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1. Introduction

Approximation theory is concerned with how functions can best be approximated with simpler functions called base
functions and with quantitatively characterizing the errors introduced thereby [1]. One of these base functions is Block Pulse
Functions (BPFs) [2] on which some researches are based. However BPFs are very common in use, it seems their convergence
is weak and some published papers have tried to improve the speed of BPFs convergence with different methods like hybrid
BPFs [3-5]. In fact by referring to error bound of BPFs approximation it seems for achieving double precision, number of BPFs
have to be doubled which means solving systems of equations with double unknowns and double equations [1,6].

In this paper ¢ Modified Block Pulse Functions (¢éMBPFs) are introduced and some theorems prove if éeMBPFs be used for
achieving numerical expansions with k times more precision, there is no need to increase the number of BPFs, k times, which
leads to solve a system of equations with k times more equations and unknowns. But the results of BPFs solution can be com-
bined with solutions of k — 1 systems of equations with one more unknown and nearly achieve k times more precision.

We use éMBPFs and directly solve Volterra integral equation of the first kind, then by some examples we show the effi-
ciency of eMBPFs.

2. Block Pulse Functions (BPFs)
BPFs are studied by many authors and applied for solving different problems, for example see [2-7].
Definition: An m-set of BPFs is defined over the interval [0,T) as
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1, Tp< @
(=4 mS m 2.1
Vil { 0, otherwise, @1

where i=0,...,m — 1 with m as a positive integer. Also, h = T/m, and ; is the ith BPF.
In this paper it is assumed that T =1, so BPFs are defined over [0,1) and h=1/m.
There are some properties for BPFs, the most important properties are disjointness, orthogonality, and completeness.
The disjointness property can be clearly obtained from the definition of BPFs:

Wi(t)7 i :j7
(OY;(t) = 2.2
wiowo={ 2 22
where i, j=0,...,m— 1.
The other property is orthogonality. It is clear that
1
/0 vi(O)y;(t)dt = hoy, (2.3)

where §; is Kronecker delta.
The third property is completeness. For every f e L%([0,1)) when m approaches to infinity, Parseval’s identity holds:

o1 oo
/0 Peyde =3I, (2.4)
i=0
where
1
fi=g || romod 25)

Vector forms: Consider the first m terms of BPFs and write them concisely as m-vector:

P(t) = Wo(t), ... hma (D), t€[0,1).

The above representation and disjointness property follows [2]:

Yot) 0 - 0

. 0 Yty - 0
YO =| . S _ , (2.6)

0 0 - YD)
i) =1, 2.7)
PPV = V(L) (2.8)
where V is an m-vector and V = diag(V). Moreover, it can be clearly concluded that for an m x m matrix B:

T (H)BY(t) = BT¥(t), (2.9)

where B is an m-vector with elements equal to the diagonal entries of matrix B.
BPFs expansion: The expansion of a function f{t) over [0,1) with respect to y(t),i=0,...,m — 1 may be compactly written
as:

m-1

F(&) =" firi(t) = F'¥ () = YT ()F, (2.10)

i=0

where F=[fy,....fm_1]" and f/s is defined by (2.5).
Now assume k(s,t) € L%([0,1) x [0,1)). It can be expanded with respect to BPFs as

k(s,t) ~ W1 (s)KT(¢), (2.11)

where ¥(s) and I'(t) are m; and m, components BPFs vectors, respectively, and K is the m; x m, block pulse coefficient ma-
trix with k;, i=0,...,m; —1,j=0,...,my — 1, as:

1 1
k,-j:mlmz/o /()Ic(s,t)z//i(s)yj(t)dsdt. (2.12)
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For convenience, we put my =m, =m.
Operational matrix: Computing fé y;(1)dt follows:

. 0, t < ih,
/ yi(rydt={ t—ih, ih<t<(i+1h, (2.13)
0 h, (i+Dh<t<1.

Note that t — ih, equals to h/2, at mid-point of [ih,(i + 1)h). So we can approximate t — ih, for ih <t < (i + 1)h, by h/2.
Now expressingj'é ¥;(t)dt, in terms of the BPFs follows:

t
/ Vi(T)dT =~ [O,...,O,%,h,...,h}(l)(t), (2.14)
0
in which the ith component is h/2.
Therefore
ot
/ Y(t)dt ~P¥P(b), (2.15)
0
where Py, is called operational matrix of integration which can be represented by:
12 2 .- 2
o012 ... 2
p:g 001 ... 2] (2.16)
000 -1
So, the integral of every function f{t) can be approximated as follows:
t t
/ f(r)dt ~ / F'y(t)dt ~ F PY(t) (2.17)
0 0
Time delay BPFs: If we define an auxiliary function of a single Block Pulse with the width /h (0 < /< 1):
1, 0<t</h
()= "= 2.18
20 { 0, otherwise, ( )
and an m x 1 vector y,(t):
i) = [0t = )t — (n = D),
then a BPF containing time delay 7 = (q + /)h can be expressed as [2]:
Wit — 1) = ATHYP(£) — ATHYW,(t) + ATHY W, (1), (2.19)
where
4;=[00...010...0,
one lays in ith position, and
010 ---0
o001 --0
H=|: : :
0 0O 1
0 0O 0
3. ¢ Modified Block Pulse Functions (éeMBPFs)
Definition: An (n + 1)-set of ¢eMBPFs consists of n + 1 functions which are defined over [0,T) as follows:
1, te[0,I—-¢) =1,
t) = " ’
Po(t) {O, otherwise,
1, te[T-¢T)=1I,,
t) = ’ 3.1
0 {0, otherwise, (3-1)

1, tel—gET g1,
i) = ne b o
0, otherwise, 0<i<n.
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eéMBPFs are disjoint and orthogonal:
¢i(t)7 i= j7
i(£);(t) = .
soae {2
where i, j=0,...,n and

1
/0 60y (6)dt = hoy,

eMBPFs like BPFs are complete:

1 oo
/0 Poyde =S a0,
i=0

where
-l 1
-5 |, fosma

and A(l;) is length of interval [;, defined in (3.1).
Using notation @,(t) = [¢o(t),. .., ¢a(t)] T, the following properties are achieved:

do(t) 0 - 0

) 0 $t) - 0

Dnq (t)q§n+1 (t) = . .
0 0 - ¢

Bh ()P () =1,
o1 (D)1 (OV = Vb (1),

(pgﬂ( VBPy1 (t) = ET@n“(t).

If h = T/n the operational matrix of ¢éMBPFs is defined as follows:

bt h—¢ h—g - h—g h—¢g]

0 & h .. h h

o o & h o h
P(n+1)x(n+1): . X . . . . )

0 0 0 Lo

o 0 o0 0 -

and it has the same properties and usages as operational matrix (2.16).

Definition: ¢éMBPFs expansion of continues function f{t) € L?[0,1] with respect to ¢;, i=0,...,n is defined as:

fn+1 Zf(b

fi is defined in (3.5).

4. Theorems and error analysis
In following theorems for simplicity we assume T=1 and h=1/n.
Theorem 1. If f,(t) = S ofigi(t) and f; = A(,) ]0 (t)p;(t)dt, i=0,...,n then:

(i) 5 = [1 (F(t) — " ofii(£)) dt, achieves its minimum value.
(ii) {f,, (t)} approaches f(t) point wise.
(iii) fo f2(0dt = o2l

(3.2)

(3.4)

(3.6)

(3.10)

(3.11)
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Proof. Proof is like similar theorem in [2] but intervals of integrations have to redefine as I;, i=0,...,nin (3.1). O

Theorem 2. Assume:

(i) f(t) is continuous and is differentiable over interval [ — h, 1+ h]
(ii) f,h( )i=0,1,...,k—1 are correspondingly BPFs, 1 MBPFs .. e UhMBPFS expansions of f(t) base on n+ 1 eéMBPFs over
interval [0,1),

(i) E= max_ [f(0) - Fy(0)l..

) fiy=1

then for adequate large n:

1
IF©) = Ol S £E.

Proof. Suppose t;=i/nand I; = [t;_4,t;)i=0,...,n. In fact t;s are partition points of BPFs. Through the rest of proof i is an arbi-
trary element of set {0,...,n}, but fix. Suppose n is so large that f(t) over interval J = [t;_1,t;+1) is approximately equal to con-
stant m and we use line y =mt+ b instead ofﬂt) over interval J. Now over interval [t;, t; +1):

+ b+ m(tm ) +b B ti+tiq mh(k - ])
kz 5 7m< 5 >+b— T 4.1)
but ti; = t; + h and (4.1) can be reformulated as:
Zo ti+ti+h mhk-1) mh(k —1)
on the other hand:
_ - mh
max |f(t) — f(t)] ~ max [mt+b — f()\élmtﬂrb—f(t)\:j, (4.3)
(£t [t;.b+D) K
and over [t;, t; + 1], E is:
E> max [f(t) f(t)|:‘mti+b—<mti+b+rg(ti+h)+b>':m7h. (4.4)

(4.3) and (4.4) complete the proof. O
Maleknejad in [6] and Lepik in [8] have introduced some methods to estimate the error when the exact solution is not
available.

Theorem 3. Suppose f is continuous in I, is differentiable in (0,1), and there is a number M such that |f(x)| < M, for every x € I.
Then

[f(b) — f(a)] < M|b —al,
foralla bel

Proof. See [9]. O
Now, we assume that f{x) is a differentiable function on I such that |f(x)| < M. We define the error between f(x) and its
BPFs expansion over every subinterval I; as follows:

eix)=fi—0(x), xel
where [; = [, &),
It can be shown that:

H]

HaW:[ cu—/ (i~ foPdx =1 (i~ fon)?. el (45)

where we used mean value theorem for integral. Using Eq. (2.5) and the mean value theorem, we have:
it1
el 1 )
fi=n [ fodx = naf©) =f@). cel. (46)
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Substituting (4.6) into (4.5) and using Theorem 3, we will have:

2 2
led? = ()~ Flm)? < e - np < (A7)

This leads to:

et = [ e [ (tz;em ) -[ (Ze )ng/ e(9e(x

Since for i # j, [ nIj= &, then

n-1 1 n-1
2 _ 2 — 112
e —Z( A (x)dx) >l (48)

i=0
Substituting (4.7) into (4.8), we have
M2
n?
hence, [le(x)|| = (%), where e(x) = [fu(x) — fix)| and fu(x) = g fighs (%)

Theorems 2 and 3 with above discussion conclude that error estimation for ¢éBPFs is |le(X)|| = O(
of BPFs and k times of modifications.

In Lepik estimation [8], when the exact solution is not available we choose number of BPFs as n =2/, j = 0,1,2,. .. The error
of results can be estimated in following way. We introduce the quantity

—h. Z Ifi (4.9)
i=1

le)[I* <

)

), where n shows number

kn/?

S(n) is the area which lies in the interval t € [0,1], underneath curve |f,(t)|. For estimating the exactness of the solution the
quantity

_S(n+1)
4(n) f‘ S ‘ (4.10)
is introduced. The convergence rate of process can be estimated with the aid of function [8]:
_An-1).
a(n)_wj_172,37.... (4.11)

5. Applying éeMBPFs to solve Volterra integral equation of the first kind

During this section we use a direct method to solve Volterra integral equation of the first kind by BPFs, which is estab-
lished in [7]. Here we modify this method by ¢éMBPFs.
Consider Volterra integral equation of the first kind:

/t k(t,s)x(s)ds=f(t) 0<t<1, (5.1)
0

where f and k are known, x is unknown, k(t,s) € L*([0,1) x [0,1)) and x(t), f(t) € L*([0,1)).
Approximating functions f, x and k with respect to ¢ MBPFs gives:

F(6) = Foy @uia () = @4 (OF i, (5.2)
X(6) = Xpq Pra (£) = Pp (X1, (53)
k(t,s) - n+]( )K nt1)x(ne1) Prst (s) (54)

where the vectors F, X and matrix K are éMBPFs coefficient of f(t), x(t) and k(t,s) respectively. In (5.3), X is unknown vector.
Substituting (5.2)-(5.4) into (5.1) gives

Flo(t) ~ /td)T(t)K(I)(s)tDT(s)de ~ @T(H)K / [ D(s) D" (s)Xds, (5.5)
JOo JO
Using (3.8) follows:

Fra(t) ~ &' (1)K / "Xd(s)ds ~ ' (DKX / " o(s)ds. (5.6)
0 0
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Using operational matrix P in (3.10) gives
FTo(t) ~ @T(t)K)?PCD(t), (5.7)

in which KXPis an (n + 1) x (n + 1) matrix. If ¢ equals zero, only n BPFs exist and dimension of vectors and matrixes decrease
to n.
According to (3.9), we can write:

" ()KXPD(t) = XTd(t), (5.8)

where X is an (n + 1)-vector with components equal to the diagonal entries of matrix KXP.
So, the vector X can be written as follows:

kooxo %
I(]()X()(h — 8) + knx]%
)A( — ](20X0(h - 8) -+ kz]X]h + kszzg . (59)

_knoXO(h — 8) + kn1X1h + -+ kn(n,1)xn,1h + knnxn%

Also, we can write

ko= 0 0 - 0 1fx
k]o(h*ﬁ) k‘]]% 0 0 X1

)A( — kzo(h — 8) kz]h kzz% 0 X2 |, (5‘10)
| kno(h— &) kmh kigh - KX B | L %n

Now, combining (5.7) and (5.8), and replacing ~ with = gives
X-F=0. (5.11)

If Eq. (5.1) has a unique solution then Eq. (5.11) will be a well condition linear lower triangle system of n + 1 algebraic equa-
tions for n + 1 unknown X, ..,x, which can be easily solved by forward substitution.

Now if & :j?”, j=0,...,k—1 there will be k numerical answers fgj, j=0,...,k—1 and according to theorem (2) we ex-
pect, the maximum difference between:

F6y=>"Fq(0) (5.12)

and f(t) be approximately equal to ||f{(t) — faxi(t)|l» Where f,.k(t) is the numerical solution achieved by method of [7] with
n x k, BPFs.

6. Numerical examples

In some papers, it is usual to test the accuracy of methods by comparing the numerical solution and exact solution in
sample points. But this is not so appropriate for BPFs expansions. For example if we calculate BPFs expansion of y = x with
n=5, 15 and 25 over interval [0,1) and choose x; =2l i=0,1,2,3,4 as sample points, the errors at these points for
n=5,15 and 25, are zero while the bound of errors for these expansions are correspondingly 0.1, 0.03 and 0.02. This example
declares that bound of error is more adequate to represent the accuracy of numerical solutions based on BPFs. According to
above discussion, in following examples bounds of errors are compared.

In following examples, n shows number of Block Pulse Functions and k is times of modifications. If k equals zero, the
expansion is based on BPFs otherwise expansion is based on éMBPFs.

Tables 1-4 clearly show the results of Theorem 2. In fact whenever values of n x (k + 1) are equal, the bounds of errors
If —fll. are equal. For example in Table 1 where n=128 and k=0, it is seen that n x (k+1)=128 and ||f — f||.. = 0.024,
while for n=32 and k =3, it is seen that n x (k+ 1) =128 and ||f — f||., = 0.025, which is approximately same bound of error.

Example 1. In this example different expansions of f(t) = cos(2nt) over interval [0, 1) are compared. Table 1 shows the results
of numerical examples. n is number of BPFs, and k is number of modifications.

Example 2. Consider the following integral equation [7]:
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Table 1

n 32 64 128 32 32 32 64

k 0 0 0 1 2 3 1

If = fll 0.1 0.045 0.024 0.043 0.033 0.025 0.024
Table 2

n 32 64 128 32 32 32 64

k 0 0 0 1 2 3 1

If = fll. 0.02 0.01 0.005 0.011 0.0075 0.0065 0.0055
Table 3

n 32 64 128 32 32 32 64

k 0 0 0 1 2 3 1

If = fll 0.04 0.02 0.01 0.024 0.017 0.014 0.011
Table 4

n 32 64 128 32 32 32 64

k 0 0 0 1 2 3 1

If =Fll 0.045 0.025 0.014 0.027 0.026 0.018 0.015

ot
/ etx(s)ds=te', 0<t<1,
0

with exact solution x(t) = e~%. The results are shown in Table 2.

Example 3. Consider the following integral equation [7]:
t
/ cos(t — s)x(s)ds = tsin(t), 0<t<1,
0

with exact solution x(t) = 2 sin(t). The results are shown in Table 3.

Example 4. Consider the following Abel integral equation:

199

*X(s) 10000£1%(299 + 200t)
/0 w59 = 5890599 O<t<l,

with exact solution x(t) = £ + t. The results are shown in Table 4.

7. Conclusion

The main concept introduced in this paper can be expanded in any numerical expansion. It is relatively easy to illustrate
that if we perform simultaneously two operators (shifting and averaging) on an expansion of a function, the result is an
expansion with a maximum error, less than or equal to the error of individuals. ¢ MBPFs are adaptable to parallel program-
ming. f is an average of f,, i=0,...,k — 1, and it is possible to calculate each f, with one separate processor simultaneous.
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