
Object Oriented Testing Techniques: Survey and

Challenges

Prashant,
Dept. Of I.T.,

 Gurgaon College of Engg.,
Gurgaon, Haryana.

prashantvats12345@gmail.com

Abstract: Object-oriented programs involve many unique

features that are not present in their conventional

counterparts. Examples are message passing,
synchronization, dynamic binding, object instantiation,

persistence, encapsulation, inheritance, and polymorphism.

Testing for such program is, therefore, more difficult than

that for conventional programs. Object-orientation has
rapidly become accepted as the preferred paradigm for

large-scale system design. In this paper we have discussed

about how testing is being carried out in the Object

Oriented environment. To accommodate this, several new
techniques have been proposed like fault-based techniques,

Scenario based, Surface structure testing, and Deep

structural testing.

Keywords-Fault-based Testing, Scenario-based Testing,

Surface Structure Testing.

1. INTRODUCTION

The testing of software is an important means of

assessing the software to determine its Quality. With

the development of Fourth generation languages

(4GL), which speeds up the implementation process,

the proportion of time devoted to testing increased.

As the amount of maintenance and upgrade of

existing systems grow, significant amount of testing

will also be needed to verify systems after changes

are made [1]. Most testing techniques were originally

developed for the imperative programming paradigm,

with relative less consideration to object-oriented

features such as message passing, synchronization,

dynamic binding, object instantiation, persistence,

encapsulation, inheritance, and polymorphism.

Objects may interact with one another with

unforeseen combinations and invocations. The testing

of concurrent object-oriented systems has become a

most challenging task. Object-orientation has rapidly

become accepted as the preferred paradigm for large

scale system design. The reasons for this are well

known and understood. First, classes provide an

excellent structuring mechanism. They allow a

system to be divided into well-defined units, which

may then be implemented separately. Second, classes

support information hiding. Third, object-orientation

encourages and supports software reuse. This may be

achieved either through the simple reuse of a class in

a library, or via inheritance, whereby a new class may

be created as an extension of an existing one [2].

These might cause some types of faults that are

difficult to detect using traditional testing techniques.

To overcome these deficiencies, it is necessary to

adopt an object-oriented testing technique that takes

these features into account.

2. TROUBLE MAKERS OF OBJECT ORIENTED

SOFTWARE

Following are trouble makers of OO Software

2.1 Encapsulation A wrapping up of data and

functions into a single unit is known as

encapsulation. This restricts visibility of object states

and also restricts observability of intermediate test

results. Fault discovery is more difficult in this case.

2.2 Polymorphism Polymorphism is one of the

crucial features of OOP. It simply means one name

multiple forms. Because of polymorphism, all

possible bindings have to be tested. All potential

execution paths and potential errors have to be tested.

2.3 Inheritance The mechanism of deriving a new

class from an old one is called inheritance. The old

class is referred to as the base class and the new one

is called the derived class or the subclass. Inheritance

results in invisible dependencies between

super/sub-classes. Inheritance results in reduced code

redundancy, which results in increased code

dependencies. If the function is erroneous in the base

class, it will be inherited in the derived class too. A

subclass can’t be tested without its super classes.

Prashant ,Int.J.Computer Technology & Applications,Vol 3 (2), 746-749

746

ISSN:2229-6093

3. THE TEST MODEL AND ITS CAPABILITIES

The tools for automated testing are based upon

certain models of software/programs and algorithms.

This mathematically defined test model consists of

following types of diagrams:

3.1 Class Diagram: A class diagram or an object

relation diagram (ORD) represents the relationships

between the various classes and its type. Types of

relationships are mainly: inheritance, aggregation,

and association. In object oriented programs there are

three different relationships between classes they are

inheritance, aggregation and association.

3.2 Control Flow Graph: A control flow graph

represents the control structure of a member function

and its interface to other member functions so that a

tester will know which is used and/or updated and

which other functions are invoked by the member

function.

3.3 State Transition Diagram: A STD or an Object

State Diagram (OSD) represents the state behavior of

an object class. Now the state of a class is embodied

in its member variables which are shared among its

methods. The OSD shows the various states of a class

(various member variable values), and transitions

between them (method invocations).
4 . OBJECT ORIENTED TESTING TECHNIQUES

Object – Oriented programming is centered around

concepts like Object, Class, Message, Interfaces,

Inheritance, Polymorphism etc., Traditional testing

techniques can be adopted in Object Oriented

environment by using the following techniques:

 Method testing

 Class testing

 Interaction testing

 System testing

 Acceptance testing

4.1 Method Testing: Each individual method of the

OO software has to be tested by the programmer.

This testing ensures Statement Coverage to ensure

that all statements have been traversed atleast once,

Decision Coverage to ensure all conditional

executions and Path Coverage to ensure the execution

the true and false part of the loop.

4.2 Class Testing: Class testing is performed on the

smallest testable unit in the encapsulated class. Each

operation as part of a class hierarchy has to be tested

because its class hierarchy defines its context of use.

New methods, inherited methods and redefined

methods within the class have to be tested. This

testing is performed using the following approaches:

 Test each method (and constructor) within a

class

 Test the state behavior (attributes) of the

class between methods

Class testing is different from conventional testing in

that Conventional testing focuses on

input-process-output, whereas class testing focuses

on each method.

Test cases should be designed so that they are

explicitly associated with the class and/or method to

be tested. The purpose of the test should be clearly

stated. Each test case should contain:

 A list of messages and operations that will

be exercised as a consequence of the test

 A list of exceptions that may occur as the

object is tested

 A list of external conditions for setup (i.e.,

changes in the environment external to the

software that must exist in order to properly

conduct the test)

 Supplementary information that will aid in

understanding or implementing the test

Since object oriented software is rich in

encapsulation, Inheritance and Polymorphism the

following challenges are faced while performing

class testing.

 It is difficult to obtain a snapshot of a class

without building extra methods that display

the classes’ state.

 Each new context of use (subclass) requires

re-testing because a method may be

implemented differently (polymorphism).

Other unaltered methods within the subclass

may use the redefined method and need to

be tested.

 Basis path, condition, data flow and loop

tests can all apply to individual methods,

but can’t test interactions between methods

4.3 Integration Testing: Object Orientation does not

have a hierarchical control structure so conventional

top-down and bottom up integration tests have little

meaning. Integration testing can be applied in three

different incremental strategies:

 Thread-based testing, which integrates

classes required to respond to one input or

event.

 Use-based testing, which integrates classes

required by one use case.

 Cluster testing, which integrates classes

required to demonstrate one collaboration.

Integration testing is performed using the following

methods:

 For each client class, use the list of class

methods to generate a series of random test

sequences. Methods will send messages to

other server classes.

Prashant ,Int.J.Computer Technology & Applications,Vol 3 (2), 746-749

747

ISSN:2229-6093

 For each message that is generated,

determine the collaborating class and the

corresponding method in the server object.

 For each method in the server object (that

has been invoked by messages sent from the

client object), determine the messages that it

transmits.

 For each of the messages, determine the next

level of methods that are invoked and add

these into the test sequence.

4.4 System Testing: All rules and methods of

traditional systems testing are also applicable to

object-oriented systems. Various types of System

Testing include:

 Recovery testing: how well and quickly does

the system recover from faults

 Security testing: verify that protection

mechanisms built into the system will

protect from unauthorized access (hackers,

disgruntled employees, fraudsters)

 Stress testing: place abnormal load on the

system

 Performance testing: investigate the

run-time performance within the context of

an integrated system

4.5 Regression Testing: Regression testing is

performed similar to traditional systems to make sure

previous functionality still works after new

functionality is added. Changing a class that has been

tested implies that the unit tests should be rerun.

Depending on what has changed, the test scenarios

may have to be altered to support this test. In

addition, the integration test should be redone for that

suite of classes.

5. SPECIALIZED TECHNIQUES FOR OBJECT

ORIENTED ENVIRONMENT

5.1 Fault – Based Testing: Any product must

conform to Customer requirements. Hence, testing

should begin with the analysis model itself to

uncover errors. Fault – Based testing is the method

used to design tests that have a high probability

finding probable errors of the software[3]. Fault –

Based testing should begin with the analysis and

design models. This type of testing can be based on

the specification (user's manuals, etc.) or the code. It

works best when based on both.

5.2 Scenario – Based Testing: This new type of

testing concentrates on what the customer does, not

what the product does. It means capturing the tasks

(use cases, if you will) the customer has to perform,

then using them and their variants as tests. Of course,

this design work is best done before you've

implemented the product. It's really an offshoot of a

careful attempt at "requirements elicitation". These

scenarios will also tend to flush out interaction bugs.

They are more complex and more realistic than fault

based tests often are. They tend to exercise multiple

subsystems in a single test, exactly because that's

what users do. The tests won't find everything, but

they will at least cover the higher visibility

interaction bugs[4].

5.3 Surface Structure Testing: Object-oriented

programming arguably encourages a different style of

interface. Rather than performing functions, users

may be given objects to fool around with in a direct

manipulation kind of way. But whatever the

interface, the tests are still based on user tasks.

Capturing those will continue to involve

understanding, watching, and talking with the

representative user (and as many non representative

users as are worth considering)[4] There will surely

be some difference in detail. For example, in a

conventional system with a "verbish" interface, one

might use the list of all commands as a testing

checklist. If he had no test scenarios that exercise a

command, he perhaps missed some tasks (or the

interface has useless commands). In a "nounish"

interface, he might use the list of all objects as a

testing checklist. A basic principle of testing is that

we must trick our self into seeing the product in a

new way. If the product has a direct manipulation

interface, we'll test it better if we pretend functions

are independent of objects. We’d ask questions like,

"Might the user want to use this function - which

applies only to the Scanner object - while working

with the Printer?" Whatever the interface style, we

should use both objects and functions as clues

leading to overlooked tasks. [4]

5.4 Deep (architectural) structure: Test design based

on the surface structure will miss things. User tasks

will be overlooked. Important variants that should be

tested won't be. Particular subsystem interactions

won't be probed. Looking at the deep structure might

reveal those oversights. Various constructs that can

be tested using Deep testing are,

 A class diagram describes relationships

between objects. An object of one class may

use or contain an object of another class.

 The object diagram and interaction diagram

give more detail about relationships between

objects.

 A class diagram that shows inheritance

structure.

 State charts (enhanced state machines) are a

way of describing many tasks in a compact

picture. If there is a state transition exercised

by no test, why not? Again, the detailed state

charts for objects buried deep in the system

Prashant ,Int.J.Computer Technology & Applications,Vol 3 (2), 746-749

748

ISSN:2229-6093

are not likely to be as useful as those for the

major, user-visible objects.

6. CONCLUSION

In Object Oriented environment the main

troublemakers that cause problems for testing are

Inheritance, Polymorphism and Encapsulation. We

studied the problems that are created by these

elements. A detailed study of the testing techniques

available to test programs developed under OO

environment have been made. Some of the

specialized techniques available to test OO software

have also been discussed.

REFERENCES

[1] A. J. J. Marciniak, “Encyclopedia of software engineering”,

Volume 2, New York, NY: Wiley, 1994, pp.1327-1358

[2] E. F. Miller, “Introduction to Software Testing Technology,”

Tutorial: Software testing & Validation Techniques, Second

Edition, IEEE Catalog No. EHO 180-0, pp. 4-16

[3] Roger S.Pressman “Software Engineering – A Practitioner’s

Approach” McGraw Hill International Edition.

[4]http://www.exampler.com/testing-com/ ritings/2-scen.htm

Prashant ,Int.J.Computer Technology & Applications,Vol 3 (2), 746-749

749

ISSN:2229-6093

http://www.exampler.com/testing-com/

