin(Nl, qi|l), qi|l := qi

i−1∏

k=l

(1− qk), i ≥ l, l ≥ 0.

In particular, E [Di+1] = qi|0n0, which by repeated conditioning yields

E [Di+1] = n0qip̃i = n0P(i < Tx ≤ i+ 1),

Var(Di+1) = n0qip̃i(1− qip̃i).
Moreover, for j > i ≥ 0, we have that

P(Di+1 = y,Dj+1 = z,Ni = n)

= P(Di+1 = y,Dj+1 = z | Ni = n)P(Ni = n)

where

P(Di+1 = y,Dj+1 = z | Ni = n)

= P(Di+1 = y | Ni = n)P(Dj+1 = z | Di+1 = y,Ni = n)

= P(Di+1 = y | Ni = n)P(Dj+1 = z | Ni+1 = n− y)

=
(
n

y

)
qyi (1− qi)n−y

(
n− y
z

)
qzj|(i+1)(1− qj|(i+1))

n−y−z.

Combining these expressions, we get

P(Di+1 = y,Dj+1 = z,Ni = n)

=
(
n

y

)
qyi (1− qi)n−y

(
n− y
z

)
qzj|(i+1)(1− qj|(i+1))

n−y−z
(
n0

n

)
p̃ni (1− p̃i)n0−n

=
(

n0

n0 − n, y, z, n− y − z

)
(1− p̃i)n0−n(qip̃i)y(qj p̃j)z(p̃i+1(1− qj|(i+1)))

n−y−z,

which corresponds to

(Di+1, Dj+1, Ni) =d (D̃i, Di+1, Dj+1,Mi,j),

where (D̃i, Di+1, Dj+1,Mi,j) ∼ Mult(n0; 1 − p̃i, qip̃i, qj p̃j , p̃i+1(1 − qj|(i+1)))
with D̃i and Mi,j being auxiliary random variables. The multinomial inter-
pretation then immediately gives

Cov(Di+1, Dj+1) = n0qip̃iqj p̃j

= n0P(i < Tx ≤ i+ 1)P(j < Tx ≤ j + 1),

and it may be verified that E [Di+1] and Var(Di+1) calculated using this
approach agrees with the expressions from above.

Similar calculations as those above can be carried out for Ni which yields
the relevant expressions for temporary annuity portfolios.
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A.3. Cost-of-capital recursion for Gaussian models. Here we derive
an explicit recursion formula for the cost-of-capital margin for the Gaussian
model (X,G) with G = (Gt)Tt=0, G0 = {∅,Ω} and Gt = σ(X1, ..., Xt) for
t = 1, . . . , T . A similar, albeit more complicated, formula could be derived
for a general Gaussian model, meaning that G is larger than the natural
filtration of X.

For a multivariate normal vector Z ∼ Nn(µ,Σ), write

µ =
[
µ1:n−1

µn

]
, Σ =

[
Σ1:n−1,1:n−1 Σ1:n−1,n

Σn,1:n−1 Σn,n

]

It is well known that the conditional distribution of Zn given Z1, . . . , Zn−1

is normal with parameters

µn|1:n−1 = µn + Σn,1:n−1Σ−1
1:n−1,1:n−1(Z1:n−1 − µ1:n−1),

Σn|1:n−1 = Σn,n − Σn,1:n−1Σ−1
1:n−1,1:n−1Σ1:n−1,n.

Proposition 10. Let X = (Xt)Tt=1 ∼ NT (0,Σ) where Σ is invertible, let G
be its natural filtration, and suppose that Assumption 1 holds. Then

Vt(X) =





0, t = T,

(v(t))TX1:t + kt, t ∈ {1, . . . , T − 1},
k0, t = 0,

where kT := 0, v(T ) := 0, v(0) := 0, and, for t ∈ {1, . . . , T − 1}, kt ∈ R and
vt ∈ Rt can be calculated recursively from

kt := kt+1 +Wt((1 + v
(t+1)
t+1 )Σ1/2

t+1|1:tεt+1),

(v(t))T := (v(t+1)
1:t )T + (1 + v

(t+1)
t+1 )Σt+1:1:tΣ−1

1:t,1:t,

where (εt)Tt=1 is a sequence of independent standard normally distributed
random variables such that εt+1 is Gt+1-measurable and independent of Gt.
Proof of Proposition 10. We know that VT (X) = 0 and we set v(T ) := 0.
We prove the statement via induction. Take t ∈ {0, . . . , T − 1} and suppose
that Vt+1(X) = (v(t+1))TX1:t+1 + kt+1. First, consider the case t ≥ 1. Then

Yt+1 = (1 + v
(t+1)
t+1 )Xt+1 + (v(t+1)

1:t )TX1:t + kt+1.

Since the latter two terms are Gt-measurable, translation invariance of Wt

combined with properties of the conditional Gaussian distribution give

Vt(X) = Wt(Yt+1)

= Wt((1 + v
(t+1)
t+1 )Xt+1) + (v(t+1)

1:t )TX1:t + kt+1

= Wt((1 + v
(t+1)
t+1 )(µt+1|1:t + Σ1/2

t+1|1:tεt+1)) + (v(t+1)
1:t )TX1:t + kt+1

= Wt((1 + v
(t+1)
t+1 )Σ1/2

t+1|1:tεt+1) + (1 + v
(t+1)
t+1 )µt+1|1:t + (v(t+1)

1:t )TX1:t + kt+1

=
(

(v(t+1)
1:t )T + (1 + v

(t+1)
t+1 )Σt+1,1:tΣ−1

1:t,1:t

)T
X1:t

+ kt+1 +Wt((1 + v
(t+1)
t+1 )Σ1/2

t+1|1:tεt+1)

= (v(t))TX1:t + kt
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from which the conclusion follows. Finally, consider the case t = 0. Then

V0(X) = W0(Y1)

= W0((1 + v
(1)
1 )X1) + k1

= k1 + (1 + v
(1)
1 )µ1 +W0((1 + v

(1)
1 )Σ1/2

1,1 ε1)
= k0.

�
Notice that Wt(Kεt+1) = |K|W0(ε1) due to symmetry of the standard

normal distribution and Assumption 1.
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