
An Empirical Investigation of Fault Triggers in
Android Operating System

Fangyun Qin∗, Zheng Zheng∗, Xiaodan Li†, Yu Qiao∗, Kishor S. Trivedi†
∗School of Automation Science and Electrical Engineering, Beihang University, Beijing, China

†Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA

Email: {fangyunqin, zhengz, qiaoyu}@buaa.edu.cn, {xiaodan.li, ktrivedi}@duke.edu

Abstract—The growing popularity and complexity of Android
operating system makes it prone to suffer failures during usage,
which increases difficulties of fixing bugs. Different strategies
and mitigation methods can be developed and applied based
on different types of bugs, which gives rise to the necessity to
have a deep understanding of the nature of bugs in this system.
In this paper, an empirical study is taken on 513 bug reports
from Android operating system. A bug classification is conducted
according to fault triggering conditions, followed by the analysis
of bug types and bug attributes. Moreover, the comparison of
bug types between Android and Linux is carried out. This
paper reveals ten interesting findings based on the empirical
results from these three aspects and further provides guidance
for developers and users based on these findings.

Index Terms—bug classification; fault trigger; Android; Man-
delbug

I. INTRODUCTION

As the number of useful and convenient applications in

smartphones is increasing, more and more people prefer to

use their smartphones for entertainment and daily activities.

Android is the most popular mobile operating system in the

world, with hundreds of millions of mobile devices distributed

among more than 190 countries [1]. Along with its wide

application, many studies concentrate on its security [2],

memory [3], power consuming [4], bugs [5], etc. In this paper,

we analyze the Android operating system from the viewpoint

of bugs.

Previous studies on bugs in Android mainly focused on bug

locations in modules and their persistence, code modification

[5], duplicate bug detection [6], [7], or bug changes [8], etc.

Although the fruits present good results for the understanding

of bugs in Android, the distribution of bug types in this

operating system and the relationship between the bug types

and bug attributes are significant topics deserved to be studied,

which has not been fully explored till now.

Several bug classification methods have been conducted

based on bug manifestations. For example, Gray [9] classified

bugs into Bohrbugs and Heisenbugs according to the principle

whether corresponding failures can be systematically repro-

duced or not. Grottke et al. [10] defined Mandelbugs as the

complementary antonym of Bohrbugs. Due to the simplicity of

the activation and error propagation of a Bohrbug, its failure

reproduction and hence isolating are easy to be processed.

Comparatively the activation and/or error propagation of a

Mandelbug are complex – the complexity may be induced by

the time lag between bug activation and the failure occurrence,

interactions of the software application with its system-internal

environment, the timing of inputs and operations, and the se-

quencing of operations. Different from Bohrbugs, Mandelbugs

could make system exhibit chaotic or even nondeterministic

behavior during operation [11]. Furthermore, Mandelbugs can

be divided into aging related Bugs (ARB) and non-aging

related Mandelbugs (NAM). ARBs refer to bugs that can

result in software aging (a phenomenon that software exhibits

an increasing failure rate and/or degrading performance in a

long-running software system). Based on above classification,

Cotroneo et al. [12] proposed an extensive analysis of fault

triggers. Several researchers have analyzed the manifestation

characteristics of each type of bugs in popular software

systems, like Apache HTTPD server, MySQL, Linux kernel,

Apache AXIS framework [12] and space mission system

software [13]. To the best of our knowledge, this is the first

paper focusing on the bug classification according to fault

triggers in Android.

Our study is performed with 513 bug reports of Cyanogen-

mod, a widely used Android operating system [14]. For each

report, we examine the bug description, comments, as well

as attached files carefully. The empirical study is undertaken

from the following three aspects:

(1) Analyze the bug types in Android. In this part, a system-

atic capture of bug distribution is obtained. The observations

are useful to guide developers in Android focusing on the

specific subtypes during bug mitigation.

(2) Explore the relationship between bug types and bug

attributes, such as bug priority, fix duration and components.

Exploring bug attributes related with bug types enables devel-

opers to have a deep understanding of bugs in Android, such

as which component should be firstly focused on, whether fix

duration of bugs is related with bug types.

(3) Compare bug types between Linux and Android. The

comparison can provide a deeper understanding about these

two operating systems from the viewpoint of bug types.

Based on the empirical study on above three aspects, the

work provides a set of findings and implications summarized

in Table I, which can provide helpful guidance for developers

and users.

The rest of the paper is organized as follows. Section II

presents the related work, and Section III concentrates on the

bug source and classification procedure. In Section IV, our

2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing

978-1-5090-5652-1/17 $31.00 © 2017 IEEE

DOI 10.1109/PRDC.2017.27

135

TABLE I
SUMMARY OF FINDINGS AND IMPLICATIONS

Findings on bug types Implications

(1) About two thirds (65.2%) of the examined bugs are
Bohrbugs and the fraction of Mandelbugs is 31.4%.

As to Bohrbugs, the previous testing is insufficient, more unit testing, function testing,
as well as integration testing are necessary. As to Mandelbugs, a non-negligible fraction
exists. Due to their difficulty in fixing, cost-effective fault tolerance techniques, such as
environment diversity should be developed to handle them at run time.

(2) Almost all (97.6%) of the examined NAMs belong to
three subtypes: ENV, LAG and NAU. Half of NAMs are
of subtype ENV.

To reduce the impact of Mandelbugs in Android, bug detection, testing or fault tolerance
should focus on these three major bug subtypes, especially ENV. For ENV, testing under
multi-configurations and frequent function switch in an application, and two or more
applications run together should be paid attention to.

(3) Most (76.2%) of the examined ARBs are of MEM
subtype.

The memory characteristic in Android has been attracting large attention. Developers are
suggested to pay special attention to the resource release. Moreover, more performance
testing is required to reduce memory leaks.

Findings on bug attributes Implications

(4.1) Bohrbugs are almost uniformly distributed in compo-
nents, while Mandelbugs are prone to lie in the components
of Camera, Audio and Bluetooth.

For detecting Mandelbugs, components Camera, Audio and Bluetooth are suggested to
be carefully examined. Meanwhile, components Camera and Bluetooth should be
noticed for their large percentage of Mandelbugs.(4.2) Camera and Bluetooth seem to have the same number

of Bohrbugs and Mandelbugs.

(5) In Android, it tends to take more time to fix Mandelbugs
than Bohrbugs.

For Mandelbugs, due to their long fix duration, other mitigation techniques (such as retry,
restart, reboot) can be utilized to prevent their manifestation.

(6) In Android, the bug priority is not influenced by bug
type.

For mitigating Bohrbugs and Mandelbugs during design, the relative importance of these
two kinds of bugs is prone to be related with their proportions.

Findings on bug types Android vs. Linux Implications

(7) Although Android is developed based on Linux, their
bug percentages are quite different.

Although Android is developed based on the Linux kernel, developers could not use
the benefits in Linux directly in Android. For mitigating ARBs in Android,
Developers can design multi-level software rejuvenation strategies (such as close the
application from recent app and restart it, reboot the phone) on the basis of the
memory usage to get better user experience.

(8) The percentage of ARBs in Android is almost half of
that in Linux.

(9) Among the subtypes of NAM, the percentage of TIM
bugs in Android is significantly less than those in Linux.

Developers do not need to pay too much attention to TIM subtype in Android as that in
Linux.

(10) MEM subtype is dominant among ARBs in both
Android and Linux.

Refer to implications corresponding to Finding (8).

empirical results are described in detail, followed by threats

to validity in Section V. Section VI concludes the paper.

II. RELATED WORK

In the process of software development, bug classification

helps in the early identification of types in defect inflow

profiles [15]. There are mainly three schemes that are used to

conduct bug classification: HP scheme [16], IEEE Std. 1044

[17] and ODC scheme [18]. ODC classified defects according

to several attributes, among which defect type and defect

trigger are the most important ones. Defect type represents the

semantics of the fix and provides feedback on the development

process. A programmer usually makes the correction based on

it. Meanwhile, defect trigger refers to the conditions that make

a defect surface as a failure, which provides feedback on the

verification process.

The classification method used in this paper is based on

potential manifestation characteristics of a bug and its failure

reproducibility. The reproducibility of bugs is first systemati-

cally studied in [9], where bugs are classified into Bohrbugs

and Heisenbugs. The occurrence of failures due to Bohrbugs

is fixed which is considered as solid as Bohr atom, and they

are easy to be detected, while Heisenbugs are soft bugs which

behave uncertainly when testers attempt to reproduce failures

%

�� ����� %
��
��

Fig. 1. Failure mechanism for ARBs

caused by them. Grottke et al. [11] used Mandelbugs as a

complementary to Bohrbugs. Their classification was based

on the complexity of bug activation and error propagation.

Mandelbugs are a more general classification and Heisenbugs

are included in Mandelbugs.

The definitions of Bohrbug and Mandelbug are as follows:

(1) Bohrbug: a kind of bug whose activation and error prop-

agation are simple, reproducing failures and hence isolating

these bugs is easy. If the triggering conditions of the bug are

met, the failure will occur definitely.

(2) Mandelbug: a kind of bug which is difficult to be activat-

ed and/or has complicated error propagation. The complexity

results from either direct or indirect factors. The direct factors

refer to a time delay between bug activation to the occurrence

of failure. The indirect factors include interactions of software

application with its system-internal environment (hardware,

operating system, or other applications), the timing of inputs

and operations, or the sequencing of different operations.

There is a special subtype of Mandelbug called aging related

bug (ARB) as shown in Fig. 1. It is a kind of bug that can

136

%

�� ����� %
��
��

������
���
�����

� ! �����������
�������������
� &�����������'
�����������
������

����
�����
� &�����
��	��������

���
����
�����

����
��
������
������

Fig. 2. Failure mechanism for NAMs

lead to software aging. Software aging is a phenomenon in the

long-running software system, where software tends to show

increasing failure rate and/or degrading performance. ARBs

are related to accumulation process. It takes a long time for

ARBs to lead to failure due to error accumulations. Apart from

some conditions that activate ARB, environment conditions

should be met to make the aging related errors propagate [19].

The causes of ARB are mainly memory bloating and leaking,

unreleased file-locks, unterminated threads, storage fragmen-

tation, data corruption, accumulation of round-off errors and

so on [12]. The rest of Mandelbugs are defined as non-aging

related Mandelbugs (NAMs) which are shown in Fig. 2. NAMs

are complex due to possible influence of external factors.

Moreover, an extensive bug classification method was pro-

posed in [12] based on different kinds of complexity in

fault trigger conditions. This extended previous classification

method and gave more accurate information about bug type.

Based on above classification methods, some empirical

investigations are conducted. In [13], 520 software bugs in 18

JPL/NASA space missions are analyzed. The research revealed

that there were about 36.5% of bugs belonging to Mandelbugs,

and 61.4% were Bohrbugs. Moreover, ARBs constituted 4.4%

on average. In [12], authors performed an extended bug

classification in four open-source software systems: Linux

kernel, MySQL, Apache HTTPD server, and Apache AXIS

framework for Web services. They studied the percentage

of different bug types, and their relationship with features

including time to bug fix, severity and bug types.

What’s more, some related studies are also performed.

Chandra et al. [20] classified bugs into environment-

independent bugs and environment-dependent bugs and ex-

amined the faults in three open source applications: Apache

web server, GNOME, and MySQL. Authors in [21] defined a

comprehensive bug manifestation characteristics and classified

bugs according to their triggers, thus they have workload- and

state-dependent triggers, and user- and environment-dependent

triggers. In addition, some studies focus on specific bugs such

as concurrency bugs [22], ARBs [23].

In this paper, we perform an empirical study on Android

operating system. The main advantages of this work over

existing ones include:

(1) A new research object. Android operating system is an

embedded operating system with limited memory and CPU.

Due to its popularity, the requirement of its performance and

reliability is much more demanding. It becomes urgent for

developers to improve user experience based on the feedbacks.

(2) Several attributes related with bug location, fixing and

user behaviors are considered in our study. The relationships

between these attributes and bug types are explored.

(3) A comparison between Linux and Android in terms of

bug proportions is conducted, which provides a new perspec-

tive to understand these two operating systems.

To the best of our knowledge, this is the first work in

Android operating system to perform bug classifications with

fault triggers.

III. BUG SOURCE AND CLASSIFICATION PROCEDURE

A. Bug Classification Approach

Due to the focus of this work, the bug classification criteria

proposed in [12] are used here. According to the complexity

of fault activation and error propagation, bugs are classified

as Bohrbugs and Mandelbugs [10]. Mandelbugs are further

classified as aging related bug (ARB) and non-aging related

Mandelbugs (NAM). The subtypes of NAMs are:

• TIM: the timing of inputs and operations is the factor that

affects fault activation and/or error propagation;

• SEQ: the sequencing of inputs and operations is the factor

that influences the activation and/or error propagation (the

inputs could have been run in a different order, and at

least one of the other orders would not have resulted in

a failure);

• ENV: the interaction of software application with its

system-internal environment is the factor that impacts

faults activation and/or error propagation;

• LAG: a time delay exists between the activation of bug

and the occurrence of failure;

• NAU: Sometimes, insufficient information is provided

about fault activation and error propagation conditions.

However, in some reports, it is mentioned that failures

can be reproduced occasionally. Therefore, these bugs are

classified as a NAM of unknown subtype (NAU).

The subtypes of ARBs are shown as follows:

• MEM: a kind of ARB related to the accumulation of

errors resulted from improper memory management (e.g.,

memory leaks, buffers not being flushed);

• STO: a kind of ARB related to the accumulation of errors

caused by improper storage space management (e.g., disk

space is consumed by the bug);

• LOG: a kind of ARB resulting in leaks of other logical

resources (system-dependent data structures e.g., inodes

or sockets that are not freed after usage);

• NUM: a kind of ARB which leads to accumulation

of numerical errors (e.g., integer overflows, round-off

errors);

• TOT: The fault activation or error propagation rate in-

creases with total system runtime, but it is not induced

by accumulation of internal error states.

• ARU: In some cases, the information about failure mech-

anism (e.g., the presence of error accumulation) is insuf-

ficient, so it is difficult to decide which subtype this bug

should belong to. However, some reports mention that the

failure rate tends to increase over time and the occurrence

of failure will undergo certain accumulation process. In

this case, the bug is classified as an unknown type of

ARB.

137

��� ��� ��� 	�

��

��

��

�� ��

��

��
��� ���
��

������

Fig. 3. Bug classification flow chart

B. Bug Source

Cyanogenmod is a widely used Android operating system

[14]. With millions of users on dozens of devices, a public

and actively used bug repository called JIRA1 is set up for

Cyanogenmod. In JIRA, all the reports about bugs, feature

ideas, and other aspects of the project are tracked and or-

ganized together. Furthermore, the attributes of each bug is

given, such as type (bug, new feature etc.), status (open,

closed, etc.), priority, resolution (fixed, duplicate, etc.), affects

versions. Reports in JIRA can be filtered according to different

requirements. In order to have a comprehensive analysis of this

operating system, all bugs in Cyanogenmod bug report are the

possible candidates for our analysis. Furthermore, bugs are

picked up in terms of following three conditions:

(1) Bugs which have been fixed and closed. This kind of

reports can provide sufficient and reliable information.

(2) Bugs on released versions. Released versions are more

stable than unreleased ones.

(3) Bugs reported from January 29th, 2013 to August

31th, 2015. The former date is the day that the first bug in

Cyanogenmod is reported in this repository we can track now,

and the latter date is the day we gathered the empirical data.

According to the criteria above, 513 bugs are selected

for our study among more than 7000 reports related with

Cyanogenmod.

C. Bug Classification Procedure

The classification process is based on the description, com-

ments, the fixing code and attachments in the bug report. The

classification procedure is conducted manually as shown in

Fig. 3.

1) Given a bug report, the first step is to determine whether

it is definitely a bug in Cyanogenmod, and whether it

belongs to three conditions in Section III.B. The bug

reports do not meets conditions are excluded from our

analysis. For example, bugs in nightly version (e.g.,

CYAN-5132), bugs in self-installed APP (e.g., CYAN-

5082), bug reports that are closed because related func-

tions are not provided in the updated version (e.g.,

CYAN-3707).

2) Then we will consider whether it can be classified as an

ARB according to the characteristics of each subtype:

MEM, STO, LOG, NUM, TOL and ARU.

1https://jira.cyanogenmod.org

����

�����

�	���

��

��

���

Fig. 4. Proportion of bugs

3) If not, we will try to figure out whether it belongs to

NAM. The subtypes include TIM, ENV, SEQ, LAG and

NAU.

4) If not, and the bug activation and error propagation are

simple, we will classify the bug as a BOH.

5) If there is not enough information to classify bugs, it

will be classified as UNK.

The classification is performed independently with three

of the authors and doubtful cases are discussed to make a

consensus. According to the first step in this procedure, we

have ruled out 36 bugs. Thus there are totally 477 bugs left in

our empirical study. To make our classification method clearer,

some examples are shown in Table II. Furthermore, we release

our data to our research website2, enabling other researchers

perform and understand the classification more easily.

During the classification process, several bug attributes are

also recorded: component, priority, created and resolved time.

IV. EMPIRICAL RESULT

This section provides the result of bug classification in

Android. We analyze the result from three dimensions: bug

types, bug attributes, comparison analysis between Android

and Linux.

A. Bug Type of Android

Different bug types usually need different detection tech-

niques and countermeasures. In Fig. 4, we classify the ex-

amined bugs into three types: Bohrbugs, Mandelbugs and

Uknown.

Finding (1): About two thirds (65.2%) of the examined bugs

are Bohrbugs and the fraction of Mandelbugs is 31.4%.

From Finding (1), we can observe that, although unit testing,

functional testing and integration testing have been conducted

before the release of Android operating system, a large number

2http://zhengzheng.buaa.edu.cn/en/pdf/data.xlsx

138

TABLE II
SOME EXAMPLES OF BUGS AND THEIR CLASSIFICATION STEPS

Bug ID Type Description Bug Classification Procedures

CYAN-3746 MEM

In Nexus 5, the operations of swiping home screens or going
to apps from home screen are usually choppy. Typically
when the scoll ends, it is still visible in the last moment in
most cases. A memory leak occurs in the system.

Because memory leak is detected in the system, which is
related to improper memory management, so this bug is
classified as MEM.

CYAN-504 ARU

The steps to trigger bug are as followed: 1) Turn on
Bluetooth under settings. 2) Connect the device to be paired.
3) Turn off Bluetooth. Repeat these steps for a few times and
the failure might surface. The Bluetooth shows Bluetooth is
turned off, but actually not.

The failure surfaces after execution of step 1-3 for a few
times. It is related to certain accumulation process, but
neither memory management, storage space, accumulation
of numerical errors, nor TOT. Thus this bug is classified as
ARU.

CYAN-2380 SEQ

If Bluetooth of cell phone is turned on before we start
the car, it works well. But when we change the order of
these two operations, there will be something wrong with
the connection. In this situation, the connection lasts only
for a few minutes and then BT connection failed will be
shown on the screen.

At first, the bug activation or error propagation isnt related
to the total time that a system has been running, so it is
not an ARB. Secondly, from the description, the failure
is related with the sequence of starting car and openning
Bluetooth. Different sequence matters in terms with the
surface of failure.

CYAN-5583 ENV

The reproduction steps are: 1. open camera and set flash to
ON; 2. take one picture; 3. set flash to OFF; 4. take an-
other picture. After these four steps, the camera application
crashes.

The failure occurs after four operations, which constitutes
the complex environment for the failure to surface.

CYAN-4823 LAG
After Netflix playback runs for about 30 seconds, there will
be green flickering on the screen in the playback areas.

There is time delay between the bug activation and failure
occurrence, so it is classified as LAG.

CYAN-4892 NAU
On home screen, every now and then there will be a random
extra and empty page made by Trebuchet without adding it
manually.

No indications that shows bug activation or error propaga-
tion rate grows with the total running time of the system.
However the failure occurs randomly, and it is difficult to
reproduce. Thus this bug is classified as NAU.

CYAN-2606 BOH
Whenever user tries to switch to GSM/WCDMA auto,
com.android.phone crashes.

Both the bug activation and error propagation are not
complex, so it is classified as BOH.

of Bohrbugs still remain. This may attribute to the great quan-

tity of Bohrbugs introduced during the development process.

Even they are easier to be isolated and a great number of

Borhbugs have already been fixed during testing, the number

of Bohrbugs in the released versions is still large, leading to

the high proportion of Bohrbugs in the released versions.

Furthermore, although the number of Mandelbugs in An-

droid is less than Bohrbugs, it constitutes a non-negligible part.

The share of Mandelbugs (31.4%) is close to that in previous

studies, such as 38% in MySQL [12], 36.5% in a space mission

system software [13], and 20-40% in [24]. While software

testing is effective against Bohrbugs which are easily isolated

and reproduced, it is considerably less suitable for tackling

with Mandelbugs due to its non-deterministic nature.

Implications: As to Bohrbugs, the previous testing is insuffi-
cient, more unit testing, function testing, as well as integration
testing are necessary. As to Mandelbugs, a non-negligible
fraction exists. Due to their difficulty in fixing, cost-effective
fault tolerance techniques, such as environment diversity [25],
should be developed to handle them at run time.

To better understand the characteristics of Mandelbug, we

further analyze the bug proportions of each subtype in NAM

and ARB respectively in detail.

Finding (2): almost all (97.6%) of the examined NAMs

belong to three subtypes: ENV, LAG and NAU. Half of

NAMs are of subtype ENV.

The proportion of subtypes in NAM is shown in Fig. 5.

Examples of these three subtypes are:

• ENV: in CYAN-4054, the following operations are con-

�����

�����

		����

���
��

������

���� ����� �����
���� ����� 	���� �����

��

���

���

���

���

Fig. 5. Proportion of NAM sutbypes

ducted: a. open camera and take one picture; b. change

to video mode and set the FPS to 90 in Settings; c. return

to home screen by pressing home button; d. click camera

icon. After these four steps, the camera application will

crash immediately.

• LAG: in CYAN-4823, green flickering on the screen in

the playback areas may appear after Netflix playback has

been running for about 30 seconds.

• NAU: in CYAN-4892, a random extra and empty page

made by Trebuchet may appear on home screen auto-

matically every now and then.

Obviously, problems with similar subtypes occur frequently

in our daily cellphone usage. Finding (2) confirms user expe-

rience.

ENV takes the biggest share of NAM. In the past, many

recent studies specifically focus on environment dependent

bugs [20], [21], [26]. In Android, operations are usually con-

ducted under complex configurations. Meanwhile, the switch

among different activities also makes applications environment

complicated (e.g., CYAN-4054). Moreover, the widely and

139

�
����

������

�����

�����

�����

���� ����� ����� ����� �����

���

���

�
�

���

���

Fig. 6. Proportion of ARB sutbypes

frequently utilization of Bluetooth, network function, head-

phone function, which are usually used together with other

applications or components, gives rise to the chance the ENV

occurs.

As for LAG, a time delay exists between the activation of a

bug and the occurrence of failure. An example is CYAN-4823.

A user uses the playback function of Netflix to play a video.

There is no failure at the beginning of the execution. After

about 30 seconds, although Netflix plays the same video, a

failure occurs.

The percentage of NAU is 26.4%, which accounts for a non-

negligible part in Mandelbugs. For this kind of bugs, although

the exact bug manifestation processes are not presented in

their bug reports, we classify them into Mandelbugs according

to the described phenomenon in the reports that they cause

failures sporadically under the same condition (e.g., CYAN-

4892).

Implications: To reduce the impact of Mandelbugs in
Android, bug detection, testing or fault tolerance should focus
on these three major bug subtypes, especially ENV. For ENV,
testing under multi-configurations and frequent function switch
in an application, and two or more applications run together
should be paid attention to.

Finding (3): Most (76.2%) of the examined ARBs are of

MEM subtype.

The proportion distribution of subtypes of ARBs is shown in

Fig. 6. Finding (3) is similar with the observations in previous

studies in other software systems that most of ARBs are related

to memory management [12], [13], [27]. Moreover, during the

bug classification procedure, we find that memory leak is the

primary memory management problem.

The main part of Android application is programed with

Java language. Although Java has its own memory man-

agement mechanism (for example, garbage collection), it is

not adequate to ensure the proper memory management.

Many applications suffer memory leak. In Android, memory

management bugs are common due to the following reasons.

Firstly, Android framework transfers some duties of memory

management to the developers, while developers may assume

that the framework will manage the memory release auto-

matically so they might elide a call to release a resource.

Secondly, the functionalities of operating system are put in the

first place by developers, and performance testing is usually

not performed adequately before release. At last, even an

experienced developer may not release all the resources along

all possible sequences of event handlers [28].

TABLE III
COMPONENT LIST

Audio, Bluetooth, Browser, Busybox, c-apps, Calendar, Camera,
Clock, Contacts, File Manager, FM Radio, Framework, Gallery, GPS,
Graphics, I18n, Kernel, Launcher, Lights, Lockscreen, Mail, Media
Scanner, MobileData, Music, NFC, Phone, Privacy Guard, Profiles,
Quiet hours, Recovery, RIL, Settings, SMS/MMS, Superuser, Themes,
Translations, UI, Updater, USB Tether, Utilities, VideoPlayback, VPN,
Weather, Wifi, Wifi Tether, Wimax

TABLE IV
MEAN AND STANDARD DEVIATION OF #BUGS

Mean Std.dev

Bohrbug 18.31 5.51

Mandelbug 8.62 6.16

Implications: The memory characteristic in Android has
been attracting large attention [28]–[32]. Developers are
suggested to pay special attention to the resource release.
Moreover, more performance testing is required to reduce
memory leaks.

B. Bug Attributes Analysis in Android

In this section, we will explore the relationship between

bug attributes and bug types in Android from following three

aspects.

1) Bug types vs. components
In this subsection, we will investigate the bug type dis-

tribution among different components. The components of

Cyanogenmod in JIRA bug repository are listed in Table III.

In this study, the bug reports without component assigned

are excluded and we get 396 bugs finally. Note that for some

bugs, there could be more than one component marked, so the

sum of bugs over all the components are greater than the total

number of bugs analyzed.

From Table III, it is clear that there are 47 components in

total. Since there is little significance in studying components

with a small number of bugs, components with no more than

10 bugs are excluded from our study. Thus 13 components

with 268 bugs are studied here. These 13 components and

their corresponding number of Bohrbugs and Mandelbugs are

shown in Fig. 7.

Finding (4.1): Bohrbugs are almost uniformly distributed

in components, while Mandelbugs are prone to lie in the

components of Camera, Audio and Bluetooth.

The mean and standard deviation of the number of two

types of bugs among these 13 components are list in Table

IV. From the table, we can see that the standard deviation

of Mandelbugs across components is 6.16, while the value

of Bohrbugs is 5.51. The low value of standard deviation

implies less fluctuation of bug numbers across components.

Thus comparing with Bohrbugs, Mandelbugs tend to locate

in a few components. The number of Mandelbugs in top-3

components constitutes around 50% of that in 13 components

studied here.

What’s more, it can be obviously observed from Fig. 7 that

in most components there are more Bohrbugs than Mandel-

140

�

	

��

�	

��

�	

�

	

����� �!"�#!$ ��%&

����� �!"��'()�*��%&

Fig. 7. #Bug in 13 components

bugs. This phenomenon is another support view to the large

number of Bohrbugs in finding (1).

Finding (4.2): Camera and Bluetooth seem to have the same

number of Bohrbugs and Mandelbugs.

The phenomenon of Finding (4.2) may be related with

the functionalities of these two components. Camera is a

component responsible for capturing pictures or videos. EN-

V accounts for the largest share of Mandelbugs in camera

component. Specifically, 12 of 19 Mandelbugs are ENVs. The

frequent switch between camera mode and video mode, as

well as some settings along with these two modes construct

complex environment for the bug manifestation. For example,

the reproduction of CYAN-5583 is as follows: 1. open camera

and set flash to ON; 2. take one picture; 3. set flash to OFF;

4. take another picture. After these four steps, the camera

application crashes.
Bluetooth is widely used in mobile phones to exchange

data over short distances, as well as build personal area

networks [33]. The large number of Mandelbugs in Blue-

tooth component is consistent with our intuitions. Bluetooth

usually involves two devices, and it is commonly used in

conjunction with other applications (such as phone calls, music

applications). Furthermore, other operations can be conducted

simultaneously when data are transferred by Bluetooth, such

as typing the keyboard while listening to music with Bluetooth

headset. All the cases above show that bugs in Bluetooth

are highly related to interaction with system environment.

From the classification results, we can see that most of the

Mandelbugs in Bluetooth component belong to the subtype

ENV. In detail, 11 bugs are classified as ENV among 18

Mandelbugs in total.
As to the components of Camera and Bluetooth, consider-

ing from functionalities of these two components, the great

number of Mandelbugs can reach the same scale of Bohrbugs

they suffer.
Implications: For detecting Mandelbugs, components Cam-

era, Audio and Bluetooth are suggested to be carefully exam-
ined. Meanwhile, components Camera and Bluetooth should
be noticed for their large percentage of Mandelbugs.

2) Bug types vs. fix duraiton
In this section, we will explore whether the fix duration of

�
���

�����
�����

�	���

���

����

����

����

����

�����

��'(&+)

#�, ���

Fig. 8. The relationship between bug type and fix duration

bugs is related to bug types. It is intuitive that the bugs with

more complex manifestation process need longer time to be

fixed. Because there are no exact data of fixing time provided

in bug reports, in our research we use the time span between

the open time and the resolved time of a bug report as an

approximation of its fix duration in terms of days.

Finding (5): In Android, it tends to take more time to fix

Mandelbugs than Bohrbugs.

The mean and standard deviation of two bug types are

shown in Fig. 8. From the figure, we can observe that the

average time to fix a Borhnbug is 63.0 days. Comparatively,

the average time to fix a Mandelbug is 71.4 days. This

phenomenon is consistent with what we suppose originally.

In addition, we further apply nonparametric hypothesis test,

Mann-Whitney-Wilcoxon Test [34], to verify the result. The

null hypothesis is that the fix duration of Bohrbugs and

Mandelbugs are sampled from the same distribution. After

performing the test, we got that the p-value is 0.009. Therefore

it is obvious that the null hypothesis of no significant differ-

ence at 95% of confidence is rejected. Thus we can get the

conclusion that Mandelbugs tend to require more time to be

fixed. This also provides evidence of the relationship between

bug types and their fix duration in previous studies in Linux,

HTTPD, and AXIS [12].

This phenomenon can be explained by the difference be-

tween bug trigger conditions and bug properties. The first

thing a developer needs to do when he is assigned a bug is

reproduce the failure. For a Mandelbug, due to its complexity,

the original information a reporter provides may be insufficient

to identify the bug activation and the way to reproduce the

failure. Furthermore, with the nondeterministic property of

141

����
��

��-�	��-�������

����
��
��
����

��	����

����

. /+/.'* �'0! (! �'* �/(! + /1/'*

�������--�

��

�������

����

. /+/.'* �'0! (! �'* �/(! + /1/'*

Fig. 9. The relationship between bug priority and bug type

Mandelbugs, the right failure reproduce procedure may not

always make the failure occur. As a consequence, it may take

longer to fix a Mandelbug.

Implications: For Mandelbugs, due to their long fix dura-
tion, other mitigation techniques (such as retry, restart, reboot)
can be utilized to prevent their manifestation.

3) Bug types vs. priority
Bug priority indicates the relatively importance of a bug

compared to other bugs [35]. In the bug tracking system

JIRA, five priorities are used to denote the importance: critical,

major, normal, minor, and trivial. We try to explore whether

there is certain correlation between bug types and their priority

in this section.

Finding (6): In Android, the bug priority is not influenced

by bug type.

The priority distribution in each type of bug is listed in

Fig. 9. Moreover, the nonparametric statistics method Pearson

chi-square test is adopted, assessing the null hypothesis that

two types of bugs are independent [34]. The confidence is set

to 95%. From the test, we got p-value 0.569. Thus the null

hypothesis could be accepted.

Fig. 9 shows that most of Bohrbugs and Mandelbugs belong

to normal priority. It can be observed that the complexity

of bug activation conditions and error propagation do not

have much relationship with the significance of bugs users

perceived. From users’ perspective, bugs correlated with emer-

gency situation (e.g., CYAN-3642: calling 911 doesnt work)

or internet security (e.g., CYAN-3502: the operating system

is vulnerable to MITM when the updater utilizes HTTP to

check for updates) has the highest priority, since these are the

situations having more relationship with user interests.

Implications: For mitigating Bohrbugs and Mandelbugs
during design, the relative importance of these two kinds of
bugs is prone to be related with their proportions.

C. Comparison Analysis Between Android and Linux

Linux and Android are two most popular operating systems.

Although Android is developed based on the Linux kernel, it

is designed primarily for touchscreen mobile devices. Android

has further architectural changes outside the typical Linux

kernel development cycle, such as the inclusion of Binder,

logger, anonymous shared memory driver (ashmem), different

out-of-memory handing [36]. Furthermore, more and more

researchers have paid attention to the comparison between

Android and Linux [37], [38]. In this section, a bug proportion

����

�	����

�����
������

�����
�����

������

	�����

���-��

��
��

��

���

���

��

���

	��

���

���

��2 #!$ �'()�* ��� ��#

�() !/)

�/(�3

Fig. 10. Comparison of bug subtype proportions in Android and Linux

comparison between Android and Linux is conducted. Fig. 10

illustrates the comparison of the bug distribution in Linux and

Android. The data of Linux are extracted from [12].

Finding (7): Although Android is developed based on

Linux, their bug percentages are quite different.

From Fig. 10, we can see that the bug distributions of Linux

and Android are different from each other in terms of every

type of bugs. For example, Mandelbugs share about 31.4% in

Android, while in Linux the percentage is 50.2%.

There are several reasons that might account for this phe-

nomenon. Firstly, due to its size and portable trait, the number

of equipments that can connect with Android is usually much

less than that in Linux. Thus in general Android has less prone

to interact with hardware than Linux. Secondly, some new

mechanisms in Android (e.g., low memory killer) may reduce

the probability of failures caused by Mandelbugs.

Finding (8): The percentage of ARBs in Android is almost

half of that in Linux.

Specifically, it is depicted in Fig. 10 that the percentage of

ARB is 4.4% and 8.3% in Android and Linux, respectively.

From previous studies, MEM is the primary subtype of ARBs

[12], [13], [27]. So from the perspective of MEM, there

are two reasons accounting for this phenomenon. First of

all, in the aspect of programming language, applications in

Android (each application in Android runs in its own Dalvik

virtual machine) are mainly programmed by Java which has

garbage collection mechanism to help developers take memory

management within the Dalvik virtual machine, leading to

the low percentage of bugs related to MEM. While C/C++

is used in Linux, developers should manage dynamic memory

allocation and deallocation by themselves.

Secondly, the memory management is different. The Low

Memory Killer (LMK), an enhancement of the Out Of Mem-

ory killer (OOM killer) in the original Linux Kernel, is

142

����� �����

		����

���
��

������

������

��	��

�����

������
������

��

���

���

��

���

	��

���

�� ��� ��� ��� ���

�() !/)
�/(�3

Fig. 11. Comparison of bug subtype proportions in NAM

developed to manage memory in Android. Process in android

is divided into five levels in the importance hierarchy [39]:

foreground process, visible process, service process, back-

ground process, and empty process, in the priority decreasing

order. If the system is in low memory condition and certain

threshold is reached, LMK will first kill empty process to free

memory. If memory is still not enough, background process

will be killed. Foreground process is the last group of process

that will be killed. While in Linux, the kernel Out Of Memory

killer (OOM killer) takes advantage of heuristics and computes

the processs badness in order to determine which process will

be killed in memory pressure situation [40]. Thus, if memory

leak in Android happened in the process with low priority, the

operating system will reclaim the memory if needed without

the influence of the foreground process.

Implications: Although Android is developed based on the
Linux kernel, developers could not use the benefits in Linux
directly in Android. For mitigating ARBs in Android, Devel-
opers can design multi-level software rejuvenation strategies
(such as close the application from recent app and restart it,
reboot the phone) on the basis of the memory usage to get
better user experience.

Finding (9): Among the subtypes of NAM, the percentage

of TIM bugs in Android is significantly less than those in

Linux.

In Fig. 11, the proportions of NAM subtypes in Android

and Linux are provided. From the figure, we can see that in

the subtypes of ENV, LAG, and NAU, Android has a higher

proportion than Linux. While in the subtype of TIM, Linux

occupies higher proportion.

Among above phenomena, a noticeable one is the differ-

ence in TIM. From the figure, it can be observed that the

percentage of TIM in Linux is 42.1%, while in Android, it is

1.6%. Although Android is a multiuser operating system (each

application is regarded as a user in Android, and usually every

application has its own process), due to its limited resources

and screen size, only a limited number of foreground processes

are allowed to run at the same time (usually one to a few).

Even background or service processes can be executed in the

meantime, but their functionalities would be limited comparing

with foreground processes, such as receiving push notifications

[32]. For example, when a mail application is running as

foreground process, functions such as sending emails is able

to be performed. While when it is running as service process,

only some services such as email notification are available.

Thus the number of concurrent processes running on Android

�
����

������

����� ����� �����

���	��

������

��
�� ��
��
�����

��

���

���

��

���

	��

���

���

���

��� ��� �
� ��� ���

�() !/)
�/(�3

Fig. 12. Comparison of bug subtype proportions in ARB

is small, leading to the less possibility of TIM bugs.

Implications: Developers dont need to pay too much atten-
tion to TIM subtype in Android as that in Linux.

Finding (10): MEM subtype is dominant among ARBs in

both Android and Linux.

The comparison of the proportions of ARB subtypes in

Android and Linux is summarized in Fig. 12. From the figure,

it is obvious that there are not apparent proportion differences

in these bug subtypes between Android and Linux.

The MEM proportion in ARB is 76.2% and 66.7% re-

spectively in Android and Linux respectively. Irrespective of

different mechanism and design purpose of two operating

system, MEM constitutes the greatest part of ARB, which

supports the conclusion of previous studies [12], [13], [27].

Implications: Refer to implications corresponding to Find-
ing (8).

V. THREATS TO VALIDITY

Similar to other empirical studies, our study is also subject

to validity problem. Potential threats to the validity of our

study include bug report selection, bug report description, and

manual inspection.

In terms of bug report selection, we only select fixed and

closed issues, since unfixed and unclosed issues may contain

incomplete information. Bug type proportions and results for

bug attributes may be different if unfixed and unclosed issues

are included.

In terms of bug report description, since the reports are writ-

ten by users and developers, the accuracy and completeness

of the description and comments influence the judgement of

bug types. Furthermore, the component and bug priority of

each bug report are extracted directly from the issue tracking

system. Due to the reporters’ different understanding, there

might be bias about it.

In terms of manual inspection, although we have inspected

carefully all the related information in bug reports, including

descriptions, comments, as well as attached files and patches,

the possible classification mistakes could not be avoided.

VI. CONCLUSION

In this paper, we performed an empirical investigation of

bugs in Android operating system in terms of fault triggers.

With the bug classification results based on 513 real world bug

reports, our analyses are conducted from three dimensions:

the bug types of Android, bug attributes analysis in Android,

and bug type comparison between Android and Linux, along

with some interesting findings and implications that can be

143

adopted by developers or users. Future research on Android

can benefit from our study. For example, bug detection or

fault tolerance strategies can mainly focus on ENV subtype

to reduce the impact of Mandelbugs. As to the components

of Android, Camera, Bluetooth and Audio should be firstly

examined to reduce nondeterministic behaviors.

ACKNOWLEDGMENT

Zheng’s research was partially supported by Aeronautical

Science Fund of China under grant number 20155551025

and by State Key Laboratory of Software Development Envi-

ronment under grant number SKLSDE-2013ZX-08. Trivedi’s

research was partially supported by US Navy NEEC under

grant number N00174-16-C-0036 and by US NSF under grant

number CNS-1523994.

REFERENCES

[1] Android, the world’s most popular mobile platform. [Online]. Available:
http://developer.android.com/about/android.html

[2] C. Mann and A. Starostin, “A framework for static detection of privacy
leaks in android applications,” in Proceedings of the 27th Annual ACM
Symposium on Applied Computing. ACM, 2012, pp. 1457–1462.

[3] H. Shahriar, S. North, and E. Mawangi, “Testing of memory leak in
android applications,” in 2014 IEEE 15th International Symposium on
High-Assurance Systems Engineering. IEEE, 2014, pp. 176–183.

[4] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study of the
energy consumption of android applications.” in ICSME, 2014, pp. 121–
130.

[5] A. K. Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing failures
in mobile oses: A case study with android and symbian,” in 2010
IEEE 21st International Symposium on Software Reliability Engineering.
IEEE, 2010, pp. 249–258.

[6] N. Klein, C. S. Corley, and N. A. Kraft, “New features for duplicate bug
detection,” in Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 2014, pp. 324–327.

[7] A. Alipour, A. Hindle, and E. Stroulia, “A contextual approach towards
more accurate duplicate bug report detection,” in Proceedings of the 10th
Working Conference on Mining Software Repositories. IEEE Press,
2013, pp. 183–192.

[8] M. Asaduzzaman, M. C. Bullock, C. K. Roy, and K. A. Schneider, “Bug
introducing changes: A case study with android,” in Proceedings of the
9th IEEE Working Conference on Mining Software Repositories. IEEE
Press, 2012, pp. 116–119.

[9] J. Gray, “Why do computers stop and what can be done about it?” in
Symposium on reliability in distributed software and database systems.
Los Angeles, CA, USA, 1986, pp. 3–12.

[10] M. Grottke and K. Trivedi, “Software faults, software aging and software
rejuvenation,” Journal of the Reliability Engineering Association of
Japan, vol. 27, no. 7, pp. 425–438, 2005.

[11] M. Grottke and K. S. Trivedi, “Fighting bugs: Remove, retry, replicate,
and rejuvenate,” Computer, vol. 40, no. 2, pp. 107–109, 2007.

[12] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. S. Trivedi,
“Fault triggers in open-source software: An experience report,” in 2013
IEEE 24th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2013, pp. 178–187.

[13] M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical investigation
of fault types in space mission system software,” in 2010 IEEE/IFIP
international conference on dependable systems & networks (DSN).
IEEE, 2010, pp. 447–456.

[14] Wikipedia, cyanogenmod. [Online]. Available: http-
s://en.wikipedia.org/wiki/CyanogenMod

[15] N. Mellegård, M. Staron, and F. Törner, “A light-weight defect clas-
sification scheme for embedded automotive software and its initial
evaluation,” in 2012 IEEE 23rd International Symposium on Software
Reliability Engineering. IEEE, 2012, pp. 261–270.

[16] R. B. Grady, Practical software metrics for project management and
process improvement. Prentice-Hall, Inc., 1992.

[17] “Ieee std. 1044-2009. standard classification for software anomalies.”
IEEE, 2010.

[18] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S.
Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal defect classification-
a concept for in-process measurements,” IEEE Transactions on software
Engineering, vol. 18, no. 11, pp. 943–956, 1992.

[19] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in IEEE Proceedings of Workshop on Software Aging and
Rejuvenation, in conjunction with ISSRE. Seattle, WA, 2008.

[20] S. Chandra and P. M. Chen, “Whither generic recovery from application
faults? a fault study using open-source software,” in Dependable Systems
and Networks, 2000. DSN 2000. Proceedings International Conference
on. IEEE, 2000, pp. 97–106.

[21] D. Cotroneo, R. Pietrantuono, S. Russo, and K. Trivedi, “How do bugs
surface? a comprehensive study on the characteristics of software bugs
manifestation,” Journal of Systems and Software, vol. 113, pp. 27–43,
2016.

[22] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,”
in ACM Sigplan Notices, vol. 43, no. 3. ACM, 2008, pp. 329–339.

[23] F. Machida, J. Xiang, K. Tadano, and Y. Maeno, “Aging-related bugs
in cloud computing software,” in Software Reliability Engineering
Workshops (ISSREW), 2012 IEEE 23rd International Symposium on.
IEEE, 2012, pp. 287–292.

[24] R. Chillarege, “Understanding bohr-mandel bugs through odc triggers
and a case study with empirical estimations of their field proportion,”
in Software Aging and Rejuvenation (WoSAR), 2011 IEEE Third Inter-
national Workshop on. IEEE, 2011, pp. 7–13.

[25] K. S. Trivedi, M. Grottke, and E. Andrade, “Software fault mitigation
and availability assurance techniques,” International Journal of System
Assurance Engineering and Management, vol. 1, no. 4, pp. 340–350,
2010.

[26] D. G. Cavezza, R. Pietrantuono, J. Alonso, S. Russo, and K. S.
Trivedi, “Reproducibility of environment-dependent software failures:
An experience report,” in 2014 IEEE 25th International Symposium on
Software Reliability Engineering. IEEE, 2014, pp. 267–276.

[27] D. Cotroneo, R. Natella, and R. Pietrantuono, “Predicting aging-related
bugs using software complexity metrics,” Performance Evaluation,
vol. 70, no. 3, pp. 163–178, 2013.

[28] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang, “Characterizing and
detecting resource leaks in android applications,” in Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on.
IEEE, 2013, pp. 389–398.

[29] P. Stirparo, I. Nai Fovino, and I. Kounelis, “Data-in-use leakages
from android memory-test and analysis,” in IEEE 9th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), 7-9 Oct. 2013, Lyon, France. IEEE, 2013, pp.
701–708.

[30] R. S. Vairagde, R. A. Kulkarni et al., “Mobile device oriented image
scaling for reducing memory consumption in storing in android,” Inter-
national Journal of Computer Applications Technology and Research,
vol. 3, no. 1, pp. 84–87, 2014.

[31] J. Park and B. Choi, “Automated memory leakage detection in android
based systems,” International Journal of Control and Automation, vol. 5,
no. 2, pp. 35–42, 2012.

[32] S.-H. Kim, S. Kwon, J.-S. Kim, and J. Jeong, “Controlling physical
memory fragmentation in mobile systems,” ACM SIGPLAN Notices,
vol. 50, no. 11, pp. 1–14, 2016.

[33] Wikipedia, bluetooth. [Online]. Available: http-
s://en.wikipedia.org/wiki/Bluetooth

[34] D. J. Sheskin, Handbook of parametric and nonparametric statistical
procedures. crc Press, 2003.

[35] Cyanogenmod. [Online]. Available: http://www.cyanogenmod.org/
[36] Wikipedia, android (operating system). [Online]. Available:

https://en.wikipedia.org/Android (operating system)
[37] F. Khomh, H. Yuan, and Y. Zou, “Adapting linux for mobile platforms:

An empirical study of android,” in Software Maintenance (ICSM), 2012
28th IEEE International Conference on. IEEE, 2012, pp. 629–632.

[38] F. Maker and Y.-H. Chan, “A survey on android vs. linux,” University
of California, pp. 1–10, 2009.

[39] Android Developers, processes and Threads. [Online]. Avail-
able: https://developer.android.com/guide/components/processes-and-
threads.html

[40] S. Brahler, “Analysis of the android architecture,” Karlsruhe institute for
technology, vol. 7, p. 8, 2010.

144

