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1. Introduction

Approximation theory is concerned with how functions can best be approximated with simpler functions called base
functions and with quantitatively characterizing the errors introduced thereby [1]. One of these base functions is Block Pulse
Functions (BPFs) [2] on which some researches are based. However BPFs are very common in use, it seems their convergence
is weak and some published papers have tried to improve the speed of BPFs convergence with different methods like hybrid
BPFs [3–5]. In fact by referring to error bound of BPFs approximation it seems for achieving double precision, number of BPFs
have to be doubled which means solving systems of equations with double unknowns and double equations [1,6].

In this paper e Modified Block Pulse Functions (eMBPFs) are introduced and some theorems prove if eMBPFs be used for
achieving numerical expansions with k times more precision, there is no need to increase the number of BPFs, k times, which
leads to solve a system of equations with k times more equations and unknowns. But the results of BPFs solution can be com-
bined with solutions of k � 1 systems of equations with one more unknown and nearly achieve k times more precision.

We use eMBPFs and directly solve Volterra integral equation of the first kind, then by some examples we show the effi-
ciency of eMBPFs.

2. Block Pulse Functions (BPFs)

BPFs are studied by many authors and applied for solving different problems, for example see [2–7].

Definition: An m-set of BPFs is defined over the interval [0,T) as
. All rights reserved.

x: +98 2173223416.
knejad), bigrahimi@gmail.com (B. Rahimi).

http://dx.doi.org/10.1016/j.cnsns.2010.09.032
mailto:maleknejad@iust.ac.ir
mailto:bigrahimi@gmail.com
http://dx.doi.org/10.1016/j.cnsns.2010.09.032
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


2470 K. Maleknejad, B. Rahimi / Commun Nonlinear Sci Numer Simulat 16 (2011) 2469–2477
wiðtÞ ¼
1; iT

m 6 t < ðiþ1ÞT
m

0; otherwise;

(
ð2:1Þ
where i = 0, . . . ,m � 1 with m as a positive integer. Also, h = T/m, and wi is the ith BPF.
In this paper it is assumed that T = 1, so BPFs are defined over [0,1) and h = 1/m.
There are some properties for BPFs, the most important properties are disjointness, orthogonality, and completeness.
The disjointness property can be clearly obtained from the definition of BPFs:
wiðtÞwjðtÞ ¼
wiðtÞ; i ¼ j;

0; i – j;

�
ð2:2Þ
where i, j = 0, . . . ,m � 1.
The other property is orthogonality. It is clear that
Z 1

0
wiðtÞwjðtÞdt ¼ hdij; ð2:3Þ
where dij is Kronecker delta.
The third property is completeness. For every f 2 L2([0,1)) when m approaches to infinity, Parseval’s identity holds:
Z 1

0
f 2ðtÞdt ¼

X1
i¼0

f 2
i kwiðtÞk

2
; ð2:4Þ
where
fi ¼
1
h

Z 1

0
f ðtÞwiðtÞdt: ð2:5Þ
Vector forms: Consider the first m terms of BPFs and write them concisely as m-vector:
WðtÞ ¼ ½w0ðtÞ; . . . ;wm�1ðtÞ�
T
; t 2 ½0;1Þ:
The above representation and disjointness property follows [2]:
WðtÞWTðtÞ ¼

w0ðtÞ 0 � � � 0
0 w1ðtÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � wm�1ðtÞ

266664
377775; ð2:6Þ

WTðtÞWðtÞ ¼ 1; ð2:7Þ

WðtÞWTðtÞV ¼ eVWðtÞ; ð2:8Þ
where V is an m-vector and eV ¼ diagðVÞ. Moreover, it can be clearly concluded that for an m �m matrix B:
WTðtÞBWðtÞ ¼ bBTWðtÞ; ð2:9Þ
where bB is an m-vector with elements equal to the diagonal entries of matrix B.
BPFs expansion: The expansion of a function f(t) over [0,1) with respect to wi(t), i = 0, . . . ,m � 1 may be compactly written

as:
f ðtÞ ’
Xm�1

i¼0

fiwiðtÞ ¼ FTWðtÞ ¼ WTðtÞF; ð2:10Þ
where F = [f0, . . . , fm�1]T and fi’s is defined by (2.5).
Now assume k(s, t) 2 L2([0,1) � [0,1)). It can be expanded with respect to BPFs as
kðs; tÞ ’ WTðsÞKCðtÞ; ð2:11Þ
where W(s) and C(t) are m1 and m2 components BPFs vectors, respectively, and K is the m1 �m2 block pulse coefficient ma-
trix with kij, i = 0, . . . ,m1 � 1, j = 0, . . . ,m2 � 1, as:
kij ¼ m1m2

Z 1

0

Z 1

0
kðs; tÞwiðsÞcjðtÞdsdt: ð2:12Þ
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For convenience, we put m1 = m2 = m.
Operational matrix: Computing

R t
0 wiðsÞds follows:8
Z t

0
wiðsÞds ¼

0; t 6 ih;

t � ih; ih 6 t < ðiþ 1Þh;
h; ðiþ 1Þh 6 t < 1:

><>: ð2:13Þ
Note that t � ih, equals to h/2, at mid-point of [ih, (i + 1)h). So we can approximate t � ih, for ih 6 t < (i + 1)h, by h/2.
Now expressing

R t
0 wiðsÞds, in terms of the BPFs follows:
Z t

0
wiðsÞds ’ ½0; . . . ; 0;

h
2
; h; . . . ;h�UðtÞ; ð2:14Þ
in which the ith component is h/2.
Therefore
Z t

0
WðsÞds ’ PWðtÞ; ð2:15Þ
where Pm�m is called operational matrix of integration which can be represented by:
P ¼ h
2

1 2 2 � � � 2
0 1 2 � � � 2
0 0 1 � � � 2
..
. ..

. ..
. . .

. ..
.

0 0 0 � � � 1

26666664

37777775: ð2:16Þ
So, the integral of every function f(t) can be approximated as follows:
Z t

0
f ðsÞds ’

Z t

0
FTWðsÞds ’ FT PWðtÞ ð2:17Þ
Time delay BPFs: If we define an auxiliary function of a single Block Pulse with the width kh (0 6 k < 1):
wkðtÞ ¼
1; 0 6 t < kh

0; otherwise;

�
ð2:18Þ
and an m � 1 vector wk(t):
WkðtÞ ¼ wkðtÞ;wkðt � hÞ; . . . ;wkðt � ðn� 1ÞhÞ½ �T ;

then a BPF containing time delay s = (q + k)h can be expressed as [2]:
wiðt � sÞ ¼ DT
i HqWðtÞ � DT

i HqWkðtÞ þ DT
i Hqþ1WkðtÞ; ð2:19Þ
where
Di ¼ 0 0 . . . 0 1 0 . . . 0½ �T ;
one lays in ith position, and
H ¼

0 1 0 � � � 0
0 0 1 � � � 0
..
. ..

. ..
. . .

. ..
.

0 0 0 � � � 1
0 0 0 � � � 0

26666664

37777775:
3. e Modified Block Pulse Functions (eMBPFs)
Definition: An (n + 1)-set of eMBPFs consists of n + 1 functions which are defined over [0,T) as follows:
/0ðtÞ ¼
1; t 2 ½0; T

n � eÞ ¼ I0;

0; otherwise;

�

/nðtÞ ¼
1; t 2 ½T � e; TÞ ¼ In;

0; otherwise;

�
ð3:1Þ

/iðtÞ ¼
1; t 2 ½iTn � e; ðiþ1ÞT

n � eÞ ¼ Ii;

0; otherwise; 0 < i < n:

(
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eMBPFs are disjoint and orthogonal:
/iðtÞ/jðtÞ ¼
/iðtÞ; i ¼ j;

0; i – j;

�
ð3:2Þ
where i, j = 0, . . . ,n and
Z 1

0
/iðtÞ/jðtÞdt ¼ hdij; ð3:3Þ
eMBPFs like BPFs are complete:
Z 1

0
f 2ðtÞdt ¼

X1
i¼0

f 2
i k/iðtÞk

2
; ð3:4Þ
where
fi ¼
1

DðIiÞ

Z 1

0
f ðtÞ/iðtÞdt; ð3:5Þ
and D(Ii) is length of interval Ii, defined in (3.1).
Using notation Un(t) = [/0(t), . . . ,/n(t)] T, the following properties are achieved:
Unþ1ðtÞUT
nþ1ðtÞ ¼

/0ðtÞ 0 � � � 0
0 /1ðtÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � /nðtÞ

266664
377775; ð3:6Þ

UT
nþ1ðtÞUnþ1ðtÞ ¼ 1; ð3:7Þ

Unþ1ðtÞUT
nþ1ðtÞV ¼ eVUnþ1ðtÞ; ð3:8Þ

UT
nþ1ðtÞBUnþ1ðtÞ ¼ bBTUnþ1ðtÞ: ð3:9Þ
If h = T/n the operational matrix of eMBPFs is defined as follows:
Pðnþ1Þ�ðnþ1Þ ¼

h�e
2 h� e h� e � � � h� e h� e
0 h

2 h � � � h h

0 0 h
2 � � � h h

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � h
2 h

0 0 0 � � � 0 e
2

266666666664

377777777775
; ð3:10Þ
and it has the same properties and usages as operational matrix (2.16).
Definition: eMBPFs expansion of continues function f(t) 2 L2[0,1] with respect to /i, i = 0, . . . ,n is defined as:
f ðtÞ ’ f̂ nþ1 ¼
Xn

i¼0

fi/iðtÞ; ð3:11Þ
fi is defined in (3.5).
4. Theorems and error analysis

In following theorems for simplicity we assume T = 1 and h = 1/n.

Theorem 1. If f̂ nðtÞ ¼
Pn

i¼0fi/iðtÞ and fi ¼ 1
DðIiÞ

R 1
0 f ðtÞ/iðtÞdt; i ¼ 0; . . . ;n then:

(i) d ¼
R 1

0 f ðtÞ �
Pn

i¼0fi/iðtÞ
� �2dt, achieves its minimum value.

(ii) ff̂ nðtÞg approaches f(t) point wise.

(iii)
R 1

0 f 2ðtÞdt ¼
P1

i¼0f 2
i k/ik

2
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Proof. Proof is like similar theorem in [2] but intervals of integrations have to redefine as Ii, i = 0, . . . ,n in (3.1). h
Theorem 2. Assume:

(i) f(t) is continuous and is differentiable over interval [ � h,1 + h],
(ii) f̂ ih

k
ðtÞi ¼ 0;1; . . . ; k� 1 are correspondingly BPFs, h

k MBPFs . . . ; ðk�1Þh
k MBPFs expansions of f(t) base on n + 1 eMBPFs over

interval [0,1),
(iii) E ¼ max kf ðtÞ � f̂ ihðtÞk1;
i¼0;...;k�1

�f ðtÞ ¼ 1 Xk�1

f̂ ih
k
ðtÞ;
k

(iv)

k

i¼0

for adequate large n:
then
kf ðtÞ � �f ðtÞk1 /
1

E:

k

Proof. Suppose ti = i/n and Ii = [ti�1, ti) i = 0, . . . ,n. In fact tis are partition points of BPFs. Through the rest of proof i is an arbi-
trary element of set {0, . . . ,n}, but fix. Suppose n is so large that f0(t) over interval J = [ti�1, ti+1) is approximately equal to con-
stant m and we use line y = mt + b instead of f(t) over interval J. Now over interval ½ti; ti þ h

kÞ:
�f ðtÞ ¼ 1
k

Xk�1

j¼0

mðti � jh
kÞ þ bþmðtiþ1 � jh

kÞ þ b
2

¼ m
ti þ tiþ1

2

� �
þ b�mhðk� 1Þ

2k
; ð4:1Þ
but ti+1 = ti + h and (4.1) can be reformulated as:
�f ðtÞ ¼ m
ti þ ti þ h

2

� �
þ b�mhðk� 1Þ

2k
¼ mti þ bþmhðk� 1Þ

2k
; ð4:2Þ
on the other hand:
max
½ti ;tiþh

kÞ
jf ðtÞ � �f ðtÞj ’ max

½ti ;tiþh
kÞ
jmt þ b� �f ðtÞj 6 jmti þ b� �f ðtÞj ¼ mh

2k
; ð4:3Þ
and over ½ti; ti þ h
k�; E is:
E P max
i¼0;...;k�1

jf ðtÞ � f̂ ih
k
ðtÞj ’ mti þ b� mti þ bþmðti þ hÞ þ b

2

� ����� ���� ¼ mh
2
: ð4:4Þ
(4.3) and (4.4) complete the proof. h

Maleknejad in [6] and Lepik in [8] have introduced some methods to estimate the error when the exact solution is not
available.

Theorem 3. Suppose f is continuous in I, is differentiable in (0,1), and there is a number M such that jf0(x)j 6M, for every x 2 I.
Then
jf ðbÞ � f ðaÞj 6 Mjb� aj;
for all a, b 2 I.
Proof. See [9]. h

Now, we assume that f(x) is a differentiable function on I such that jf0(x)j 6M. We define the error between f(x) and its
BPFs expansion over every subinterval Ii as follows:
eiðxÞ ¼ fi � 0ðxÞ; x 2 Ii
where Ii ¼ ½ in ; iþ1
n Þ.

It can be shown that:
keik2 ¼
Z iþ1

n

i
n

e2
i ðxÞdx ¼

Z iþ1
n

i
n

fi � f ðxÞð Þ2dx ¼ 1
n

fi � f ðgÞð Þ2; g 2 Ii; ð4:5Þ
where we used mean value theorem for integral. Using Eq. (2.5) and the mean value theorem, we have:
fi ¼ n
Z iþ1

n

i
n

f ðxÞdx ¼ n
1
n

f ðfÞ ¼ f ðfÞ; f 2 Ii: ð4:6Þ
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Substituting (4.6) into (4.5) and using Theorem 3, we will have:
keik2 ¼ 1
n

f ðfÞ � f ðgÞð Þ2 6 M2

n
jf� gj2 6 M2

n3 : ð4:7Þ
This leads to:
keðxÞk2 ¼
Z 1

0
e2ðxÞdx ¼

Z 1

0

Xn�1

i¼0

eiðxÞ
 !2

dx ¼
Z 1

0

Xn�1

i¼0

e2
i ðxÞ

 !
dxþ 2

X
i6j

Z 1

0
eiðxÞejðxÞdx:
Since for i – j, Ii \ Ij = £, then
keðxÞk2 ¼
Xn�1

i¼0

Z 1

0
e2

i ðxÞdx
� �

¼
Xn�1

i¼0

keik2
: ð4:8Þ
Substituting (4.7) into (4.8), we have
keðxÞk2
6

M2

n2 ;
hence, keðxÞk ¼ O 1
n

� �
, where e(x) = jfn(x) � f(x)j and fnðxÞ ¼

Pn�1
i¼0 fi/iðxÞ.

Theorems 2 and 3 with above discussion conclude that error estimation for eBPFs is keðxÞk ¼ Oð 1
knÞ, where n shows number

of BPFs and k times of modifications.
In Lepik estimation [8], when the exact solution is not available we choose number of BPFs as n = 2j, j = 0,1,2, . . . The error

of results can be estimated in following way. We introduce the quantity
SðnÞ ¼ h:
Xn

i¼1

jfij ð4:9Þ
S(n) is the area which lies in the interval t 2 [0,1], underneath curve jfn(t)j. For estimating the exactness of the solution the
quantity
DðnÞ ¼ Sðnþ 1Þ
SðnÞ � 1

���� ����; ð4:10Þ
is introduced. The convergence rate of process can be estimated with the aid of function [8]:
rðnÞ ¼ Dðn� 1Þ
DðnÞ j ¼ 1;2;3; . . . : ð4:11Þ
5. Applying eMBPFs to solve Volterra integral equation of the first kind

During this section we use a direct method to solve Volterra integral equation of the first kind by BPFs, which is estab-
lished in [7]. Here we modify this method by eMBPFs.

Consider Volterra integral equation of the first kind:
Z t

0
kðt; sÞxðsÞds ¼ f ðtÞ 0 6 t < 1; ð5:1Þ
where f and k are known, x is unknown, k(t,s) 2 L2([0,1) � [0,1)) and x(t), f(t) 2 L2([0,1)).
Approximating functions f, x and k with respect to e MBPFs gives:
f ðtÞ ’ FT
nþ1Unþ1ðtÞ ¼ UT

nþ1ðtÞFnþ1; ð5:2Þ
xðtÞ ’ XT

nþ1Unþ1ðtÞ ¼ UT
nþ1ðtÞXnþ1; ð5:3Þ

kðt; sÞ ’ UT
nþ1ðtÞKðnþ1Þ�ðnþ1ÞUnþ1ðsÞ ð5:4Þ
where the vectors F, X and matrix K are eMBPFs coefficient of f(t), x(t) and k(t,s) respectively. In (5.3), X is unknown vector.
Substituting (5.2)–(5.4) into (5.1) gives
FTUðtÞ ’
Z t

0
UTðtÞKUðsÞUTðsÞXds ’ UTðtÞK

Z t

0
UðsÞUTðsÞXds; ð5:5Þ
Using (3.8) follows:
FTUðtÞ ’ UTðtÞK
Z t

0

eXUðsÞds ’ UTðtÞK eX Z t

0
UðsÞds: ð5:6Þ
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Using operational matrix P in (3.10) gives
FTUðtÞ ’ UTðtÞK eXPUðtÞ; ð5:7Þ
in which K ~XP is an (n + 1) � (n + 1) matrix. If e equals zero, only n BPFs exist and dimension of vectors and matrixes decrease
to n.

According to (3.9), we can write:
UTðtÞK eXPUðtÞ ¼ bXTUðtÞ; ð5:8Þ
where bX is an (n + 1)-vector with components equal to the diagonal entries of matrix K ~XP.
So, the vector bX can be written as follows:
bX ¼
k00x0

h�e
2

k10x0ðh� eÞ þ k11x1
h
2

k20x0ðh� eÞ þ k21x1hþ k22x2
h
2

..

.

kn0x0ðh� eÞ þ kn1x1hþ � � � þ knðn�1Þxn�1hþ knnxn
h
2

2666666664

3777777775
: ð5:9Þ
Also, we can write
bX ¼
k00

h�e
2 0 0 � � � 0

k10ðh� eÞ k11
h
2 0 � � � 0

k20ðh� eÞ k21h k22
h
2 � � � 0

..

. ..
. ..

. . .
. ..

.

kn0ðh� eÞ kn1h kn2h � � � knnxn
h
2

2666666664

3777777775

x0

x1

x2

..

.

xn

266666664

377777775: ð5:10Þ
Now, combining (5.7) and (5.8), and replacing ’ with = gives
bX � F ¼ 0: ð5:11Þ
If Eq. (5.1) has a unique solution then Eq. (5.11) will be a well condition linear lower triangle system of n + 1 algebraic equa-
tions for n + 1 unknown x0, . . . ,xn which can be easily solved by forward substitution.

Now if ej ¼ jh
k ; j ¼ 0; . . . ; k� 1 there will be k numerical answers f̂ ej

; j ¼ 0; . . . ; k� 1 and according to theorem (2) we ex-
pect, the maximum difference between:
�f ðtÞ ¼
Xk�1

j¼0

f̂ �j
ðtÞ ð5:12Þ
and f(t) be approximately equal to kf(t) � fn�k(t)k1, where fn�k(t) is the numerical solution achieved by method of [7] with
n � k, BPFs.

6. Numerical examples

In some papers, it is usual to test the accuracy of methods by comparing the numerical solution and exact solution in
sample points. But this is not so appropriate for BPFs expansions. For example if we calculate BPFs expansion of y = x with
n = 5, 15 and 25 over interval [0,1) and choose xi ¼ 2iþ1

10 ; i ¼ 0;1;2;3;4 as sample points, the errors at these points for
n = 5, 15 and 25, are zero while the bound of errors for these expansions are correspondingly 0.1, 0.03 and 0.02. This example
declares that bound of error is more adequate to represent the accuracy of numerical solutions based on BPFs. According to
above discussion, in following examples bounds of errors are compared.

In following examples, n shows number of Block Pulse Functions and k is times of modifications. If k equals zero, the
expansion is based on BPFs otherwise expansion is based on eMBPFs.

Tables 1–4 clearly show the results of Theorem 2. In fact whenever values of n � (k + 1) are equal, the bounds of errors
kf � �fk1 are equal. For example in Table 1 where n = 128 and k = 0, it is seen that n � (k + 1) = 128 and kf � �fk1 ¼ 0:024,
while for n = 32 and k = 3, it is seen that n � (k + 1) = 128 and kf � �fk1 ¼ 0:025; which is approximately same bound of error.

Example 1. In this example different expansions of f(t) = cos(2pt) over interval [0,1) are compared. Table 1 shows the results
of numerical examples. n is number of BPFs, and k is number of modifications.
Example 2. Consider the following integral equation [7]:



Table 1

n 32 64 128 32 32 32 64

k 0 0 0 1 2 3 1
kf � �fk1 0.1 0.045 0.024 0.043 0.033 0.025 0.024

Table 2

n 32 64 128 32 32 32 64

k 0 0 0 1 2 3 1
kf � �fk1 0.02 0.01 0.005 0.011 0.0075 0.0065 0.0055

Table 3

n 32 64 128 32 32 32 64

k 0 0 0 1 2 3 1
kf � �fk1 0.04 0.02 0.01 0.024 0.017 0.014 0.011

Table 4

n 32 64 128 32 32 32 64

k 0 0 0 1 2 3 1

kf � fk1 0.045 0.025 0.014 0.027 0.026 0.018 0.015
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Z t

0
etþsxðsÞds ¼ tet ; 0 6 t < 1;
with exact solution x(t) = e�t. The results are shown in Table 2.
Example 3. Consider the following integral equation [7]:
Z t

0
cosðt � sÞxðsÞds ¼ t sinðtÞ; 0 6 t < 1;
with exact solution x(t) = 2 sin(t). The results are shown in Table 3.
Example 4. Consider the following Abel integral equation:
Z t

0

xðsÞffiffiffiffiffiffiffiffiffiffi
t � s100
p ds ¼ 10000t

199
100ð299þ 200tÞ

5890599
0 6 t < 1;
with exact solution x(t) = t2 + t. The results are shown in Table 4.
7. Conclusion

The main concept introduced in this paper can be expanded in any numerical expansion. It is relatively easy to illustrate
that if we perform simultaneously two operators (shifting and averaging) on an expansion of a function, the result is an
expansion with a maximum error, less than or equal to the error of individuals. e MBPFs are adaptable to parallel program-
ming. �f is an average of fei

; i ¼ 0; . . . ; k� 1, and it is possible to calculate each fei
with one separate processor simultaneous.
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